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Physical activity is associated with reduced risk of several age-related diseases as well as with increased longevity in both rodents
and humans. Though these associations are well established, evidence of the molecular and cellular factors associated with reduced
disease risk and increased longevity resulting from physical activity is sparse. A long-standing hypothesis of aging is the telomere
hypothesis: as a cell divides, telomeres shorten resulting eventually in replicative senescence and an aged phenotype. Several reports
have recently associated telomeres and telomere-related proteins to diseases associated with physical inactivity and aging including
cardiovascular disease, insulin resistance, and hypertension. Interestingly several reports have also shown that longer telomeres
are associated with higher physical activity levels, indicating a potential mechanistic link between physical activity, reduced age-
related disease risk, and longevity. The primary purpose of this review is to discuss the potential importance of physical activity
in telomere biology in the context of inactivity- and age-related diseases. A secondary purpose is to explore potential mechanisms
and important avenues for future research in the field of telomeres and diseases associated with physical inactivity and aging.

1. Introduction

Aging is a complex biological phenomenon and the factors
governing the process of aging and longevity are only
beginning to be understood. Physical inactivity increases the
risk of several age-related diseases such as cardiovascular
disease (CVD), hypertension, osteoporosis, stroke, and type
2 diabetes [1]. Becoming or remaining physically active in
old age has been shown to reduce the risk of morbidity and
mortality from these age-related conditions [2, 3]. Moreover,
multiple reports have revealed the lifespan extending poten-
tial of physical activity (PA) [4–7]. Consistently performed
PA appears to slow the rate of cellular and molecular damage
accumulation and blunt the decline in physiological function
that is characteristic of the aging process [8, 9]. Despite these
findings, the causal molecular and genetic links between PA
and the reduction in age-related disease risk remain elusive.

A potential link between aging and increased disease
risk is shortened and/or dysfunctional telomeres. The role
of telomeres in several diseases associated with physical
inactivity and aging has recently been elucidated [10] and

recent epidemiological and experimental evidence points
to PA as being able to influence telomere biology [11–
13]. It should be noted that telomeres are also associated
with other diseases, such as neurodegenerative diseases
and cancer; however, this review will focus primarily on
organ systems involved in diseases associated with physical
inactivity and aging such as blood cells and cardiovascular
and musculoskeletal systems. In the present review, we will
(1) discuss the recent evidence of telomere modulation in
physical inactivity- and age-related diseases, (2) describe the
relationships observed between telomeres and PA, and (3)
explore possible mechanisms underlying these relationships
and suggest future research directions.

2. Telomeres in Aging

Many hypotheses of aging have been proposed and tested,
but no single hypothesis fully explains the complex intrica-
cies of biological aging. A popular model is the “telomere
length hypothesis” of aging that is set within the context of

mailto:sroth1@umd.edu


2 Journal of Aging Research

cellular senescence. Telomeres are repeated DNA sequences
(5′-TTAGGGn-3′) found on the ends of linear chromosomes
that protect the ends of DNA from damage during replica-
tion. Telomeres also act as a “mitotic clock” [14], shortening
with every cell division until cellular senescence occurs (i.e.,
critically short telomeres lead to senescence, where a cell is
metabolically active but unable to repair damage or divide).
As the senescent population of cells in a tissue increases with
advancing age, the function of the tissue becomes impaired
and displays an aged phenotype [15]. Thus, telomeres and
their length are considered at minimum an important aging
biomarker but may also act as a critical mechanism for
age-related decline [10, 16–18]; however, whether short
telomeres are cause or consequence of typical physiological
aging and age-related disease is yet to be determined.
Beyond aging, shortened telomeres are implicated in genetic
syndromes such as dyskeratosis congenita [19, 20], Werner
syndromes [21, 22], and aplastic anemia [23]. Also several
studies have identified gene variants in the telomere-related
proteins that are associated with altered telomere lengths
[24–27]; their role in the predisposition to age- and disease-
related traits is unclear at this time.

Telomere length is highly variable among mammalian
species and among tissues within a species [28]. Human
telomeres are typically 5–12 kilobases in length [29], while
mouse and rat telomeres are much longer (up to 150
kilobases depending on inbreeding status and strain) [28].
This is important to consider when interpreting telomere
data from animal studies, as telomere length dynamics
between mice and humans are different, though mouse
models with shorter telomeres are an important resource
in the study of comparative telomere biology [28, 30]. In
humans, tissue-specific telomere length is detectable at birth
with a rate of attrition estimated at 30–150 base pairs per
year in leukocytes and fibroblasts [31, 32]. Telomeres shorten
during DNA replication due to the end-replication problem,
in which the DNA polymerase enzyme cannot fully copy the
end of the DNA strand during DNA replication associated
with mitosis and cell division [31].

In certain cells with high mitotic activity (e.g., germ
line and progenitor cells; immune cells), the end-replication
problem is overcome by the enzyme telomerase that main-
tains telomere length homeostasis by adding 5′-TTAGGG-3′

repeats to telomeres following DNA replication [33]. Telom-
erase is a ribonucleoprotein complex consisting of an
enzymatically active protein component (TERT) and an
RNA template (TERC) [34]. Telomerase knockout mice
(both Tert and Terc knockouts) have been developed and
used as models for several age-related diseases, with Tert−/−

animals identified as a model of CVD [35]. A recent study
has shown that TERT reactivation in aged TERT-deficient
mice was able to alleviate signs of aging showing the
importance of the telomere system in tissue health and
aging [36] and providing further evidence for telomere
shortening as a likely factor in age-associated organ decline
and disease risk [36–38]. Though telomerase typically has
low activity in postmitotic cells, telomerase is activated along
with the expression of other oncogenes (e.g., MYC, RAS)
in most cancers and immortalized cell lines. This results in

a paradoxical role for telomerase, with critical functions in
both health and disease depending on the cell type [39, 40].

Telomeres are protected by a six-protein complex termed
“shelterin”, which functions to monitor telomere length
and protect DNA telomere ends from being recognized by
DNA damage response proteins and nucleases [41]. Shelterin
is also involved in cell cycle regulation and is important
for maintenance of cell viability [41]. Shelterin consists of
six key proteins bound to chromosome ends, including
three components that interact directly with telomere DNA:
telomere-repeat binding factors 1 and 2 (TRF1 and TRF2)
and protection of telomeres 1 (POT1). In addition, shelterin
includes three additional proteins that each interact with
the three telomere DNA-binding proteins. The regulation of
telomere length by telomerase and shelterin components is
critical in determining cellular fate.

Recent studies have associated various aspects of telom-
ere biology (e.g., telomere length and expression of telomere-
related gene products) to diseases of aging, including but not
limited to CVD and CVD risk factors, diabetes phenotypes,
and musculoskeletal diseases. Many of these same diseases
and risk factors have also been associated with an inactive
lifestyle. Physical activity and exercise training have been
associated not only with prevention and improvement of
disease symptoms but also with telomere length, indicating
a possible role for PA influencing telomere biology as a
potential mechanism for prevention or delay of age-related
disease. Figure 1 presents an overview of the major factors
in the regulation of telomere biology as related to both age-
related diseases and cancer. The research described below
shows a clear association of shortened telomere length with
diseases associated with aging and inactivity, though future
research is needed to determine if telomere shortening is an
etiology of these diseases.

3. Telomeres and Age- and
Inactivity-Related Diseases

3.1. Telomeres and Cardiovascular and Metabolic Disease Risk
Factors. Cardiovascular disease and its risk factors represent
a major proportion of the population’s disease burden
during aging and PA is a potent means of reducing the
risk of developing CVD. Thus, CVD and other CVD risk
factors are considered diseases of both physical inactivity
and aging. Several studies have associated shortened telomere
length in peripheral blood mononuclear cells (PBMCs) and
other tissues to hypertension and other CVD risk factors.
A common hypothesis is that leukocyte telomere length
reflects the overall systemic burden of oxidative stress and
inflammation, which are two key risk factors for CVD, thus
providing a potential physiological link between telomeres
and CVD [42].

For example, Jeanclos et al. [43] showed a relationship
in twins that telomere length was inversely related to
pulse pressure. Aviv et al. [44] showed that abdominal
aorta cells displayed telomere shortening as a function
of age indicating an age-dependent loss of vascular cell
function. Benetos et al. showed over multiple studies in
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Figure 1: The major factors leading to age-related disease or cancer phenotypes are shown. Interaction of genetic and environmental factors
can lead to varying levels of DNA damage, oxidative stress, and inflammation, all of which can contribute to shortened or dysfunctional
telomeres, depending on the extent of damage. Typically-shortened telomeres can result in cell cycle arrest, tumor suppression, and loss of
functional tissue via senescence or apoptosis/necrosis and an aging phenotype. At the extreme, DNA damage (e.g., gene mutations) and
subsequent activation of oncogenes, such as TERT and telomerase activity, can lead to age-related cancer. Becoming or remaining physically
active may prevent or delay the onset of many age-related diseases and even some cancers, potentially through protection of telomeres.

men that higher pulse wave velocity and pulse pressure
[16], carotid artery plaques [45], and plasma aldosterone
levels [46] were associated with shorter telomeres. Patients
with chronic heart failure have also been observed to have
shorter leukocyte telomere lengths [47]. In the Framingham
Heart Study and the Cardiovascular Health Study shorter
telomere lengths were associated with increased oxidative
stress, insulin resistance, and hypertension [48, 49]. In
two other studies by the Aviv group in the Framingham
Heart Study shorter telomeres were associated with increased
renin-aldosterone ratios and to carotid artery thickness in
men [50, 51]. In an interesting study of the inheritance of
telomere length, Brouilette et al. [52] measured telomere
length in the healthy offspring of both coronary artery
disease (CAD) patients and nondiseased controls. The results
revealed shorter leukocyte telomere lengths in the offspring
of CAD patients compared to the offspring of healthy
controls. The authors showed that offspring telomere length
was significantly associated with parental telomere length
and that the telomere length difference between the two
groups represented the equivalent of 17 years of telomere
length attrition [52]. Brouilette et al. [53] also showed that
statin use significantly reduced telomere shortening in CVD
patients and that telomere length may be a good predictor
of successful statin treatment. In a cross-sectional study of
young and older men, the angiogenic CD31+ cell fraction of
PBMCs were isolated and characterized for telomere length,
telomerase enzyme activity, and various cellular function

phenotypes. The results showed that older men had shorter
CD31+ telomere lengths and were more susceptible to apop-
totic stimuli compared to the younger men [54]. This study
provides an important link between telomeres, angiogenic
cells, aging, and risk for CVD by showing decreased stress
resistance and cellular function concordant with reduced
telomere length. Interestingly, Ornish et al. [55] showed
that a lifestyle intervention including exercise and low-fat
diet was able to lower LDL cholesterol levels and increase
telomerase activity in leukocytes. Though preliminary, these
data indicate that lifestyle intervention, through a reduction
in systemic oxidative stress and inflammation, may increase
telomerase activity and telomere maintenance.

Two recent longitudinal studies in separate cohorts
of CVD-affected individuals have confirmed the cross-
sectional findings described above, but with an unanticipated
complexity [10, 56]. Farzaneh-Far et al. demonstrated that
the most potent predictors of telomere shortening in CVD
patients were age, male sex, and increased waist-to-hip
ratio [10]. Surprisingly, only a portion of the patients
showed the expected telomere shortening, and telomere
length was shown to be maintained or even lengthened
with advancing age in some individuals, showing that in
vivo telomere dynamics are more complex than a simple,
predictable shortening of the mitotic clock [10, 56]. Vasan
et al. [42] and Kuznetsova et al. [57] also recently observed
longer leukocyte telomere length in individuals with left
ventricular hypertrophy. The groups speculate that longer
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telomere lengths in diseased patients may be due to an
increased reserve potential of angiogenic progenitor cells in
individuals with left ventricle hypertrophy, since left ventricle
hypertrophy is highly dependent on angiogenesis, or altered
levels of growth factors (e.g., IGF-1) and activation of
telomerase. The unexpected findings in longitudinal studies
that telomeres can take three different trajectories (expected
shortening, maintenance, and lengthening) deserve special
attention. Designing studies to elucidate the underlying
factors associated with the different telomere trajectories
and the cellular outcomes will provide insight into our
understanding of whether telomere dynamics are cause or
consequence in the progression of CVD.

Multiple studies have also associated telomere length
with the presence of type II diabetes and diabetes-related
phenotypes (e.g., insulin resistance and impaired glucose
tolerance). Risk factors for and symptoms of type II diabetes,
including impaired glucose tolerance, increased levels of
glycosylated hemoglobin, and increased adiposity, have been
associated with shorter telomeres in leukocytes [58–61]. Al-
Attas et al. showed that higher HOMA-IR values in males
and reduced serum levels of adiponectin in females were the
best predictors of shortened telomere length in leukocytes
[62]. In subjects with CAD but with or without metabolic
syndrome, it was observed that telomere length and telom-
erase enzyme activity were lower and oxidative DNA damage
(8-oxo-deoxyguanine) higher in endothelial progenitor cells
from those CAD patients with metabolic syndrome [63].
In a cohort of women, Epel et al. [64] associated stress
arousal and CVD risk factors to lower telomerase enzyme
activity and shorter telomeres. Specifically lower telomerase
enzyme activity was associated with higher fasting glucose,
poor lipid profile, increased abdominal adiposity, and a
composite metabolic syndrome variable. Shorter telomeres
were also associated with increased levels of circulating stress
hormones (cortisol and catecholamines).

In two studies by Tarry-Adkins et al. [65, 66], the
researchers showed in two different tissue types that poor
maternal nutrition can influence telomere length of the
offspring. Since poor maternal nutrition and the subsequent
“catch-up growth phase” are associated with increased
risk of CVD and type II diabetes, the authors tested the
hypothesis that telomeres would be shorter in offspring of
nutritionally deprived mothers. They observed that telomere
length was shorter in aorta and pancreatic islets in the
offspring of animals with poor maternal nutritional status
that were undergoing catch-up growth compared to control
offspring. More recently Salpea et al. [67] showed that
individuals with type II diabetes had shorter telomere
lengths than controls and telomere length was positively
correlated with total antioxidant levels in patient leukocytes.
Oxidative stress, which is known to shorten telomeres and
to be higher in type II diabetics, may provide a link
between disease and telomere length. These data indicate
that altered metabolic status induced by type II diabetes
and related traits is associated with shorter telomeres,
though, similar to CVD, whether or not losses of telomere
length are a cause or consequence of metabolic disease is
unclear.

3.2. Telomeres and Musculoskeletal Diseases Associated with
Physical Inactivity and Aging. The losses of bone mineral
density and skeletal muscle mass with advancing age have
important consequences for morbidity and mortality in
older men and women. Fewer studies of telomere biology
have been performed in these tissues, but the results generally
indicate a similar association to that observed for CVD
and metabolic disease. For example, several studies have
associated reduced bone mineral density and shortened
telomere length in both men and women [68, 69]. In a
longitudinal study of 84 men, researchers observed a positive
correlation between age-adjusted leukocyte telomere length
and distal forearm bone mineral density [68]. Other studies
have not observed an association between telomere length
and markers of bone health, including a Health ABC study
in which telomere length was not associated with markers
of bone health over a five-year period [70, 71]. The cell
type examined in those studies (leukocytes) may, however,
confound the results in that bone tissue telomere length or
bone progenitor cell telomere length may be a better indi-
cator of bone health. For instance, chondrocytes of aged or
diseased (osteoarthritic) individuals near the osteoarthritic
lesions had shorter telomere lengths and exhibited increased
evidence of cell senescence than cells farther from the lesions
[72].

Few studies have examined telomere length in sarcopenia
or other skeletal muscle phenotypes. Skeletal muscle is
unique in that it consists of multinucleated muscle fibers
and multiple niche populations of singularly nucleated cell
types, the most well-characterized being satellite cells [73].
Skeletal muscle is also considered to be postmitotic, with
only the satellite cells actively dividing when new nuclei are
needed within the skeletal muscle fiber. When skeletal muscle
satellite cells are activated to divide and incorporate into
muscle fibers as new myonuclei, the fibers’ average telomere
length is reduced [73, 74]. The newly added satellite cell
nuclei represent the nuclei with the shortest telomeres since
these newly added nuclei would have been actively dividing
over time [73, 74]. Minimum telomere length in skeletal
muscle is thus thought to represent the replicative history
of satellite cells [75]. As such, over time skeletal muscle
telomere length can change despite its postmitotic condition
[73, 76, 77].

Thus, when measuring skeletal muscle telomere length,
mean and minimum telomere length (i.e., the shortest
of the lengths observed in a tissue sample), representing
fiber telomere length and satellite cell telomere length,
respectively, must be analyzed and interpreted correctly
[73]. A recent investigation showed that skeletal muscle
telomere length was reduced in elderly individuals compared
to young controls, as well as a modest trend for shorter
skeletal muscle homogenate telomere lengths in sarcopenic
compared to nonsarcopenic individuals [78]. Other studies
in skeletal muscle have focused on the replicative potential
and regenerative capacity of satellite cells rather than skeletal
muscle per se. For example, Wernig et al. studied the
regenerative capacity of satellite cells and showed a slight
decrease in mean telomere length with age in those cells,
corresponding to reduced regenerative capacity [79]. Data
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from several different muscular dystrophies indicate short-
ened satellite cell and skeletal muscle homogenate telomeres
and telomere-related dysfunction associated with the muscle
degradation and atrophy [77, 80, 81]. When considered
together, these studies indicate that skeletal muscle telomere
length can change and moreover that using diseases such as
muscular dystrophies as extreme skeletal muscle remodeling
models may provide an avenue to understand the complex
skeletal muscle telomere biology landscape [82]. The role of
telomeres and telomerase in skeletal muscle and satellite cells
was reviewed recently [73].

4. Telomeres and Physical Activity

As shown in Table 1, several reports, including one from
our laboratory, have associated PA or exercise training with
alterations in telomere length and/or the network of proteins
that interact with telomeres [11, 12, 73, 76, 83–85]. These
results provide evidence of a link between PA and aging at
the cellular level and indicate the possibility of a mechanistic
link between the influences of PA in the attenuation of age-
related diseases.

Collins et al. [76] were the first to demonstrate an
association of telomere length with physical activity when
they reported excessive telomere shortening in skeletal
muscle of endurance athletes with severe fatigued athlete
myopathic syndrome (FAMS) compared to age- and training
volume-matched athletes. In a follow-up study by the Collins
group, shorter minimum telomere lengths were observed in
those endurance athletes with the highest number of years
and hours spent training [85]. These results indicate that
long-term endurance training by highly trained athletes may
be a significant stressor to skeletal muscle and/or satellite cell
telomeres, as indicated by the shorter minimum telomere
lengths.

Beginning in 2008, a number of groups began to study
the association of typical, moderate physical activity with
telomere length in humans. Ponsot et al. [86] investigated
skeletal muscle telomere length in physically active and
inactive men and women in two age groups, young and old,
and observed that telomere length was similar within an age
group regardless of activity level, indicating that moderate
PA is not detrimental to skeletal muscle telomere length. In
epidemiological studies by Cherkas et al. [11] and Ludlow
et al. [12] a positive association between PA and leukocyte
telomere length was observed up to moderate levels of typical
PA, while high levels of PA were associated with shorter
PBMC telomere lengths [12]. These results were not fully
replicated in a large cohort of older Chinese individuals
(∼72 yr old), though telomere length tended to be lowest in
the group with the lowest PA level (P = 0.09) [88]. Whether
that study was impacted by a “ceiling” effect by examining
only older individuals is possible. Nevertheless, these studies
provided the first evidence of a potential benefit of moderate
PA on telomere biology.

Additional evidence for a role of PA in telomere biol-
ogy has emerged in more recent studies. For example, a
recent study reported that physically active women had
longer leukocyte telomere lengths compared to sedentary

individuals, which the authors hypothesized was related
to PA diminishing the potential influence of perceived
psychological stress [94] on leukocyte telomere length [90].
In addition, a study investigating telomere length and PA in
adolescent males and females observed that African Ameri-
can females who spent more time performing vigorous PA
had significantly longer telomeres than less active peers [91].
LaRocca et al. [84] showed that leukocyte telomere length
was longer in older endurance exercise-trained individuals
compared to sedentary age-matched controls and was not
different from young-trained individuals and that telomere
length was related to maximal aerobic exercise capacity [84].
Finally, Song et al. [92] reported that lifestyle factors (e.g.,
exercise level, smoking, body mass index) correlated with
newly defined biomarkers [95] of DNA damage and telomere
dysfunction in blood cells.

Other investigations have attempted to associate telomere
alterations to resistance exercise. Kadi et al. [87] studied
competitive powerlifters compared to recreationally active
individuals and both average and minimum telomere lengths
of vastus lateralis muscle in the powerlifters were shown
to be longer compared to the controls. In contrast, within
the group of powerlifters minimum telomere length was
inversely associated to personal records in the squat and
deadlift, indicating that the greater the weight lifted in a
maximum effort, the shorter the minimum telomere length.
It should be noted that resistance training and unfamiliar
lengthening contractions are known to cause cellular damage
to skeletal muscle [96] and activate satellite cell proliferation
for regenerative purposes [97, 98]. One would assume that
this would result in telomere shortening of the satellite cell
telomeres due to cell proliferation, with the new nuclei
incorporated into the muscle fiber representing the shortest
telomeres in the regenerated muscle fiber; however this was
apparent only in the strongest powerlifters [87]. Though
speculative, the long-term training in the powerlifters seems
to have resulted in a protective effect on telomere length
in skeletal muscle, while excessive training associated with
elite-level performance may result in accelerated telomere
shortening.

Animal models have also provided evidence of a role of
physical activity in modifying telomere biology. Although
rodents tend to have significantly longer telomeres compared
to humans [28], the associated proteins and overall telomere
biology between the species are similar, thus providing useful
insights into possible regulatory mechanisms. Werner et al.
[13] recently showed that the cardioprotective effects of
voluntary wheel running on cardiomyocytes were conferred
by an exercise-induced increase in telomere binding proteins
(shelterin) and telomerase enzyme activity mediated by the
presence of telomerase protein component TERT as well
as IGF-1 and eNOS. Exercise was also shown to decrease
markers of apoptosis and reduce gene expression of several
cell cycle associated genes, showing that exercise induces
an antiapoptotic environment thus preserving functional
tissue and delaying an aged phenotype [13]. Cardiomyocyte
telomere length itself was not different between exercise and
sedentary groups but was different with age (3 months versus
18 months), indicating age-related telomere shortening. In
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Table 1: Summary of studies investigating physical exercise and telomere-related traits.

Study Major findings

Human skeletal muscle

Collins et al. [76]
Shorter telomeres in VL of subjects with Fatigued Athlete Myopathic Syndrome
(FAMS)

Ponsot et al. [86] Equal VL telomere length between sedentary and active individuals

Kadi et al. [87]
Longer VL telomeres (mean and minimum) in powerlifters compared to sedentary
men

Human leukocytes (WBC unless otherwise noted)

Cherkas et al. [11] Longer telomeres in more active individuals

Ludlow et al. [12]
Longer PBMC telomeres in moderately active individuals compared to both
sedentary and high active

Woo et al. [88] No difference in telomere length between active and sedentary individuals

Shin et al. [89]
No difference in telomere length in obese middle age women who underwent 6
months of aerobic exercise training compared to sedentary controls

Werner et al. [83] Longer PBMC telomeres in older athletes compared to older sedentary individuals

Puterman et al. [90] Longer telomeres in active individuals with lowest psychological stress levels

Zhu et al. [91]
Longer telomeres in active adolescent African American females compared to less
active peers

LaRocca et al. [84] Longer telomeres in older active individuals compared to sedentary peers

Song et al. [92]
Longer telomeres positively correlated with lifestyle factors such as PA level, BMI
and smoking status

Rodent Tissues

Radak et al. [93]
No change in telomerase activity with chronic (8 weeks) swimming in rat skeletal
muscle or liver

Werner et al. [13]
Increased telomere protection and reduced apoptotic signaling in myocardium
after VWR; elucidation of possible mechanisms

Werner et al. [83]
Increased telomere protection and reduced apoptotic signaling in aorta tissue after
VWR; confirmation of possible mechanisms observed in Werner et al. [13]

VL: vastus lateralis; WBC: white blood cells; PBMC: peripheral blood mononuclear cells; PA: physical activity; BMI: body mass index; VWR: voluntary wheel
running.

a follow-up study in aortic tissues of mice and mononu-
clear cells of humans, Werner et al. [83] again showed
that exercise training increased telomerase enzyme activity,
increased telomere binding protein and mRNA expression,
and decreased levels of Chk2, p16, and p53 in mouse aorta.
These gene expression changes were again shown to be
mediated by TERT and eNOS in the aorta. Similar to the
cardiomyocyte data, aortic telomere length was not altered
by 3 weeks or 6 months of voluntary wheel running but
demonstrated age-related shortening (3 months versus 18
months). In the human arm of the study, the authors
investigated young sedentary, young athletes, aged sedentary,
and aged athlete groups for telomere-related outcomes.
Mononuclear cell telomere length was preserved in the aged
athletes and was shortest in the aged sedentary individuals,
and telomerase activity was greater in young and aged
athletes compared to the age-matched sedentary individuals.
Telomere-repeat binding protein 2 (TRF2) expression was
increased in the athletes compared to sedentary individuals,
while cell cycle genes (e.g., p16, p53, Chk2) were reduced in
the athletes compared to the inactive groups [83].

In summary, these human and animal experimental and
epidemiological results, most notably the papers by Werner
and coworkers, indicate that exercise training is a potent

stimulus to the telomere biology system, though influences
on telomere length itself may not be seen unless the training
is for a long duration. The data also indicate the possibility
that moderate PA may provide the greatest positive influence
on telomere biology while higher levels of exercise training
may have a negative effect.

5. Possible Mechanisms of
Physical Activity-Induced Modifications
of Telomere Biology

Few studies have defined direct cellular and molecular mech-
anisms of the effect of PA on the biology of aging, though
as outlined above a slowing of telomere degradation may act
as one potential mechanism. The direct signaling pathways
by which PA interacts with the telomere are not clearly
delineated, though the work of Werner et al. has provided
some initial insights. In general, regular PA is thought to
prevent and delay inactivity- and age-related disease through
multiple mechanisms, with reductions in either oxidative
stress [6] or inflammation [99] or both being key potential
mediators. These same pathways can be linked to changes in
telomere biology, providing potential mechanisms by which
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PA influences telomere biology with downstream influences
on disease development and progression.

For example, exercise training increases antioxidant
capacity via an increase in antioxidant enzyme activity [100–
102]. Telomere shortening is exacerbated in numerous cell
types due to oxidative stress [103–106]. Besides proliferation,
telomeres can also shorten due to unrepaired damage from
such oxidative stress, which could explain telomere short-
ening in postmitotic tissues such as neurons, myocardium,
and skeletal muscle [13, 103, 107, 108]. Thus, telomere
length may be maintained in moderately physically active
individuals due to reductions in oxidative damage occurring
to the telomere. Telomerase is also responsive to oxidative
stress and may be key to protecting cells from stress insults
[109, 110]; so this component of the telomere system may
also benefit from the reduction in oxidative stress associated
with PA.

In the studies by Werner et al. [13, 83], a role for
endothelial nitric oxide synthase has been described, such
that the presence of eNOS, and assumed nitric oxide (NO)
bioavailability, is critical for the exercise-induced alterations
to the telomere binding proteins in cardiomyocytes and
aortic tissue in mice. These findings indicate that exercise,
mediated by the beneficial effects of NO, is able to confer
oxidative stress resistance and reduced apoptosis in mul-
tiple tissue types via genome stabilization by an increased
expression of telomere binding proteins and telomerase by
activation of cell survival pathways. Nitric oxide signaling
via cGMP is able to activate several prosurvival protein
kinases including phosphatidylinositol 3′ kinase (PI-3K) and
protein kinase B (AKT) [111]. These studies by Werner
et al. also showed a role for IGF-1 in the activation of
telomerase. Recent epidemiological evidence indicates that
older individuals with low circulating IGF-1 and free of
overt disease have shorter leukocyte telomere lengths [112].
Since acute exercise stimulates expression of IGF-1 from both
skeletal muscle and liver [113], IGF-1 may be playing a role
in the augmentation of telomere biology by exercise. How
the “exercise signal” is transmitted via prosurvival pathways
to the telomere-related genes has not been defined; however,
these recent findings have highlighted possible molecular
underpinnings of the beneficial effects of exercise training on
vascular phenotypes.

Exercise of all types can activate AMP-activated pro-
tein kinase (AMPK) [114, 115] and mammalian target of
rapamycin (mTOR) [116, 117]. Both of these pathways
regulate gene expression of several genes, are energy sensitive,
and are involved in cellular aging [118, 119]. Interestingly,
these pathways are involved in insulin signaling, protein
synthesis (mRNA translation), and cell growth and survival,
which makes these pathways important targets to consider
when studying telomeres. For instance, telomerase has been
shown to be associated with altered levels of AMPK [120].
These pathways deserve special attention with regard to
the linkages between exercise, telomere biology, and cellular
aging.

Stress hormones such as cortisol and stress responsive
pathways such as those of the mitogen-activated kinases
(MAPK) have also been implicated in telomere biology [121,

122]. For instance, Spallarossa et al. [122] demonstrated
that p38 MAPK was involved in the regulation of Trf2
gene expression in response to doxorubicin treatment in
cardiomyocytes. Acute exercise is known to activate MAPK
signaling, though the effects of exercise training on MAPK
are less clear [123]. So acute exercise may result in a
repression of telomere binding protein expression, which is
consistent with longer telomeres [124]. The MAPK pathway
should be investigated as a possible mechanism by which
exercise can influence telomere biology.

In addition to oxidative stress-related pathways, short
telomeres may contribute to the chronic inflammatory
phenotype associated with aging, as demonstrated recently
in a study showing shortened telomeres implicated in the
regulation of interferon-stimulated gene 15 (ISG-15) [125].
Lou et al. used a customized microarray analysis of cells
with short, normal, and artificially elongated telomeres
to elucidate genes differentially expressed in human skin
fibroblasts and ISG-15 was clearly differentially expressed
in relation to telomere length. Several studies have linked
the expression and secretion of ISG-15 to inflammation
through its stimulation of the proinflammatory interferon,
IFNγ [126, 127]. These results point to a possible mechanism
whereby shortened telomeres are causing an increase in
inflammation (a condition associated with many age-related
diseases), thus contributing directly to the disease process. A
recent study using mTert−/− cells with shortened telomeres
showed enhanced toll-like receptor 4 (TLR4) expression
[128]. TLR4 mediates the inflammation process by stimulat-
ing the expression of NF-κB, which initiates the transcription
of several proinflammatory genes such as Il-6, COX2, and
TNF-α. Thus, shortened telomeres have been linked to a
proinflammatory cellular environment.

In contrast, acute and chronic moderate exercise training
is associated with beneficial changes in inflammatory makers
[129, 130], pointing to a possible protective effect of PA
against telomere shortening through reduced inflammation-
related gene expression. Several inflammatory cytokines have
been shown to be augmented in age-related diseases (e.g.,
TNF-alpha), and PA may blunt these age-related changes
in inflammatory cytokines [131]. Short telomeres may
initiate a feed-forward mechanism resulting in the expression
of both inflammatory and oxidative stress pathways that
could accelerate telomere shortening and enhance age- and
inactivity-related disease phenotypes. Thus, PA may be
exerting its antiaging effects by protecting telomeres from
shortening by improvements in antioxidant capacity and
chronic inflammation.

Determining whether or not telomere shortening is
causing cellular dysfunction and age-related disease or if
telomere length is simply a bystander reflecting the hostile
cellular environment associated with age-related disease is a
challenge. The phenotypes of early generation Tert−/− and
Terc−/−knockout mice do not display telomere shortening as
expected, but later generations of these animals have short-
ened telomeres and overt phenotypes such as CVD, indicat-
ing a direct link between telomere shortening and disease
[132, 133]. These and other knockout animal models may
provide insights into whether or not shortened telomeres
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are responsible for diseases of aging and inactivity. Other
possibilities include engineering tissue-specific knockout
animals for components of the shelterin complex. Whole-
body knockouts for Trf1 and Trf2 have been attempted
but have not survived past the embryonic stage [134, 135],
showing vital roles for these proteins in development.
In contrast, tissue-specific shelterin component knockout
mouse strains produce viable offspring that display aging
phenotypes and cancer [124, 136]. Tissue-specific knockout
animals could be exposed to PA intervention studies to
further elucidate the role of PA in telomere biology.

6. Conclusions and Future Directions

The majority of existent literature concerning telomere
length in human epidemiology to date has focused on a
sample of convenience, namely, white blood cells or more
specifically PBMCs. Peripheral blood mononuclear cells are
easily obtained via venipuncture and simple isolation proce-
dures. The main reasons these cells have become a staple in
human telomere research are their ease of acquisition and, as
immune cells, they are a cell type active during the disease
process and thus demonstrate telomere shortening. These
cells have related limitations, however, in that immunological
cells may be a better marker of systemic inflammation rather
than of age-related disease itself [137] and may not be rep-
resentative of the telomere length trajectory of other tissues.
Thus future studies would be improved by studying tissue-
and cell-specific telomere biology in relation to disease
by obtaining biopsy specimens, or working in established
animal or cell culture models of disease, to elucidate specific
pathways, signals, and environmental stimuli contributing to
age- and inactivity-related disease traits.

The evidence for a modification of telomeres in several
inactivity- and aging-related diseases is clear. The possible
mechanisms for these alterations in telomere biology are
multifactorial and include oxidative stress, growth- and
stress-related hormones and their associated pathways, and
inflammation, though the direct mechanistic pathways have
yet to be identified with each disease. The connection
between the exercise-induced changes in telomere biology
and age- and inactivity-related diseases has yet to be
elucidated, but considerable indirect evidence indicates the
potential for PA to improve cellular conditions and thus
reduce disease risk through impacts on telomere biology.

Future studies should focus on telomere dynamics in
response to acute, moderate, and long duration (life-long)
exercise trials in animal models and where possible in
humans to clarify potential mechanisms, with emphasis
on longitudinal study designs with repeated measures of
telomere length and other age- or disease-related outcomes.
Exercise of different intensities should also be explored at
various time points across the life span, as some literature
indicates differential influences on telomere biology depend-
ing on intensity. Human trials will necessarily involve long
durations to allow measurement of telomere length changes,
though examination of telomere-related components can be
studied with shorter durations. The factors responsible for

the exercise-induced alterations in telomere binding proteins
are yet to be fully elucidated, which offers an open avenue
of research. Exercise is known to prevent or delay many age-
related diseases such as CVD and type II diabetes, which in
turn have been linked to telomeres. The question of whether
or not telomeres and associated proteins are causing the
disease progression or are simply altered as a result of disease-
related processes is open for debate. What is clear is that
exercise slows or prevents symptoms of age-related diseases
and is also able to alter telomere biology. Deciphering the
role of exercise in altering telomere biology in inactivity- and
age-related disease progression holds promise for continued
understanding of exercise training as a critical tool for the
prevention and treatment of these diseases.
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