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The spread of antibiotic resistance genes on plasmids is a threat to human and
animal health. Phylogenies of bacteria and their plasmids contain clues regard-
ing the frequency of plasmid transfer events, as well as the co-evolution of
plasmids and their hosts. However, whole genome sequencing data from
diverse ecological or clinical bacterial samples are rarely used to study plasmid
phylogenies and resistance gene transfer. This is partially due to the difficulty
of extracting plasmids from short-read sequencing data. Here, we use both
short- and long-read sequencing data of 24 clinical extended-spectrum
b-lactamase (ESBL)-producing Escherichia coli to estimate chromosomal and
plasmid phylogenies. We compare the impact of different sequencing and
assemblymethodologies on these phylogenies and on the inference of horizon-
tal gene transfer. We find that chromosomal phylogenies can be estimated
robustly with all methods, whereas plasmid phylogenies have more variable
topology and branch lengths across the methods used. Specifically, hybrid
methods that use long reads to resolve short-read assemblies (HybridSPAdes
and Unicycler) perform better than those that started from long reads during
assembly graph generation (Canu). By contrast, the inference of plasmid and
antibiotic resistance gene transfer using a parsimony-based criterion is
mostly robust to the choice of sequencing and assembly method.

This article is part of a discussion meeting issue ‘Genomic population
structures of microbial pathogens’.
1. Introduction
The rapid spread of antibiotic resistance is a global threat for human and animal
health. Antibiotic-resistant infections are associated with increased morbidity
and mortality [1] and carry a substantial economic cost due to the use of
second-line treatment options, treatment complications and longer hospital
stays [2]. The spread of antibiotic resistance genes is aided by their association
with mobile genetic elements that are transferred between diverse bacterial
populations [3]. In Enterobacterales, an order of Gram-negative bacteria that
cause both nosocomial and community-associated infections in humans, conju-
gative plasmids are considered the main driver of the horizontal transfer of
antibiotic resistance genes [4–6].

In the epidemiology of antibiotic resistance, the distinction between
chromosome- and plasmid-driven spread is important for monitoring,
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transmission risk assessment and the planning of interven-
tions [4,6]. Some resistance is spread mostly by successful
bacterial lineages (or ‘clones’), in association with one or sev-
eral resistance plasmids [4]. A prime example is Escherichia coli
sequence type (ST) 131 with a variety of IncF plasmids [4,7].
Other resistance genes are carried on more promiscuous plas-
mids, such as plasmid pOXA-48, which easily spread to
various species [6]. Surveillance strategies including the accu-
rate typing of resistance genes, plasmids and bacterial host
lineages are essential to monitor plasmid-mediated spread of
resistance both in hospital settings and between epidemio-
logical compartments such as animals, humans and the
environment [8–10].

Over the past 10–15 years, whole-genome sequencing
(WGS) has become ever more important for molecular epide-
miology, as it supplies detailed information on the presence
and genetic context of resistance genes, in addition to strain
and plasmid typing [11,12]. Three main sequencing methods
are currently used for microbial genomics. Short-read sequen-
cing, typically on Illumina machines, is cost-efficient and
produces reads with a low error rate [12,13]. However, the
short-read length is often not enough to distinguish repeat
regions, leading to a fragmented assembly [13–15]. To over-
come this issue, both Pacific Biosciences (PacBio) and
Oxford Nanopore Technologies (NP) have developed single
molecule, long-read sequencing methods that produce reads
with a median length of 10 kb [12]. Long reads allow for a
more contiguous assembly, but result in a greater cost per
sample, and—for NP—higher error rates, although both
have been decreasing in recent years [12].

A primary reason why plasmid phylogenies have been
understudied is that it is difficult to detect plasmids in short-
read WGS data in an accurate and automated fashion
[12,15]. Plasmids are often assembled into several different
contiguous sequences (contigs), which can be identified as
plasmid sequences only by the presence of plasmid-specific
genes [16,17], or a coverage or GC-content that differs from
the chromosome [18]. Typically long-read sequence infor-
mation is needed to assemble the full plasmid sequence.
Multiple studies have compared short-read, long-read and
hybrid methods in their ability to reconstruct plasmid
sequences and determine the location of resistance genes
[12–14]. These studies generally concluded that hybrid assem-
bly, especially combining Illumina with NP, enables accurate
plasmid identification and localization of resistance genes.
However, although one study speculated that the observed
differences may affect phylogenetic analyses [13], none expli-
citly tested the effect of sequencing and assembly choices on
downstream inferences. Since different phylogenetic analyses
are sensitive to different errors, it is not clear which sequencing
strategy has the optimal cost/benefit ratio to study the phylo-
genetics of bacteria and their plasmids.

Here, we used genomic data of 24 clinical extended-
spectrum b-lactamase (ESBL)-producing E. coli to study the
impact of sequencing and assembly methods on the phyloge-
netic inference of chromosomal and plasmid trees. We
compared de novo assemblies based on Illumina, PacBio and
NP read sets, assembled both independently and in hybrid
fashion. The inferred plasmid phylogenies differed substan-
tially across the assembly method combinations tested.
However, horizontal transmission of plasmids and the associ-
ated antibiotic-resistance genes could be quantified even in
the absence of long-read information.
2. Methods
(a) Escherichia coli isolates
The 24 ESBL-producing E. coli strains were previously isolated at
the University Hospital Basel (UHB) and an affiliated long-term
care centre, the Felix Platter Hospital (FPH), in the context of a
hospital transmission study [19]. E. coli strains from routine diag-
nostics were identified as ESBL-producing strains via two
different approaches: (i) E. coli antimicrobial resistance against
third-generation cephalosporins (cefpodoxime, ceftriaxone, cefta-
zidime) was confirmed using a phenotypic Rosco Disk assay
(Rosco, Taastrup, Denmark); and (ii) E. coli strains growing on
ESBL Chromogenic screening agar plates (chrom ID ESBL, bio-
Mérieux, Marcy-l’Étoile, France) were also confirmed using a
phenotypic Rosco Disk assay. Antibiotic minimal inhibitory con-
centration (MICs) were interpreted according to EUCAST
guidelines (www.eucast.org). Strains were stored at −80°C.

The set of strains contains four known transmission pairs, as
well as one pair of strains that were isolated from the same
patient half a year apart. The strains are representative of the
known clinical diversity of ESBL-producing E. coli [20]. From
the 24 isolates, 4 are from phylogroup B1, 11 from B2 (all
ST131), 1 from C, 5 from D, and 3 from phylogroup F (see elec-
tronic supplementary material, table S2; Clermont Typing using
EzClermont [21]).
(b) Library preparation and sequencing
The samples were sequenced using Illumina, PacBio and NP.
DNA was extracted at the UHB, using the QIAamp® DNA
mini kit (QIAGEN) with the QIAcube® robot (QIAGEN) accord-
ing to the manufacturer’s instructions. For Illumina sequencing,
libraries were prepared with the Nextera XT library preparation
kit (Illumina) and sequenced on a MiSeq machine (300 bp
paired-end) at the UHB. PacBio sequencing was performed with-
out size selection, on a PacBio Sequel machine at the Functional
Genomics Center Zürich. The samples were multiplexed in three
pools (barcoding), where one pool had to be resequenced
because of low yield in the first round. The resulting coverage
of PacBio reads was not uniform across the 24 samples (mean
coverage: 106 ± 43). NP sequencing was performed following
the protocol developed by Noll et al. [22], on a MinION at the
Biozentrum Basel. In brief, libraries were prepared using the
1D ligation sequencing kit (LSK-108) and native barcoding
expansion (EXP-NBD103; both from NP), without the shearing
and repair step and with an increased amount of DNA. Base-call-
ing was performed with albacore (v. 2.0.2; see http://
nanoporetech.com/community) and barcode demultiplexing fol-
lowed the consensus of both albacore and porechop (v. 0.2.3;
see https://github.com/rrwick/Porechop).
(c) Assembly
The sequencing reads were assembled in a variety of ways,
including in hybrid combinations of long- and short-read
sequencing methods. An overview can be found in table 1. The
Illumina reads were trimmed using Trimmomatic in paired-end
mode [23]. The Illumina Nextera adapters were removed
(2∶30∶10∶8), as well as the leading and trailing three bases of
each read. The quality trimming was performed using a minimal
phred quality score of 20 per base. Reads with a length shorter
than 36 bp were removed. FastQC (v. 0.11.7) was used for quality
control on the trimmed reads [24]. Assembly of Illumina reads
was performed using SPAdes (v. 3.11.1) [25], without further
error correction and set to ‘careful’. PacBio reads were subsetted
for multiplex barcode quality above 45 (recommendation by
PacBio). Both long-read methods were assembled by themselves
using Canu (v. 1.7) [26]. The long and short reads were combined
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Table 1. Number of samples with a given replicon, per assembly method. PB refers to PacBio reads, NP to Oxford Nanopore Technologies.

name reads assembly method

Illumina–SPAdes Illumina SPAdes

PB–Canu PacBio Canu

NP–Canu Oxford Nanopore Canu

PB–Canu–Hybrid PacBio and Illumina Canu + Polishing w. Illumina

PB–SPAdes–Hybrid PacBio and Illumina HybridSPAdes

PB–Unicycler–Hybrid PacBio and Illumina Unicycler

NP–Canu–Hybrid Oxford Nanopore and Illumina Canu + Polishing w. Illumina

NP–SPAdes–Hybrid Oxford Nanopore and Illumina HybridSPAdes

NP–Unicycler–Hybrid Oxford Nanopore and Illumina Unicycler
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into hybrid assemblies, once by polishing the Canu assemblies
with the Illumina reads using unicycler-polish (v. 0.4.7; based
on the Pilon polishing tool [27]) and alternatively by assembling
both long and short reads together using HybridSPAdes
(v. 3.11.1) [28] and Unicycler (v. 0.4.7) [29]. The Canu assembler
was run using a separate read correction step with high coverage
settings (parameter corOutCoverage was set to 1000 to include
short plasmids) and a subsequent trim-assemble step. Hybrid-
SPAdes assembly was performed using the basic settings.
Unicycler was run in normal and ‘conservative’ mode, but
since these assemblies did not differ substantially, we report
results for the normal mode only.

(d) Assembly comparison
The assemblies were compared according to six different
measures of assembly quality: first, the number of assembled
contiguous sequences (# contigs); second, the N50, i.e. the
value for which 50% of the assembly is contained in contigs
equal to or larger than this value; and third, the error rate, i.e.
the number of single nucleotide polymorphisms (# SNPs) and
insertion-deletions (# indels) found in the assembly, divided by
the total assembly size. The SNPs and indels were found by map-
ping the Illumina reads against the completed assembly, and
calling errors using bcftools (v.1.7) with a quality score of 20
[30]. Fourth, the number of coding domain sequences (# CDS)
found in the assembly. This information was extracted from the
prokka annotations (v.1.13) [31], which in turn uses prodigal
for gene prediction [32]. Fifth, the total length of the contigs on
which an antibiotic resistance gene was detected. Sixth, the
total length of the contigs on which a plasmid replicon was
detected. Plasmid replicons and resistance genes were deter-
mined using abricate (v. 0.8.10; Torsten Seemann, https://
github.com/tseemann/abricate) with the PlasmidFinder [17]
and ResFinder [33] databases respectively.

(e) Chromosomal alignment
We estimated the chromosomal genomic information of a strain
using core genome Multi-Locus Sequence Typing (cgMLST)
[11,34]. We used chewBBACA [35] for allele calling against the
Enterobase E. coli cgMLST scheme [36]. This scheme includes
genes that are present in 95% of their E. coli assemblies, which
currently number more than 100 000 and should thus lead to a
highly stable core definition. The scheme includes 2513 ‘core’
genes, each of which has on average 1052 known alleles
[min = 20, max = 4748] (downloaded 14 Augurst 2019).

We then transformed the matrix of allele calls to one
multi-FASTA per gene, and used MAFFT [37] (v. 7.313) to
create a per-gene alignment. Simple concatenation of the
gene sequences for each bacterial strain yielded an alignment
ready for use in subsequent phylogenetic analysis. All Entero-
base core genes were included in the alignment, independent
of the number of samples they were present in.

( f ) Plasmid alignment
We developed a pipeline to obtain a plasmid alignment from
assembled WGS contigs. To extract putative plasmid sequences
from the WGS assembly, we used genes known to be implicated
in plasmid replication as probes. These genes are specific to a
plasmid incompatibility group and are used for replicon (REP)
typing against the PlasmidFinder database [17]. Once we ident-
ified all putative plasmid sequences with the same REP, these
still contained regions of genome rearrangement and recombina-
tion. Thus, we annotate the putative plasmid sequences with
Prokka [31], and determine the alignment for each REP using
Roary [38]. All genes present in at least two samples were
included in the alignment, as opposed to core genes only (set
with the core definition parameter cd = 0.08).

(g) Phylogenetic analysis and tree comparison
The rooted chromosomal and plasmid time-trees were inferred
using BEAST 2 [39]. Since the samples were closely spaced in
time, the sampling dates contained little information about the
timing and age of the tree. To aid the inference under the Hase-
gawa–Kishino–Yano (HKY) model, we constrained the mutation
rate around the estimate for E. coli by Wielgoss et al. [40]. They
determine a mutation rate of 8.9 × 10−11 ½4� 10�11. . .14� 10�11�
mutations per base-pair per generation for a genome of 4.6 ×
106 bp in length. Assuming between 1000 to 10 000 generations
per year, this leads to a parameter range of 0.18 · · · 6.44 mutations
per genome per year. We captured this using a lognormal(M =
0.4, S = 1) prior on the ClockRate. Here, we used mutation rates
and generation time estimates from the laboratory, although
the generation times in the wild are likely around 50 times
longer than this [41]. We also assumed that plasmids and
chromosomes have the same mutation rate, since they use the
same DNA replication and repair machinery. However, a differ-
ent mutation rate for the plasmids would not impact the relative
comparison of the different assembly methods.

Trees can differ in their topology or branch lengths. Thus, we
used three methods to compare the chromosomal and plasmid
trees we obtained using different sequencing and assembly
methods on the same samples. To compare the tree topology,
we used CladeSetComparator from the Babel package for
BEAST 2 (https://github.com/rbouckaert/Babel) [39]. This pro-
gram uses the posterior of trees obtained through two separate
Bayesian phylogenetic inferences, matches the clades from both
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tree posteriors and reports the probability with which the clades
are found in each posterior. In addition, we used the treespace R
package (v. 1.1.4.1) to compare the overall separation of the
inferred tree topologies in tree space (using the Kendall–Colijn
distance metric between trees) [42]. To get a proxy for the com-
bined branch length, we compared the inferred age of the trees
(the tree ‘height’).

(h) Identifying horizontal gene transfer
Incongruence between plasmid and chromosomal phylogenies
indicates a violation of the assumption of clonal inheritance,
and thus points towards horizontal gene transfer. We quantified
this incongruence using the Robinson–Foulds metric, which
describes the distance between two phylogenetic trees A and B
[43]. For rooted trees, it is calculated as the number of clades in
tree A that are not present in B, added to the number of clades
in tree B that are not present in A. Since this number depends
on the size of the tree, we normalized by the maximal possible
distance between A and B (yielding a value between 0 and 1).
These statistics were calculated using the phangorn package in
R [44]. For comparison against a sample of random trees, we
used the rmtree function from the ape package (v.5.5) [45].

Horizontal gene transfer can also be assessed using a parsi-
mony analysis: if one labels the tips of the chromosomal tree by
the presence or the absence of a given plasmid or resistance
gene in the whole genome assembly, the parsimony score
describes the number of horizontal gene transfer events that are
needed to explain this pattern of presence/absence. To put the
estimated parsimony score into perspective, we compared against
a null model that assumes the amount of plasmid transfer is very
high, such that for each terminal branch the chance of observing
the plasmid is equal to the frequency with which the plasmid is
observed in the population. This was achieved by keeping the
number of observed plasmid presences constant but randomizing
the tips they were assigned to (1000 times). Significant departures
from the null model were determined by comparing the observed
parsimony to the empirical cumulative distribution function of the
null model at a 0.05 significance threshold.
3. Results
(a) A comparison of sequencing and assembly methods
We set out to study the effect of sequencing and assembly
methods on the inference of horizontal gene transfer in clini-
cal E. coli. We used three different sequencing methods
(Illumina, PacBio and Oxford Nanopore) and four single- or
hybrid assembly methods on the same 24 ESBL-producing
E. coli samples. In total, we tested nine different combinations
of sequencing and assembly methods (an overview is given
in table 1) and constructed both chromosomal and plasmid
phylogenies for each combination (figure 1; electronic
supplementary material, figures S5 and S6).

The general characteristics and quality of the assemblies
differed substantially across the nine sequencing–assembly
method combinations (electronic supplementary material,
figure S1). As expected, the Illumina-SPAdes assemblies were
most fragmented, as testified by the large amount of contigs
(electronic supplementary material, figure S1a) and low N50
(electronic supplementary material, figure S1b). For long-read
and hybrid methods, especially those involving PacBio reads,
the distribution of the N50 statistic was also broad and often
below the expected 5Mb of an E. coli genome. This shows
that these methods struggled to assemble closed genomes,
with large variability across the clinical samples. The error
rates were quite low for all method combinations, with the
exception of the Nanopore-only assembly (NP-Canu, electronic
supplementary material, figure S1c). These errors also resulted
in an elevated number of putative genes for NP-Canu (elec-
tronic supplementary material, figure S1d), likely due to
spurious stop-codons and frame-shifts. When looking at the
length of contigs with resistance genes (electronic supplemen-
tary material, figure S2), we found that Illumina recovered
shorter contigs than all other methods. This is likely because
most resistance genes in our isolates were flanked by insertion
sequences with repeat regions. By contrast, the majority of con-
tigs that carry plasmid genes were not substantially shorter
than those found with other methods (with some notable
exceptions for larger plasmids; see also figure 2). When long-
read information was added, the assemblies were more contig-
uous and resistance genes could be assigned their place in the
genome. Based on the combination of error profile and high
N50, NP-Unicycler-Hybrid had the most desirable assembly
characteristics on this dataset.

(b) The chromosomal tree can be determined equally
well from all assemblies

To quantify the impact of the assembly method on the chro-
mosomal phylogeny, we inferred nine chromosomal tree
posteriors from the cgMLST alignment of each assembly.
We compared these phylogenies according to both their
topology and branch lengths (figure 1 and electronic
supplementary material, figure S3). All methods, except
NP-Canu, recovered the same distribution of tree topologies
and maximum clade credibility ‘consensus’ trees (figure 1
and electronic supplementary material, figure S3a). This
incongruence of the NP-Canu trees is likely due to the high
error rate observed in the NP-Canu assemblies, and the
resulting difficulty in locating coding domain sequences
and constructing a cgMLST alignment (electronic supplemen-
tary material, figure S1c). Out of the 2513 E. coli genes probed
for, we failed to detect 531 genes on average in the NP-Canu
assemblies, as opposed to 7–67 genes for the other assembly
methods. The NP-Canu trees were also notably shorter than
those resulting from other methods (figure 1 and electronic
supplementary material, figure S3b).

(c) Plasmid assemblies differ across the assembly
methods

Since assembly methods differ in the length of the putative plas-
mid sequences they recover (electronic supplementary material,
figure S2), we tested whether this also affects the length of
plasmid alignments, and their subsequent tree inference.

To obtain a plasmid alignment from the assembled WGS
contigs, we used Roary to extract the gene-by-gene alignment
for each set of putative plasmid sequences [38]. These plas-
mid sequences were extracted from the WGS assembly by
probing for genes known to be implicated in plasmid replica-
tion. This method of REP typing is specific to a plasmid
incompatibility group [17], so we created separate plasmid
alignments for each incompatibility group in our dataset.
Some plasmids carry multiple REP genes [46] and are thus
present in several separate alignments (e.g. a plasmid may
be included in both IncFIA and IncFIB alignments). Table 2
lists the number of samples found to contain a given REP
(the correspondence to each sample is given in electronic
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method Illumina-SPAdes NP-Canu other

chromosome(a) (b)

IncFIB

IncI1

plasmid

Figure 1. (a) Chromosomal, and (b) plasmid maximum clade credibility trees for 24 ESBL-positive E. coli isolates. The chromosomal tree encompasses all 24
samples, the plasmid trees only the subset that carried the plasmid (IncFIB: 17, IncI1: 11; with some variation across assembly method, see table 2). The colours
indicate different assembly methods (see legend). The dashed and dotted lines indicate which tips are the same across the different trees. In panel (a), 7 phy-
logenies are included in the ‘other’ category (in grey), whereas panel (b) includes only the example of PB-Unicycler. Further methods are shown in electronic
supplementary material, figures S5 and S6. The scale bar represents the time in years (given the assumed mutation rate of around 1.5 mutations per
genome per year). (Online version in colour.)
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supplementary material, figure S4). Wick et al. have shown
that the Oxford Nanopore ligation protocol can miss small
plasmids (less than 20 kb) [47], but this was not the case in
our assemblies (table 2 and electronic supplementary
material, figure S4). In the remainder, we focus our analysis
on REPs found in at least 5 samples (Col MG828, Col156,
ColRNAI, IncFIA, IncFIB AP001918, IncFIC FII, IncFII
pRSB107 and IncI1) or a subset thereof (ColRNAI, IncFIA,
IncFIB AP001918, IncI1) to illustrate the behaviour of
representative small and large plasmid types.

For each plasmid, the number of samples it was found in
(table 2 and electronic supplementary material, table S1),
as well as the length of the resulting alignments (figure 2
and electronic supplementary material, figure S7) differed
strongly across method combinations. When long read infor-
mation was available, the methods that started from short-
read assemblies (SPAdes–Hybrid and Unicycler–Hybrid)
resulted in overall longer alignment lengths than those that
started from long-reads during assembly graph generation
(Canu and Canu–Hybrid). For the small Col plasmids (e.g.
ColRNAI), NP–Canu and NP–Canu–Hybrid even showed
alignments shorter than the shortest contig, which is prob-
ably because few coding domain sequences could be found
(electronic supplementary material, figures S7 and S8).

For the IncF plasmids (IncFIA and IncFIB), Illumina–
SPAdes showed both shorter plasmid contigs and a shorter
multiple sequence alignment. Yet, for IncI1, the shorter
plasmid contigs were not associated with a shorter overall
alignment. This could be related to a greater plasticity of
IncF plasmids in our sample, as opposed to the relatively con-
served IncI1 plasmids. In general, the average assembled
plasmid sequence length was not clearly associated with
the total alignment length. For example, the 15 IncFIA plas-
mids in our sample had similar average assembled plasmid
sequence lengths (except for Illumina–SPAdes), yet ranged
from 44 to 273 kbp in alignment length across the assembly
and alignment methods (figure 2).
(d) Plasmid trees differ across the assembly methods
The large diversity observed in the plasmid sequence align-
ments (figure 2) was clearly carried over to the plasmid
phylogenies, both in terms of their topology (figure 1 and elec-
tronic supplementary material, figures S5, S6, S9, S11) and tree
height (electronic supplementary material, figure S10). To
achieve a conservative estimate of the plasmid tree (dis)simi-
larity across alignment methods (independent of the ability
to locate plasmids in the assembly), we subsetted the plasmid
alignments to the tips present across all assembly methods
prior to tree inference. For some plasmids (e.g. ColRNAI),
many clade configurations were explored in the tree posterior,
all with low clade probabilities, indicating large uncertainty
in the phylogeny (electronic supplementary material,
figures S9 and S11). The NP–Canu and NP–Canu–Hybrid
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Figure 2. Plasmid contig length (violin plot, average indicated in grey) and length of the resulting alignment (red), for four selected plasmid replicons. ColRNAI was
found in 8 out of 24 samples for all assembly methods, IncFIA in 15 (except NP-Canu and NP-Canu-Hybrid where it was found in 13), IncFIB AP001918 in 17 (except
for NP-Canu and NP-Canu-Hybrid, where it was found in 15), and IncI1, which was found in 11 samples by Illumina-SPAdes, NP-SPAdes-Hybrid, PB-SPAdes-Hybrid
and PB-Unicycler-Hybrid; in 7 by NP-Canu and NP-Canu-Hybrid; and in 10 by NP-SPAdes-Hybrid, PB-Canu and PB-Canu-Hybrid. (Online version in colour.)
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methods resulted in different tree topologies from the other
sequencing/assembly methods across all plasmids (electronic
supplementary material, figure S9). When comparing the
separation of tree topologies in tree space (using the tree
space distance metric), all methods differed substantially,
although also here Illumina–SPAdes, NP–Canu and NP–
Canu–Hybrid resulted in trees that are the furthest removed
from the other methods (but not more similar to each other;
electronic supplementary material, figure S11).

In terms of tree height (electronic supplementary
material, figure S10), Illumina–SPAdes, NP–Canu and NP–
Canu–Hybrid showed overall lower plasmid tree heights
than the other methods. All plasmid trees were substantially
shorter (indicating more recent divergence) than the
associated chromosomal trees (when subsetted to the plas-
mid-carrying taxa; compare figure 1). This is likely due to
the shorter sequence length and the fixed mutation rate
assumed in the phylogenetic analysis.

(e) The effect on inferred transmission patterns
and rates

Incongruence between the chromosomal and plasmid phylo-
geny of a set of samples is an indication of possible horizontal
gene transfer. This incongruence can be quantified using the
normalized Robinson–Foulds distance between both types of
trees. A large distance means that the compared trees differ in
their topology (they describe a different set of clades),
whereas a short distance indicates congruence. For each
method combination, we compared the distance between all
trees in the plasmid tree posterior and the single chromoso-
mal maximum clade credibility (MCC) tree, where the latter
was subsetted to the taxa that carry the plasmid (figure 3).

All plasmid trees exhibited incongruence with the chro-
mosomal phylogeny of the plasmid-carrying taxa, but to
varying degrees. For the IncF and Col replicons, Illumina–
SPAdes showed the largest Robinson–Foulds distance,
followed by the Canu-based alignments. Where the different
methods show similar Robinson–Foulds distances (e.g. for
IncI1), this can be seen as consistent signal for horizontal
gene transfer of the plasmid. Yet, the larger plasmids
(IncFIA, IncFIB, IncI1) all showed lower Robinson–Foulds
distances to the chromosomal tree than a set of randomly
generated trees with the same tips (electronic supplementary
material, figure S12), indicating some amount of coevolution.

As a control we also compared the plasmid tree posteriors
against a single chromosomal MCC tree (PB–Unicycler). This
changed the results only slightly for the NP–Canu method
(electronic supplementary material, figure S13), which indi-
cates that the observed variation in Robinson–Foulds



Table 2. Number of samples with a given replicon, per assembly method.

name
Illumina–
SPAdes

NP–
Canu

NP–
Canu–
Hybrid

NP–
SPAdes–
Hybrid

NP–
Unicycler–
Hybrid

PB–
Canu

PB–
Canu–
Hybrid

PB–
SPAdes–
Hybrid

PB–
Unicycler–
Hybrid

Col-MG828 9 9 9 9 9 5 5 9 9

Col-MGD2 — 2 2 — — — — —

Col156 10 10 10 10 10 8 8 10 10

Col8282 3 3 3 3 3 — — 3 3

ColRNAI 8 8 8 8 8 8 8 8 8

IncB 3 3 3 3 3 3 3 3 3

IncFIA 15 13 13 15 15 15 15 15 15

IncFIB AP001918 17 15 15 17 17 17 17 17 17

IncFIB-pKPHS1 3 — — 3 3 3 3 3 3

IncFIC-FII 9 8 9 9 9 9 9 9 9

IncFII pRSB107 7 6 6 7 7 7 7 7 7

IncI1 11 7 7 11 10 10 10 11 11

IncN — 2 2 — — — — — —

IncR — 2 2 — — — — — —

IncX1 3 4 3 3 3 3 3 3 3

IncX3 3 3 3 3 3 3 3 3 3

IncX4 2 — — — — — — — —

p0111 4 3 3 4 4 4 4 4 4
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distances across the method combinations truly stems from
differences in the plasmid tree topology (as observed in the
previous section), rather than from the comparison to
different chromosomal trees.

A different way to investigate horizontal gene transfer is
to count the number of plasmid acquisitions or losses that
are needed to explain the pattern of plasmid presence and
absence at the tips of the chromosomal tree (i.e. to use the
parsimony score). A low parsimony score indicates that the
plasmid follows the chromosomal tree closely. To put the esti-
mated parsimony score into perspective, we compared
against a null model that assumes the amount of plasmid
transfer is so high that for each terminal branch the chance
of observing the plasmid is equal to the frequency with
which the plasmid is observed in the entire population (i.e.
no phylogenetic dependency). This was achieved by keeping
the number of observed plasmid presences constant but ran-
domizing the tips they were assigned to (1000 times).
Biologically speaking, a deviation from this null model
means plasmids are not continuously lost and picked up
from a shared pool, independent of bacterial strain identity,
but rather share some evolutionary history with their hosts.

For all plasmids, the observed parsimony scores were
mid-range to low (4–7 gain or loss events on 24 tips), and
for the majority this was below the mean of the parsimony
distribution of the corresponding null model, indicating
fewer observed host jumps than expected with free associ-
ation (electronic supplementary material, figure S14). The
conclusion is also in line with the results from the Robin-
son–Foulds comparison, which showed lower than random
distances between the plasmid and chromosomal trees
(electronic supplementary material, figure S12). In general,
this signal may be influenced by imbalanced sampling, and
in our dataset the large fraction of ST131 genomes likely dic-
tates some of these findings. Eight plasmid REP types were
present in more than 4 samples, and for five of these the
majority of method combinations showed a statistically sig-
nificant difference with respect to the null model (figure 4a;
α = 0.05). This was not corrected for multiple comparisons,
since we wanted to illustrate how using one or the other
assembly method would lead to differing conclusions of sig-
nificance. Assembly with NP–Canu would have led to
different conclusions from the majority of methods for
6 out of 8 plasmids, NP–Canu–Hybrid for 2 out of 8 and Illu-
mina–SPAdes and NP–Unicycler–Hybrid for 1 out of 8
plasmids.

A similar parsimony analysis can be carried out for the
presence/absence of antibiotic-resistance genes on the plas-
mid or chromosomal phylogeny. Again, most observed
parsimony scores, both on the chromosomal and selected
plasmid MCC trees, fell below the distribution expected
under the null model of extensive horizontal gene transfer
(HGT; electronic supplementary material, figure S15). Note
that in contrast to the other figures we include IncFII
pRSB107 here instead of IncFIB AP001918, since the latter
showed very similar patterns to IncFIA.

For some genes (blaCTX-M-27, blaCTX-M-1, blaCTX-M-15) and
sul1 the observed parsimony scores on the chromosomal
tree were significantly lower than expected under the null
model (figure 4b), suggesting a mostly clonal inheritance of
these genes. The blaCTX-M-15 gene also showed signs of
being inherited with the IncFIA REP, whereas the observed
parsimony score of the resistance genes on the IncI1 and
IncFII pRSB107 trees did not significantly differ from the
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Figure 3. The normalized Robinson–Foulds distance between the chromosomal maximum clade credibility (MCC) tree and the posterior of plasmid trees, for all
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null model. This is in agreement with the known association
between blaCTX-M-15 and certain IncF plasmids in ST131 [4,7].
The differences between plasmid trees obtained with differ-
ent assembly methods translate into substantial differences
in the parsimony score (electronic supplementary material,
figure S16b). For a few gene/method combinations this also
resulted in differing conclusions of significance. The gene
blaCTX-M-1 on the IncI1 plasmid tree is the most extreme
example, where the assembly methods are split about the sig-
nificance of the association. Notably the results obtained with
Illumina–SPAdes were always the same as the majority of
other methods, despite substantial differences in the plasmid
tree topology.
4. Discussion
In this study, we investigated the impact of sequencing and
assembly methods on the inference of chromosomal and plas-
mid phylogenies, as well as the downstream analysis of
horizontal gene transfer. We showed that chromosomal
trees can be constructed equally well from all sequencing
and assembly combinations, excluding NP–Canu.
Importantly, we showed that the high error rate of NP data
when used alone impacts the estimated topology and
height of the chromosomal tree, leading to erroneous trees.
Plasmid phylogenies show much greater variability across
assembly methods. Surprisingly, in this small dataset this
variability had comparatively little impact on the inference
of horizontal gene transfer of plasmids and antibiotic resist-
ance genes.

In terms of assembly quality and chromosomal tree infer-
ence our results are in line with previous reports in the
literature. Illumina sequencing is commonly used for bac-
terial phylogenetics in research and clinical diagnostics
[5,9,48,49]. This is likely the most cost-effective choice when
chromosomal trees are required. However, the accurate local-
ization of resistance genes to plasmids or the chromosome
requires the addition of long-read sequencing information.
We confirm previous sequencing and assembly comparisons
in Enterobacterales that showed Unicycler hybrid assembly of
Illumina short reads with NP long-reads is well-suited for
this purpose [12–14].

We showed that parsimony-based methods can be used
to quantify horizontal gene transfer, quite independently of
the sequencing and assembly method (except for NP–
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Canu). However, researchers interested in plasmid evolution
and phylogenetics are better off combining short- and long-
read sequencing, and using hybrid methods that start from
short-read assemblies (HybridSPAdes and Unicycler).

While comparing the phylogenetic trees resulting from
different assembly methods, we did not explicitly consider
the impact of recombination on our ability to reconstruct
the phylogenetic relationship of our samples. We assume
that the sequenced samples code for a single ‘true’ alignment,
which should code for a single phylogeny (given a particular
tree reconstruction method). This is independent of whether
the inferred tree is also an unbiased account of the true phy-
logenetic relationship of these samples or rather summarizes
average recombination rates between different subpopu-
lations [50,51]. However, since recombination causes
different parts of the genome to code for alternative genetic
histories [52], it can increase the difference in trees resulting
from alignments with different gene compositions. This
likely contributed to the variability of the plasmid trees we
found across different assembly methods.

This study has several limitations and ways in which it
could be extended. First, we use a relatively small number
of samples, taken from only one bacterial species and domi-
nated by a single sequence type (ST131). Species differ
greatly in both the length and number of repeats in the
genome, the length and similarity of plasmids, and thus
how difficult it is to resolve the full genome [29]. This
could lead to an even greater spread of trees obtained by
different assembly methods. In addition, the generality of
biological conclusions we can draw is restricted by the
limited number of samples. Using similar methods on a
larger dataset would enable researchers to make broader
statements about plasmid–chromosome co-evolution.
Second, our samples span much of the known phylo-
genetic diversity of ESBL-producing E. coli. This is a much
greater diversity than would be expected over the course of
a clinical outbreak. The inferred horizontal gene transfer
thus likely occurred at evolutionary timescales, rather than
in the context of the hospital in which the sequences were
sampled. Nonetheless, this diversity will not be uncommon
for samples collected through routine surveillance for a
particular (antibiotic resistance) phenotype.

Third, it would exceed the scope of our study to include
all of the (25 or more) different methods that have been devel-
oped to detect plasmids from WGS data [53]. Our method of
BLASTing against the PlasmidFinder database to detect puta-
tive plasmid sequences will return a lower bound on the
plasmid content for a specific strain. Arredondo-Alonso
et al. [15] have shown that PlasmidFinder has perfect pre-
cision but less good recall, i.e. it does not manage to
recover all plasmid information contained in the sample. In
particular, it performs less well on assemblies with short con-
tigs and for plasmids with unknown replicons. In our
dataset, the long-read and hybrid assembly methods mostly
recovered the same number of plasmids. Yet the variable
length of the recovered sequences and corresponding align-
ment resulted in substantial differences between the
inferred plasmid trees. Additional methods to detect plas-
mids would likely only increase the differences between
plasmid phylogenies shown in this paper. However, research-
ers seeking to estimate diverse plasmid phylogenies may
need to optimize this aspect of the pipeline.

Fourth, we have used only Roary to obtain plasmid align-
ments. One could envision alternatives that combine plasmid
identification and alignment, such as plasmid multi-locus
sequence typing (pMLST) or mapping reads to a plasmid



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210245

10
reference. The advantage of pMLST is that one could identify
gene presence and absence directly from the raw reads,
which removes the error-prone and time-intensive step of de
novo assembly [54]. The drawback of pMLST is that typing
schemes have been published only for few incompatibility
groups, and yield alignments only a few genes in length.
Mapping approaches can be quite powerful, but presuppose
that closely related plasmids are available in public data-
bases, or that the relevant plasmid reference sequences can
be generated as part of the study (like in [6]). In addition,
one must take care not to bias subsequent phylogenetic ana-
lyses by mapping diverged sequences to a single reference
without taking into account non-SNP sites [55].

Lastly, one could construct trees using distance metrics
that depart from the substitution models used in traditional
phylogenetics. K-mer-based distances, such as Mash, are
widely used for alignment-free sequence comparison and to
approximate the average nucleotide identity between two
samples [56]. This can provide a useful alternative to annota-
tion-based alignments. However, the authors themselves
stress that Mash is not intended for phylogenetic reconstruc-
tion, especially on highly divergent genomes or those with
large differences in size [56]. Different distance metrics can
also account for other forms of evolutionary signal, not cap-
tured in mutational differences between strains but rather
in gene order. Synteny likely contains relevant information
about the evolutionary history of a set of plasmids, especially
when these are closely related and do not carry many muta-
tional differences [22].

To conclude, we have started to analyse the effect of
sequencing and assembly on downstream analyses. Such
understanding is important to achieve standardization in
diagnostics and comparability across studies, but also to
inform studies that aim to combine genomes obtained from
varying sequencing and assembly pipelines (e.g. as deposited
in public databases).
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