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ABSTRACT
Background and aim: The association of the gut microbiota to chronic obstructive pulmonary 
disease (COPD) phenotypes is underexplored. We aimed to compare stool samples from patients 
with COPD and subjects without COPD and relate findings to emphysema status, exacerbation 
rate, blood eosinophil levels, symptom score, and lung function.
Methods: We report findings from a single-centre case–control study with 62 current and former 
smoking patients with COPD and 49 subjects without COPD. DNA was extracted from stool 
samples, and the V3V4-region of the bacterial 16S-rRNA gene was sequenced. Emphysema was 
defined based on thoracic computed tomography (CT thorax) low attenuating areas ≥/<10% at 
threshold -950 and -910 hounsfield units, respectively. Differential abundance of taxa was 
evaluated using Analysis of Composition of Microbes with Bias Correction (ANCOM-BC). Beta 
diversity was compared using a distance-based permanova-test.
Results: The genus Veillonella was decreased and a genus belonging to class Clostridia was 
increased in COPD compared with controls without COPD. The composition of microbes (beta 
diversity) differed in emphysema compared to controls, and 27 genera were differentially abun-
dant in emphysema vs. controls. Nine of these genera belonged to the family Lachnospiraceae. 
Lung function, blood counts and COPD assessment test score correlated with several genera’s 
relative abundance. Of the genera showing significant correlation to lung function, nine 
belonged to the family Lachnospiraceae.
Conclusion: The gut microbiota in COPD differs from that in healthy individuals, even more so in 
emphysema. In particular, future studies should look into the mechanisms and therapeutic 
potential of dysbiosis affecting the family Lachnospiraceae.
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Introduction

Chronic obstructive pulmonary disease (COPD) is the 
third leading cause of death worldwide [1]. COPD is 
characterized by persistent airflow limitation and is 
a heterogeneous condition with multiple phenotypes 
[2]. The pathogenesis is complex with several mechan-
isms interacting. Identifying biomarkers associated 
with specific endotypes would aid in developing new 
preventive or therapeutic strategies [3].

One potential biomarker is the gut microbiota, 
which can be defined as the collective of microbes 
residing in the gut. Microbiota studies have been 
made possible by the emergence of high-throughput 
sequencing methods. The gut microbiota has been cor-
related to many disorders, ranging from inflammatory 

bowel disease to cancer and major depressive disorders 
[4]. To a degree, there is evidence that both lung and 
gut microbiota impact asthma development, pheno-
type, and severity [5]. For instance, in a seminal 
study, Arrieta and co-workers showed how the 
decreased abundance of certain gut microbes in infants 
3 months of age was associated with atopy and wheez-
ing illness, highly predictive of asthma [6]. They 
further substantiated their findings by demonstrating 
a preventive effect of these microbes in a murine 
model. However, less is known about the role of the 
gut microbiome in COPD.

To our knowledge, only a few studies have investi-
gated the gut microbiota of patients with COPD. 
Bowerman et al. found 146 species to be differentially 
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abundant in 28 COPD patients compared with 
29 healthy controls [7], while Lai et al. found 15 differ-
entially abundant genera in 37 COPD patients com-
pared to 35 healthy controls [8]. Li et al. underscored 
the relevance of the distinct gut microbiome of 99 
COPD patients in their cohort by demonstrating its 
effect on inflammation and COPD development by 
faecal microbiota transplantation to murine models 
[9]. Illustrating the lack of established gold standard 
methodology in microbiome studies, the bioinformatic 
and statistical methods applied in these studies, which 
all included a control group, varied substantially. 
Adding to the exploratory nature of these studies, this 
underscores the need for these associative findings to 
be replicated in different cohorts, preferably consis-
tently across different methodological methods, to vali-
date the findings. In a study without control subjects, 
Chiu et al. demonstrated a correlation between the 
abundance of a Bacteroides operational taxonomic 
unit (OTU) and low blood eosinophils in 60 COPD 
patients [10], as well as some community shifts in the 
gut microbiota associated with lung function decline in 
patients with COPD [11]. Wei et al. used summary 
data from two large international studies, applied 
Mendelian randomisation techniques and identified 
nine gut microbiota taxons with a nominal causal rela-
tionship to COPD [12]. In spite of their large numbers, 
this latter study lacks demographic and clinical data, 
underlining the need for a study with comprehensive 
clinical data.

These clinical data are relevant to the renewed interest 
in COPD as a disease with distinct phenotypes, connected 
to what some authors refer to as treatable traits (e.g. 
emphysema, frequent exacerbators, eosinophilic COPD). 
In our review of the literature, we have not found any well- 
powered studies with clinical data on the major pheno-
types of COPD as well as a control group.

The MicroCOPD study collected gut microbiota 
samples from a Norwegian cohort with both patients 
with COPD and controls without COPD [13,14]. 
Clinical data enabled us to differentiate COPD-related 
phenotypes. With this material at hand, we aimed to 
investigate how the gut microbiota was related to 
COPD and COPD phenotypes such as emphysema, 
frequent exacerbators, eosinophilic COPD and COPD 
patients with high symptom burden.

Methods

Study population

The MicroCOPD study is a single-centre observational 
study with data collection performed at the Department 

of Thoracic Medicine, Haukeland University Hospital, 
Bergen, in 2013–2015. Subjects were recruited mainly 
from two previous study cohorts, the Bergen COPD 
Cohort Study [15] and the GeneCOPD study [16]. All 
participants in the MicroCOPD study were 40 years or 
older and included never, former, and current smokers. 
Participation was postponed if subjects had received anti-
biotics or oral corticosteroids in the 2 weeks preceding 
participation, or if the patients had symptoms indicating 
an ongoing COPD exacerbation. While the primary aim of 
the MicroCOPD study was to investigate the lower airway 
microbiota with bronchoscopy, stool samples were also 
collected to explore the gut microbiota. The detailed pro-
tocol for the MicroCOPD study has previously been pub-
lished [13].

For inclusion in the current study, only MicroCOPD 
participants who had delivered a fresh stool sample 
the day after the clinical visit were included.

Data

At inclusion, blood sampling and structured interviews, 
including smoking history and symptom burden 
according to the COPD assessment test (CAT score), 
were performed. Blood eosinophils were measured by 
routine laboratory methods. Spirometry was performed 
with a Viasys Vmax ENCORE 30 minutes after bronch-
odilation with 400 mcg salbutamol administered 
through a large-volume expander. Fresh stool samples 
were delivered the day after inclusion. It was frozen less 
than 24 hours after defecation and stored at −80 
degrees Celsius.

Both the COPD diagnosis and status as a control 
subject without COPD (‘controls’) were confirmed by 
experienced pulmonologists based on medical history 
and post-bronchodilator spirometry. Subjects with 
increased bleeding risk, cardiac valve prosthesis, 
known acute coronary syndrome in the preceding 6  
weeks, known cancer in the last five years, or on strong 
immunosuppression were ineligible for inclusion in the 
MicroCOPD study. All patients with COPD had forced 
expiratory volume in 1 second (FEV1)/forced vital 
capacity (FVC) ratio <0.7 and FEV1 <80% of predicted 
[17]. Controls had no prior history of lung or airway 
disease.

Thoracic computed tomography (CT thorax) was 
taken using a Siemens Somatom Definition Flash. For 
the classification of emphysema, 3D Slicer software was 
used for density mask analysis [18]. Irrespective of 
COPD status, emphysema was defined as >10% of the 
area below the density threshold −950 hounsfield units 
(Hu), the so-called low attenuating area (LAA) [19,20]. 
We chose a stricter <10% of the area below the density 
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threshold −910 hu when we identified subjects without 
emphysema [21].

Only former or current smokers were included in 
the final analyses of this study. Participants diagnosed 
with asthma were excluded (Figure 1). The asthma 
diagnosis was confirmed by three experienced pulmo-
nologists based on lung function, clinical history and 
CT thorax to ensure the diagnosis was correct before 
the participants were removed from the analysis.

DNA extraction and 16S ribosomal RNA gene 
sequencing

The detailed laboratory protocol is published [22]. 
Briefly, bacterial DNA was extracted by both enzy-
matic and mechanical lysis methods. PCR amplifica-
tion of the V3V4 region of the 16S rRNA gene was 
followed by index PCR allowing 96 samples in each 
run. Samples were DNA quantified and normalized 
before sequencing according to the protocol for 16S 
Metagenomic Sequencing Library Preparation for the 
Illumina MiSeq System (Part # 15044223 Rev. B). 
Sterile water, used as diluting fluid in PCR and 
sequencing, was used as negative controls to account 
for the risk of bacterial DNA contamination in the 
samples.

Bioinformatic processing

FASTQ files were imported into Quantitative Insights 
Into Microbial Ecology version 2 (QIIME 2) for 
upstream analysis [23]. Denoising, dereplication and 
chimera-removal were performed using the Divisive 
Amplicon Denoising Algorithm version 2 (DADA2) 
[24]. A median quality score >30 resulted in forward- 
and reverse-read lengths of 281 and 235bp for all runs. 
Additional chimaeras were identified using VSEARCH 
with de novo method [25] and removed. Taxonomy, 
which is classifying the data with names in 
a hierarchical structure (ranging from domain to king-
dom, phylum, class, order, family down to genus for our 
data), was assigned with the q2-feature-classifier [26] 
using a self-trained naïve-Bayes classifier based on the 
Silva database version 138.1 [27,28]. Amplicon sequence 
variants (ASVs) representing archaea or unclassified 
beyond kingdoms were discarded. We also discarded 
ASVs that were present in less than two samples and/ 
or represented less than 0.005% of all reads. Further 
contaminants were identified using the Decontam pack-
age [29] in R [30] and removed together with negative 
control samples. At this stage, we removed samples from 
12 asthma patients, whose samples had been sequenced 

along with the current study material. A phylogenetic 
tree was generated using MAFFT-aligned FastTree.

Diversity

Description of microbiota data usually contains 
a description of both diversity and taxonomy. Diversity 
measures are ways to describe the complexity of the 
composition of ecological data. Alpha diversity describes 
the complexity within a sample, while beta diversity 
compares the complexity between samples. For alpha 
diversity, we calculated Shannon index, which attempts 
to reflect both the number of microbes (richness) and 
their abundance and Faith´s Phylogenetic diversity, 
which combines the richness with phylogenetic dis-
tances as a way to measure the complexity of the sample. 
For beta diversity, we calculated Bray–Curtis distance, 
which reflects both the presence and abundance of spe-
cies in each sample and weighted UniFrac distance, 
which also accounts for phylogenetic distances in addi-
tion to presence and abundance. Diversity measures 
were calculated after rarefaction at 46,709 sequences 
per sample in QIIME 2. This level was set to retain as 
many features as possible without losing many samples 
and retained 41.7% of features in 98.5% of samples. An 
alpha rarefaction plot confirmed that the rarefaction 
level was acceptable.

Statistical analyses

Statistical testing was done in R. Differences in alpha 
diversity between groups were tested with the 
Wilcoxon rank sum test, while beta diversity in groups 
was compared by distance-based permanova-test [31]. 
We compared diversity between COPD and controls, 
and between participants with and without emphy-
sema. Additionally, we did COPD subgroup analysis 
according to the level of eosinophils in peripheral 
blood (≥ vs < 0.3 × 109/L), exacerbation rate (≥2 vs 
none exacerbations previous year) and symptom score 
(CAT score ≥ vs < 10). The analysis of the exacerbation 
rate was also stratified by the level of blood eosinophils 
(≥/< 0.3 × 109/L).

While diversity measures reduce the complexity to 
a collective number for each sample or each pair of 
samples, it does not consider the differences in abun-
dance of each microbe. Differential abundance com-
pares the abundances of each microbe or taxon in the 
samples of different groups. Because of the inherited 
structure of compositional microbiome abundance 
data, which are overdispersed, non-normally distribu-
ted, and high in zeroes, differential abundance is often 
analysed with specialized statistical tests, and we 
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Figure 1. Flowchart showing the workflow from sequencing, bioinformatic processing, and filtering as well as grouping in to 
features (i.e. amplicon sequence variants (ASVs), here thought of as a group of similar sequences representing the same microbial 
organism). DADA2, divisive amplicon denoising algorithm version 2. VSEARCH, vectorized search.

4 A. Ø. ROTEVATN ET AL.



evaluated differential abundance using Analysis of 
Composition of Microbiomes with Bias Correction 
(ANCOM-BC) [32]. The test compensates for the bias 
introduced by the unknown sampling fractions and 
provides a statistical test for compositional microbiome 
data while still acknowledging that sometimes the 
absence of a microbe has biological meaning. 
Structural zeroes (when differences are the result of 
absence in one group) were classified by ANCOM-BC 
using each group’s asymptotic lower bound at the 
phylum and genus level [33]. P-values were corrected 
using the Holm – Bonferroni method to counter for 
multiple testing [34]. Multiple group testing was done 
with the addition of age and body mass index (BMI) as 
continuous variables in ANCOM-BC.

Correlation between centre log ratio (CLR) trans-
formed abundance of genera and lung function (as % 
predicted by Global Lung Initiative (GLI)), blood 
counts and symptom burden (CAT score) was calcu-
lated using Spearman’s correlation test.

Ethics

The study was conducted in accordance with the 
declaration of Helsinki and guidelines for good clinical 
practice. The study was approved by the regional com-
mittee of Medical Ethics Norway’s north division (REK 
Nord, application number 2011/1307). All participants 
provided informed oral and written consent.

Results

Stool samples were collected from 118 former and 
current smokers, of which 62 were classified as having 
COPD and 49 were controls without COPD (Table 1, 
Figure 1). The participant groups matched well in age, 
sex, BMI, and smoking status (Table 1). Among our 
118 participants, 12 participants had emphysema, 55 
participants had no emphysema, and 51 participants 
did neither satisfy the criterion for emphysema (>10% 
LAA as defined by −950 hu) nor the criterion for no 
emphysema (<10% LAA as defined by −910 hU). All 
participants with emphysema were in the COPD 
group, as were 19 participants with no emphysema. 
Table 2 shows the characteristics of subjects with/with-
out emphysema.

Diversity

We found no significant difference in alpha (within- 
sample) diversity between COPD patients and controls 
and between participants with emphysema and without 
emphysema. Patients with frequent exacerbations had 

lower Shannon index (p-value = 0.02), while there was 
no difference in Faith’s PD, which incorporates phylo-
genetic information. When we stratified exacerbation 
frequency by eosinophils level, the difference in 
Shannon index remained significant for subjects with 
low eosinophils (p-value = 0.015), while it was no 
longer significant in subjects with high eosinophils 
(p-value = 0.92). Analysis of Faith PD also showed 
a statistically significant difference according to exacer-
bation frequency in those with low serum eosinophil 
levels (p-value = 0.035).

While there were no differences in beta (between 
sample) diversity between COPD patients and controls, 
we found significant differences in both Bray-Curtis 
and weighted UniFrac distance between those with 
emphysema and those without (p-values 0.02 and 
0.038). However, the R2 (a measure of explained varia-
tion) was low (0.02 and 0.03, respectively), and princi-
pal coordination plots of both Bray-Curtis and 
weighted UniFrac distance showed no certain separa-
tion of the groups (Figure 2). Eosinophilic COPD 
patients (B-eosinophils ≥0.3 × 109/L), had 
a significant difference in beta diversity weighted 
UniFrac distance (R2 0.03, p-value = 0.03), but not 
Bray-Curtis distance, compared with non-eosinophilic 
COPD patients. We found no significant differences in 

Table 1. The demographic and clinical characteristics of the 
study participants with COPD and control subjects without 
COPD.

Control, n = 49 COPD, n = 62

Age (year) 67.5 (±7.3) 66.3 (±6.7)
Sex (male) 31 (63%) 36 (58%)
BMI (kg/m2) 27.3 (±4.2) 26.5 (±4.9)
Smoking status

Current 10 (20%) 14 (23%)
Former 39 (80%) 48 (77%)

Smoking, pack years 22.6 (±15) 34.3 (±21)
FEV1 % of predicted 103.8 (±10.9) 52.5 (±16.3)
FVC % of predicted 112.8 (±12.6) 92.0 (±16.6)
FEV1/FVC-ratio 0.73 (±0.05) 0.45 (±0.11)
Blood eosinophils

≥0.3 × 109 /L 8 (16%) 24 (39%)
<0.3 × 109 /L 41 (84%) 38 (61%)

Exacerbations previous year
≥2 11 (18%)
1 12 (19%)
0 39 (63%)

CAT score 6.6 (±5.1) 18.5 (±13.0)
CAT score

≥10 51 (82%)
<10 11 (18%)

Inhaled corticosteroid use 0 (0%) 38 (61%)
Medication for GERD 3 (6%) 10 (16%)
GERD 5 (10%) 10 (16%)

Data presented as n (%) or mean ± SD. COPD, chronic obstructive pulmon-
ary disease. BMI, body mass index. Pack years were defined as smoking 
one package of prefabricated cigarettes a day for one year. FEV1, forced 
expiratory volume in 1 second. FVC, forced vital capacity. CAT, COPD 
assessment test. GERD, gastroesophageal reflux disease. Medication for 
GERD included proton pump inhibitors and H2 blockers. 
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beta diversity in COPD patients with frequent exacer-
bations (≥2 during the previous year) or with a large 
symptom burden (CAT score ≥ 10).

Differential abundance

We observed the genus Veillonella to be less abundant, 
and a genus from the class Clostridia to be more 
abundant, in COPD compared with controls. These 
taxa were among the least abundant taxa, being the 
148th and the 137th most prevalent genera of the 159 
in our material, both with a mean relative abundance 
less than 10−5, and both present in only 13 samples. 
Both taxa were classified as structural zeroes by 
ANCOM-BC, meaning their absence in one of the 
groups was likely driving the result. This result 
remained significant when correcting for age and 
BMI. We found no differences at the phylum level or 
among the most prevalent genera (Figure 3) between 
COPD patients and controls.

We found 27 differentially abundant genera com-
paring those with and without emphysema. All but two 
of these were differentially abundant based on struc-
tural zeroes. The genera Lachnospiraceae ND3007 
group and Eubacterium hallii group were both enriched 

in subjects without emphysema compared with 
patients with emphysema. Eubacterium hallii group 
was the most prevalent of the differentially abundant 
genera and the 29th most prevalent genus in our mate-
rial with a mean relative abundance of 0.008. 
Lachnospiraceae ND3007 group was the 64th most pre-
valent genus with a mean relative abundance of 0.001. 
Both these genera belong to the family 
Lachnospiraceae, as did seven others of the differen-
tially abundant genera. The result remained significant 
when correcting for age and BMI. The relative and 
bias-adjusted abundances of these two genera are 
shown in Figure 4, and the log-fold change of all 
differentially abundant genera in Figure 5. A negative 
log-fold difference means that the genera are less pre-
valent in participants with emphysema. None of the 20 
most prevalent genera were differentially abundant in 
participants with emphysema (Figure 6). At the phy-
lum level, we found two differentially abundant phyla 
between emphysema and no emphysema; Synergistota 
and Cyanobacteria. Both of these phyla were only 
represented by one genus each, Cloacibacillus and 
Gastranaerophilales respectively. Also, they were both 
low prevalent with a mean relative abundance below 
10−4, and were deemed differentially abundant based 
on structural zeroes.

Correlation with lung function, blood counts and 
symptom score

Altogether, 49 genera were significantly (p-value <0.05) 
correlated with lung function (as expressed in percen-
tage of expected), blood counts, and/or symptoms 
according to CAT score (Figure 7). Nine of the signifi-
cantly correlated genera to both lung function and/or 
CAT score belonged to the family Lachnospiraceae.

Discussion

We found associations between the gut microbiota and 
COPD, CT-verified emphysema, symptom score and 
airflow limitation. There were modest differences in 
the abundance of some microorganisms between 
patients with COPD and controls. More pronounced 
differences in the gut microbiota were observed when 
groups were divided according to emphysema status. 
Additionally, lung function, CAT score, and blood 
counts were significantly correlated with the gut micro-
biota. In several of our analyses, the significant findings 
were related to the Lachnospiraceae family, highlighting 
its potential role in COPD pathogenesis and 
progression.

Table 2. The demographic and clinical characteristics of the 
study participants with and without emphysema.

No emphysema,  
n = 55

Emphysema,  
n = 12

Age (year) 65.6 (±7.0) 70.6 (±5.0)
Sex (male) 29 (53%) 8 (67%)
BMI (kg/m2) 27.5 (±4.7) 24.8 (±3.0)
Smoking status

Current 14 (25%) 1 (8%)
Former 41 (75%) 11 (92%)

Smoking, pack years 22.8 (±13.9) 45.9 (±25.4)
FEV1 % of predicted 90.3 (±22.9) 40.2 (±16.3)
FVC % of predicted 105.4 (±15.8) 89.9 (±17.5)
FEV1/FVC-ratio 0.67 (±0.12) 0.34 (±0.08)
Blood eosinophils

≥0.3 × 109 13 (24%) 7 (58%)
<0.3 × 109 42 (76%) 5 (42%)

Exacerbations 
previous year
≥2 2 (4%) 3 (25%)
1 3 (5%) 4 (33%)
0 50 (91%) 5 (41%)

CAT score 8.9 (±6.5) 20.9 (±8.3)
CAT score

≥10 24 (44%) 12 (100%)
<10 31 (56%) 0 (0%)

Inhaled corticosteroid use 10 (18%) 9 (75%)
Medication for GERD 4 (7%) 3 (25%)
GERD 5 (9%) 1 (8%)

Data presented as n (%) or mean ± SD. COPD, chronic obstructive pulmon-
ary disease. BMI, body mass index. Pack years defined as smoking one 
package of prefabricated cigarettes a day for one year. FEV1, forced 
expiratory volume in 1 second. FVC, forced vital capacity. CAT, COPD 
assessment test. GERD, gastroesophageal reflux disease. Medication for 
GERD included proton pump inhibitors and H2 blockers. 
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Gut microbiota in COPD

We found no significant difference in alpha diversity 
between COPD and controls. Nor could we, nor Lai 
[8], replicate the significant difference in beta diversity 
measured by the Bray-Curtis distance reported by 
Bowerman et al. [7] and Li et al. [9]. Nevertheless, 
alpha and beta diversity are overall measures of diver-
sity and although different diversity measures will 
complement each other, they are not sensitive to 
changes in abundance of specific microbes. 
Veillonella, which we found decreased in COPD 
patients, is an obligate anaerobe and a producer of 
short-chained fatty acids (SCFAs) [35], which can 
interact with the immune system. The other differen-
tially abundant genus (in the class Clostridia) which we 
found increased in COPD, was unclassified beyond the 
class level, which makes it hard to speculate on further 
interpretation. The number of differentially abundant 

genera in the gut microbiota of patients with COPD 
compared with controls in our study is considerably 
lower than the 107 genera Bowerman et al. identified as 
either significantly enriched or depleted between 
patients with COPD and controls. These results are 
not directly comparable since Bowerman et al. have 
analysed data from shotgun metagenomic sequencing 
and used the DESeq2 method for testing differential 
abundance, as opposed to our 16S rRNA gene sequen-
cing data being tested with ANCOM-BC. DESeq2 does 
not take compositionality into full account and has 
been shown to lead to high false discovery rates [36]. 
Li et al. found differences in relative abundances at the 
phylum and family levels, while Lai et al. found differ-
ences at the genus level. However, differences in bioin-
formatic processing and statistical methodologies make 
the differences in abundance between these studies 
difficult to evaluate.

Figure 2. Principal coordinate analysis (PCoA) of beta diversity measures Bray-Curtis (BC) and weighted UniFrac distance (WUniF), 
coloured by emphysema status. The circles mark 95% confidence intervals if assuming t-distribution. Both measures differed 
statistically (Bray-Curtis R2 0.02, p-value 0.02 and weighted UniFrac R2 0.03 and p-value 0.034). The low R2 (indicating that a low 
fraction of variation is explained) aligns with no apparent visual separation of the groups in this PCoA-plot.
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Figure 3. Taxonomic box plot by COPD status. The relative abundances of the 20 most prevalent genera in samples, divided by 
COPD status and sorted by relative abundance. None of these high-abundant genera were differentially abundant in COPD patients 
compared with controls (ANCOM-BC).

Figure 4. The relative and bias-adjusted abundance of the Lachnospiraceae ND3007 group and the Eubacterium hallii group were 
differentially abundant in participants with emphysema (as compared with participants without emphysema), but not structural 
zeroes. Bias-adjusted abundance was derived from the analysis of composition of microbiomes with bias correction (ANCOM-BC).
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Emphysema and gut microbiota

This study is, to our knowledge, the first study to inves-
tigate the gut microbiota in patients with CT-verified 
emphysema. Lachnospiraceae ND3007 group and 
Eubacterium hallii group, both significantly reduced in 
patients with emphysema, are known producers of 
SCFAs, and have been found reduced in other disease 
context. SCFAs, and particularly butyrate, are potent 
regulators of immune function. Lachnospiraceae 
ND3007 group was reduced in Parkinson patients [37], 
and oral treatment with Eubacterium hallii group 
improves insulin sensitivity in mice [38]. Also, both 
were reduced in a cohort of patients with major depres-
sive disorder and schizophrenia, compared with healthy 
controls [39].

Furthermore, the association of the gut microbiota 
with emphysema is also supported by studies in mouse 
models. Lai et al. showed that an anti-inflammatory 
lipopolysaccharide (LPS) purified from a commensal 
bacteria could ameliorate COPD and emphysema in 
a mouse cigarette-smoking model [40]. Li et al. [9] 
have found that faecal microbiota transplantation 

(FMT) from patients with COPD to COPD mice 
increased lung inflammation compared to FMT from 
healthy controls. After concurrent FMT and biomass 
fuel smoke exposure, mice with FMT from COPD 
showed an accelerated decline in lung function, severe 
emphysematous changes, airway remodelling and 
mucus hypersecretion. In another study, Jang et al. 
[41] found that high-fibre diets, modulating the gut 
microbiota, attenuated emphysema development and 
inflammatory response in a cigarette smoke-exposed 
emphysema mouse model. Gut-derived microbial 
metabolites and products, are present in human lungs 
and can influence the local immune tone and cell 
metabolism in mice [42]. Altogether, this indicates 
a potential mechanism for emphysema development 
associated with the gut microbiota, and the current 
study has shown that the gut microbiota might be 
changed in human subjects with emphysema.

Lachnospiraceae

Both in our study and in Bowerman’s COPD cohort 
[7], several members of the family Lachnospiraceae 

Figure 5. Waterfall plot displaying log fold difference and standard errors of all differential abundant genera when comparing 
samples from participants with emphysema and without emphysema. A negative log-fold difference means that the genera are less 
prevalent in participants with emphysema.
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were significantly reduced. Lachnospiraceae is a family 
of obligate anaerobic microbes, with members among 
the main producers of short-chain fatty acids [43]. 
Allais et al. showed an increase in Lachnospiraceae in 
mice after a 24-week smoking exposure [44]. Their 
impact on the host physiology is inconsistent across 
different studies, but Lachnospiraceae seems to be 
increased in metabolic syndrome, obesity and diabetes 
[43]. The inconsistencies between studies might also be 
explained by a substantial degree of inter- and intra- 

species genomic and functional heterogeneity within 
the Lachnospiraceae family [45].

We observed a lower prevalence of some 
Lachnospiraceae in patients with emphysema. 
However, the emphysema patients had smoked more 
than the non-emphysema patients and included a high 
percentage of ex-smokers. Whether the association 
between Lachnospiraceae and emphysema is dependent 
on smoking, is not possible to derive from our data. 
Nevertheless, the associations between Lachnospiraceae 

Figure 6. Taxonomic box plot by emphysema status. The relative abundances of the 20 most prevalent genera in samples, divided 
by emphysema and sorted by relative abundance. None of these high-abundant genera were differentially abundant in participants 
with emphysema compared with those without.
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and emphysema in our opinion deserve further 
exploration.

Exacerbation frequency, eosinophils and gut 
microbiota

Our study also revealed an interesting association 
between blood eosinophil levels and the gut micro-
biota, particularly concerning exacerbation frequency. 
We found that the exacerbation rate was associated 
with alpha diversity as measured by the Shannon 
index, but not if including phylogenetic information 
with Faith’s PD. Thus, the difference is related to 
evenness or richness assessed with the Shannon 
index. The difference was most likely driven by those 
with low blood eosinophils, as the difference remained 
significant in those with blood eosinophils < 0.3 × 109/ 

L. It is also known that exacerbation frequency varies 
by level of eosinophilic granulocytes [46]. 
Measurement of blood eosinophils has since 2019 
been recommended in the follow-up of COPD and 
guides the prescription of inhaled glucocorticoids 
[47]. Blood eosinophils have also been found to be 
positively associated with the risk of developing 
obstructive lung disease, but the mechanism remains 
unclear [48]. Chui et al. [10] found a significant corre-
lation between blood eosinophils and the abundance of 
some genera in the gut, while Bowerman et al. [7] did 
not. In our study, we found an association between 
eosinophils and phylogenetic, quantitative beta diver-
sity. Further studies are needed to confirm and elabo-
rate on the gut microbiome’s role in eosinophilic 
COPD and the potential role of microbiome-targeted 
treatment of frequent COPD exacerbators.

Figure 7. Heatmap of correlations (Spearman´s ρ) between centre log-ratio transformed abundance of genera, and lung function (as 
% of predicted by GLI), blood counts and COPD assessment test (CAT) score. Only genera that were significantly correlated (p-value < 
0.05) to either lung function or blood counts are shown, and each significant correlation (p-value <0.05) is marked with a * . Family is 
displayed above.
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Lung function, symptom score and gut microbiota

We found correlations between several genera with 
both post-bronchodilator lung function and respiratory 
symptoms (Figure 7). An association of the gut micro-
biota in COPD and lung function has previously been 
indicated by two studies [7,10], but we do not know of 
previously published studies on the gut 
microbiota’s correlation to respiratory symptoms in 
COPD. Some of the genera that showed the strongest 
correlations to lung function and CAT score belonged 
to the Lachnospiraceae family.

Gut-lung axis and therapeutic implications

The relationship between gut microbiota and lung health 
has gained considerable attention in recent years, driven by 
evidence supporting the gut-lung axis, which suggests that 
gut-derived metabolites and immune signals can influence 
lung function and inflammation. Our study provides 
further evidence for the potential role of the gut microbiota 
in COPD and emphysema pathogenesis. The observation 
that genera such as Lachnospiraceae are significantly 
reduced in patients with emphysema suggests that gut 
microbiota modulation could be an attractive therapeutic 
avenue for COPD management.

Our study supports the hypothesis that microbiota- 
based interventions, such as FMT, prebiotics, or antimi-
crobial therapies, could potentially alter the progression of 
COPD or improve symptom control. Future randomized 
controlled trials could investigate whether these interven-
tions can influence disease progression, reduce exacerba-
tion rates, or improve lung function in COPD patients.

Study strengths and limitations

This study benefits from a robust dataset, including 
a cohort of patients with clinically relevant disease and 
carefully controlled confounding factors. Our use of 
16S rRNA gene sequencing and strict bioinformatic 
processing enhances the reliability of our findings. 
However, several limitations should be acknowledged. 
First, we lack data on participants’ diet, a key factor 
influencing gut microbiota composition. Future stu-
dies could incorporate dietary questionnaires or bio-
markers to account for this potential confounder. 
Second, we focused on a cohort of ever-smokers with 
moderate-to-severe COPD, which limits the general-
izability of our findings to other COPD subgroups, 
such as never-smokers or those with milder disease. 
Third, while we demonstrate associations between the 
gut microbiota and disease phenotypes, the cross- 
sectional nature of this study limits our ability to 

establish causality. Longitudinal studies will be neces-
sary to determine whether gut dysbiosis precedes or 
results from COPD progression. Fourth, there are 
other phenotypes of COPD that we have not investi-
gated, such as small airway disease and chronic bron-
chitis. Fifth, a 14-day preceding period in which 
participants could not receive any antibiotics might 
be too short, as the effect of antibiotics on gut micro-
biome could extend far beyond this period. However, 
this was a practical decision to not exclude many 
potential participants and to reflect the real-life micro-
biome of actual COPD patients. Time since last anti-
biotics were recorded and 101 of 118 included in the 
statistical analysis had not used any antibiotics the 
previous 12 weeks before inclusion. Sixth, we choose 
strict predefined criteria both for defining patients 
with and without emphysema. While this allowed us 
to evaluate two biologically different populations, it 
may also have caused a loss of power and therefore 
influenced our results. Seventh, we used sequencing of 
16S rRNA gene sequencing, limiting us to go beyond 
the resolution of the genus level. Finally, we lack 
quantitative PCR measurements, and can only com-
pare relative abundances in the gut microbiota.

Conclusion

We have shown that specific members of the gut micro-
biota were differentially abundant in COPD compared 
with subjects without COPD and that these differences 
are more pronounced when you give attention to pheno-
types such as emphysema, lung function, elevated eosino-
phils and symptom burden. This supports that the 
postulated lung-gut-axis is also relevant in COPD. There 
is a need for large-scale studies on the associations between 
COPD, COPD phenotypes and the microbiota.

Ideally, the next step should be a longitudinal, high- 
powered study on the association between COPD, COPD 
phenotypes and the microbiota. This study should employ 
shotgun sequencing to conduct functional metagenomics, 
as well as classify taxa at the species and strain level. In 
addition, animal models and experiments should be uti-
lized to investigate the role of specific members of the 
Lachnospiraceae family. Ultimately, understanding the 
intricate relationship between the microbiota and COPD 
could pave the way for novel therapeutic strategies, offer-
ing hope for improved disease management and better 
patient outcomes.
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