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ABSTRACT

Motivation: The availability of large-scale curated protein interaction

datasets has given rise to the opportunity to investigate higher level

organization and modularity within the protein–protein interaction (PPI)

network using graph theoretic analysis. Despite the recent progress,

systems level analysis of high-throughput PPIs remains a daunting

task because of the amount of data they present. In this article,

we propose a novel PPI network decomposition algorithm called

FACETS in order to make sense of the deluge of interaction data

using Gene Ontology (GO) annotations. FACETS finds not just a

single functional decomposition of the PPI network, but a

multi-faceted atlas of functional decompositions that portray alterna-

tive perspectives of the functional landscape of the underlying PPI

network. Each facet in the atlas represents a distinct interpretation

of how the network can be functionally decomposed and organized.

Our algorithm maximizes interpretative value of the atlas by optimizing

inter-facet orthogonality and intra-facet cluster modularity.

Results: We tested our algorithm on the global networks from IntAct,

and compared it with gold standard datasets from MIPS and KEGG.

We demonstrated the performance of FACETS. We also performed a

case study that illustrates the utility of our approach.
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1 INTRODUCTION

The massive amount of biological interaction datasets presents
the opportunity to study higher order organization and modu-

larity of interaction networks. High-throughput interaction

experiments, however, introduce new challenges to visualization
and analysis of biological interaction data. A common thread

that runs through high throughput generated data is information
overload, i.e. the explosion of data that makes intuitive and

meaningful functional analysis difficult, even overwhelming. In
case of protein–protein interaction (PPI) data, decomposing the

network into functional modules is often the key step to under-

standing the overall picture of the functional relationships that

underlie the data. Consequently, graph clustering methods that

decompose PPI networks into their functional constituents are

increasingly pertinent (Lavallée-Adam et al., 2009).
In general, graph clustering algorithms discover regions of

dense connectivity that represent protein complexes or function-

ally coherent processes (Bader and Hogue, 2003; Krogan et al.,

2006; Seah et al., 2012). Unfortunately, these methods output

only a single optimal functional decomposition of the PPI network.

Consequently, a PPI network can only be decomposed and

viewed from a single perspective, whereas in reality there are

often multiple different perspectives (decompositions) associated

with the functional organization of the underlying network, all of

which are distinct and equally valid. We refer to each of these

decompositions as a facet because they visualize the organization

of a PPI network from a unique view, providing a distinct inter-

pretation of the organization of the underlying network. For

example, consider the toy transcriptional regulatory network de-

picted in Figure 1. A typical decomposition, based on an existing

graph clustering technique (e.g. mcode in Bader and Hogue,

2003), identifies dense regions of the network, which correspond

to the decomposition of protein complexes as shown in Facet 1.

However, this network can also be viewed from other different

perspectives. For instance, it can be organized by the types of

signaling pathways involved in it (Facet 2). Notice that the de-

composition from this perspective is markedly different from the

complex-based decomposition. Furthermore, different proteins

in the network may undergo various modifications such as

acetylation, phosphorylation and ubiquitination. Hence, yet an-

other way to decompose the network is by their modification

effects as depicted in Facet 3. Clearly, in larger real-world net-

works the possibility of uncovering multiple, distinct functional

decompositions are real.

At first glance, it may seem that we can tune the clustering

parameters of existing graph clustering techniques in order to

generate multiple facets or decompositions. Unfortunately, such

tuning only generates an exponential number of slightly perturbed

decompositions with incremental differences (see Supplementary

Material). In other words, such strategy does not generate func-

tionally unique decompositions. In contrast, it is imperative to

ensure that the decompositions or facets are distinctive, i.e. they

are maximally different from each other. This is because every

facet should provide a fresh and informative perspective to the

organization of the network, rather than providing just incremen-

tal differences with respect to other facets.*To whom correspondence should be addressed.
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Our contribution. We propose a novel algorithm called

FACETS that discovers an atlas of functionally unique decom-

positions from a PPI network, portraying alternative views of the

functional landscape of the network (detailed in Section 2). Each

decomposition or facet represents a distinct interpretation of

how the network can be functionally decomposed and organized.

Since a key objective is to obtain n unique facets that are inform-

ative and orthogonal (We use the term orthogonal to describe the

idea of distinctive clusters, rather than its precise mathematical

meaning.), our algorithm maximizes interpretative value of the

atlas by optimizing intra-facet cluster modularity and inter-facet

orthogonality. Intra-facet cluster modularity captures the aim of

decomposing a PPI network G based on a particular functional

and/or structural view. For instance, based on complexes and

localized structures, G can be decomposed into protein com-

plexes. If we consider regulatory processes as a functional con-

cept, then G can be decomposed into signaling and regulation

pathways, an entirely different decomposition. Inter-facet orthog-

onality, on the other hand, demands that each of the n facets are

structurally distinctive and functionally apart from each other.

We propose a novel objective function that models these intu-

itions and FACETS exploit it to discover a set of distinct

facets. Specifically, we exploit both the PPI graph structure

and the rich functional information provided by Gene

Ontology (GO) annotations to guide facets construction.
In Section 3 we evaluate the performance of FACETS on real

world PPI datasets. We also compare FACETS-generated de-

compositions against several gold standard datasets. We demon-

strate its superiority over tested graph clustering methods. We

illustrate the robustness of FACETS against noise. Finally, we

conduct a case study to illustrate how multi-faceted decompos-

itions identified multiple organization maps of the human autop-

hagy system (Behrends et al., 2010).
Related work. Multi-view clustering is a poorly studied prob-

lem in the data mining community (Qi and Davidson, 2009).

Still, there are several works that have focused on multi-view

clusterings in image and text mining domain (Niu and Dy,

2010). One approach projects data into an alternative subspace

(Cui et al., 2007). Another approach generates alternative clus-

tering through the use of must-link and cannot-link constraints

(Wagstaff and Cardie, 2000). In meta-clustering (Caruana et al.,

2006), a large number of clusters are generated and clusters

which are truly different are selected. All of the aforementioned

approaches, however, assume data points in the vector space that

allow the notion of metric distances in a Euclidean geometry. On

the other hand, our problem demands a multi-view clustering

methodology on attributed graphs, which requires a graph clus-

tering paradigm on both structure and annotation. To the best of

our knowledge, multi-view clustering paradigm has not been
applied in clustering biological networks to identify pertinent

functional modules from multiple perspectives.

Ensemble clustering methods generate an ensemble of near-
optimal decompositions (Agarwal and Kempe, 2008; Massen

and Doye, 2005; Navlakha and Kingsford, 2010). These methods

have been used to increase the quality and confidence of the

decomposition and understand network dynamics. The near-

optimal decompositions generated, however, have no notion of

the orthogonality that this work is seeking. Instead, ensemble
clusterings create a large number of perturbed solutions,

making them unsuitable as an atlas of functionally distinct de-

compositions. For instance, in (Navlakha and Kingsford, 2010),

a small network of 32 nodes generated at least 82 permutations

of clusterings.

2 MATERIALS AND METHODS

In this section, we formally introduce the multi-faceted functional decom-

position problem. We begin by defining some terminology that we shall

be using in the sequel. We use the network in Figure 1 as running example

in this article.

2.1 Terminology

An undirected network G¼ (V, E ) contains a set of vertices V, represent-

ing biological entities like proteins or genes, a set of edges E, representing

interactions between the entities. A functional module Ci ¼ ðV
i
c,E

i
cÞ is a

subnetwork of G such that Vi
c � V and Ei

c is the set of edges induced by

Vi
c from G. A facet (decomposition or view) of G, denoted by F, is a set of

functional modules fC1, . . . ,Cmg representing a specific functional con-

cept. Functional modules within a facet F are allowed to overlap. In the

sequel, we use the terms facet, view and decomposition interchangeably.

A functional atlas (or atlas for brevity) of G, denoted by A, is a set of

facets fF1,F2, . . . ,Fng that represents distinctive functional landscapes of

G. Figure 1 depicts an atlas of three facets, with each facet decomposing

the network into three functional modules.

In order to support the idea of functionally orthogonal views, we util-

ize GO annotations associated with proteins. Given a GO directed acyclic

graph (DAG) D ¼ ðVGO,EGOÞ, the ordered set � ¼ h�1,�2, . . . ,�di is

a topological sort of D, where �i represents a single GO term. Each

vertex v 2 V is associated with a d-dimensional function association

vector �v 2 f0, 1g
d, such that �v ¼ h�

v
1,�

v
2, . . . ,�v

di,�
v
i 2 0, 1f g, where

�v
i ¼ 1 if and only if the term �i 2 D or its descendants are associated

with protein v, and �v
i ¼ 0 if otherwise. Note that �v is an indicator

vector that indicates GO terms that are associated with v.

A facet candidate bundle Bi ¼ fG1,G2, . . . ,Gmg is a set of connected

subnetworks of G such that for every Gk 2 Bi, there is a shared GO term

�i within every v 2 Vk. �i represents the common function of the can-

didate subnetwork. A facet candidate bundle Bi represents the superset of

facet Fi and it contains a large permutation of subnetworks that satisfy a

particular functional concept. Typically, jFij � jBij. A function bundle

!i ¼ f�1,�2, . . . �mg is the set of shared GO annotations of Bi, i.e.

!i ¼
S

Gk2Bi
�Gk

. To illustrate these concepts, consider the PPI network

in Figure 1. Suppose that B1 is a facet candidate bundle with

!1 ¼ f�1,�2g, where �1 represents the Swr1 complex GO term and

�2 the Histone term. In the subgraph with Swr1 complex label in Facet

1, every node in that subgraph is annotated with Swr1 complex term.

Thus, the subgraph is a valid member of B1. Any subgraph made up of

Histone-labeled nodes is also a valid member of B1. If B2 represents the

facet candidate bundle with !2 ¼ f�3g, where �3 represents cellular

component, then the Swr1 complex-labeled subgraph is also a valid

member of B2 (Swr1 complex is a cellular component).

Fig. 1. Illustration of multi-faceted PPI network decomposition
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Furthermore, every subgraph in Facet 1 whose nodes are labeled is a

valid member of B2, but not neccessarily a valid member of B1. One

can see that Bi contains a set of subgraphs that shares specific functional

concepts depending on the functional terms in !i. We define the function

f : P (Vgo) ! A given by f ð!iÞ ¼ Fi to make explicit the association be-

tween a functional bundle and its corresponding facet.

A function bundle partition � ¼ f!1,!2, . . . ,!ng is the set of function

bundles that form a partition of all GO terms VGO, i.e.
S
!i2� ¼ VGO. In

the next section, we shall impose further constraints on facet candidate

bundles and function bundles such that the shared GO terms of the

subnetworks within each facet candidate bundle shares high functional

commonality and the terms shares in one facet are distinct from the terms

in another facet.

2.2 Problem formulation

The goal of multi-faceted functional decomposition problem is to identify

an atlas of n distinct facets of G that maximizes inter-facet orthogonality

and intra-facet cluster modularity. Each facet depicts a higher-order

organization of modules of G. Recall that inter-facet functional orthog-

onality demands that each of the n facets is based on an orthogonal

functional concept—facets that are distinctive and functionally apart

from each other. Hence, we propose two criteria that model the

intra-facet functional modularity and inter-facet orthogonality of an

atlas solution. Next, we propose an objective function that models and

scores an atlas of G.

2.2.1 Intra-facet cluster modularity Intra-facet cluster modularity

enables us to seek clusters that are both structurally and functionally

modular. Given !i,� and G, !-restricted decomposition procedure

(denoted by g!) computes a decomposition of G into Fi such that Fi

satisfies the following criteria:

Criterion 1. Every module Cj 2 Fi should be functionally bounded by

!i. Let DCj
¼ f�1,�2, . . . ,�mg be the set of shared terms in Cj, i.e. for

every v 2 Vj
c, v must be annotated with every �i 2 DCj

. Then, the func-

tional boundedness of module Cj by !i is given by r ðCj,!iÞ ¼ DCj
\ !i. A

cluster Cj is bounded by !i if rðCj,!iÞ 6¼ ;. An !i-restricted decompos-

ition of a facet draws from a restricted search space of subnetworks in G

whose vertice shares at least a term within !i. Intuitively, this means that

for any subnetwork to be considered as a module, it must first be sharing

a term in !i. Even if a subnetwork is dense, it must yield to sparser

subnetwork candidates if it is not enriched with terms within !i. In the

example of Figure 1, if !1 is terms of protein complexes, then any sub-

graphs enriched with complex terms is in the search space for Facet 1.

In contrast, the modules of Facet 2, enriched with signaling terms, would

be invalid candidates for Facet 1 decomposition. This restricted search

space is modeled by facet bundle Bi, where any valid candidate facet

cluster Cj of facet Fi must belong to Bi.

Criterion 2. A facet Fi decomposes G by maximizing a clustering ob-

jective function oðFiÞ while satisfying the above criterion. These criteria

are determined by the specific graph clustering algorithm that is adapted

for creating a facet; for generality we let this be the objective function

oðFiÞ that has to be maximized by the graph clustering algorithm. For

instance, every module Cj 2 Fi has to be structurally dense and/or func-

tionally coherent (i.e. every node in module shares a common function),

the coverage of Fi has to be high, and the amount of overlap between

modules should be low. For example, modules of Facet 2 maximize oðF2Þ

while satisfying the !2 bound, despite not forming dense modules. This

is because all dense modules formed are enriched with complex terms,

violating the !2 bound.

2.2.2 Inter-facet orthogonality Since we want every facet in the

atlas to be functionally and structurally distinct, modules within a facet,

as whole, should be structurally and functionally distinct from modules

within another facet. We discuss two independent distance measure be-

tween facets: functional orthogonality and structural orthogonality.

Functional orthogonality is indirectly controllable by the function bun-

dles attached to facets, which determines the types of allowable modules

through the aforementioned restriction. By increasing inter-bundle func-

tional orthogonality, we increase the functional distinctiveness of each

facet. To impose functional orthogonality, we introduce the following

constraint: for every !i,!j 2 �,!i \ !j ¼ ; and
S
!i2� ¼ VGO. This re-

quires that � actually partitions the terms of the GO DAG. The func-

tional distance measure between �i and �j, denoted by dð�i,�jÞ,

measures the functional dissimilarity between the terms. In this article,

dð�i,�jÞ is simply computed as the length of the shortest path between

the terms: dfð�i,�jÞ ¼ min�r2Rjpð�r,�iÞj þ jpð�r,�jÞj, where R is the

set of common ancestors of term �i and �j and jpði, jÞj is the length of the

shortest path from node �i to �j in D. The candidate function specificity

sð�i,CuÞ is defined as sð�i,CuÞ ¼
jf�i2�v jv2V

u
c gj

jf�i2�v jv2Vgj
. sð�i,CuÞ measures the

specificity of a shared GO term, which we will later use to weigh the

contribution of the term. For instance, a cluster Cj of 5 nodes that

share the biological process GO term in a network of 1000 bio-

logical process annotated nodes has a low specificity value of 0.005

with respect to the term.

Likewise, we define structural orthogonality. The structural distance

measure between two clusters Cu and Cv is defined as dsðCu,CvÞ ¼

1� jEu
C \ E

v
Cj =jfðvi, vjÞjvi 2 V

u
C \ V

v
C, vj 2 Vu

C [ V
v
C, ðvi, vjÞ 2 Eu

C [ E
v
Cgj.

The distance is 0 if Cu and Cv shares all edges and 1 if Cu and Cv shares

no edges.

Following that, we define tð�,AÞ as the linear combination of inter-

facet functional and structural orthogonality, as follows:

tð�,AÞ ¼ �
X

!i,!j 2�,
i 6¼ j

( X
�j 2DCj

,
Cj 2 fð!jÞ

X
�t 2DCi

,
Ci 2 fð!iÞ

sð�i,CiÞsð�j,CjÞ
dfð�j,�iÞ

jVj
pjjVi

pj

)

þð1� �Þ
X

�u 2DCu
,Cu 2 Fi

Fi 2A

X
�v 2DCv

,Cv 2 Fj

Fj 2A, i 6¼ j

sð�u,CuÞsð�v,CvÞ dsðCu,CvÞ

The parameter � weighs the contribution of ds against df, and is set to

attain balanced contribution from both terms. Note that tð�,AÞ quanti-

fies the pairwise orthogonality between two function bundles. The higher

the score, the greater the orthogonality.

2.3 Problem definition

The multi-faceted functional decomposition of G is defined as the

problem of simultaneously constructing the atlas of decompositions

A ¼ fF1, . . . ,Fng, and the function partition � ¼ f!1, . . . ,!ng, such

that the following objective function is maximized:

max
A,�

�tð�,AÞ þ ð1� �ÞjAj�1
P
Fi2A

oðFiÞ

subject to Cs 2 Bi8Cs 2 Fi, 1 � i � n

The right half of the terms captures the cost function of decomposing

G into A; the left half, decomposing D into �. The parameter � controls

the weightage between the two terms. Observe that one has to optimize

these criteria simultaneously over the space of A and �. Otherwise, one

may end up with a poor objective score. For instance, if tð�,AÞ is high

(meaning highly orthogonal partitioning), but � is improperly partitioned

such that one ends up with !i that allow only poor decompositions, then

the oðFiÞ score would be very low. Due to the interdependence of the

criteria, optimizing the aforementioned function is computationally

expensive.
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2.4 FACETS algorithm

Generally, the problem of finding clusters that maximizes typical cluster-

ing objective functions that relate to graph density is known to be

NP-hard (Jagota, 1995). Hence, the FACETS algorithm is a heuristic

implementation that attempts to find a local maximum of the objective

function. Our heuristics is a step-wise iterative approach that incremen-

tally optimizes � and A, one at a time (Fig. 2). Intuitively, given an

attributed PPI network (e.g. Fig. 2a), � is incrementally updated by

using each facet in A as functional centroids, and then using the centroids

to partitionD. A is updated through !-restricted decomposition using the

updated �. The FACETS algorithm consists of two phases: the initial-

ization phase (Fig. 2b), and the iteration phase (Fig. 2c–d) (see

Supplementary Material). We describe each of them in turn.

Initialization. This phase creates an initial set of decompositions for the

second phase. We perform graph clustering on G to obtain an initial set of

modules. To this end, the FUSE (Seah et al., 2012) algorithm, summar-

ized in Supplementary Material, is utilized. Each module of this set is then

randomly associated with a facet, randomly distributing the modules over

an initial set of facets. Following that, we construct candidates subnet-

works, which use subnetworks of G that satisfy !i-restricted decompos-

ition constraint. To generate candidates exhaustively is prohibitively

expensive. Instead, candidates for a facet Fi are generated as follows:

for every GO term � 2 !i, we obtain the induced subnetwork in G

whose nodes are annotated with � or its descendants. The subnetwork

is then decomposed into connected components, each forming a candi-

date subnetwork Gj. Let �C
j ¼ � be the term associated with this candi-

date. Candidates formed this way can vary greatly in resolution of the

annotation that its nodes share (for example, �C
j ¼ biological pro-

cess), and can be highly overlapping.

Iteration. This phase—the actual optimization phase—is performed in

rounds. Let i denote the i-th iteration of the algorithm. At each round, the

algorithm updates A and � in two sequential steps. To evaluate algorithm

convergence, we introduce functional reassignment—the number of terms

in � that is reassigned to a different function bundle after Step 1 of i-th

iteration. This score measures the rate of change of �, indicating how

close the algorithm is to convergence. Observe that when � is fixed, the

algorithm reaches a steady state. The algorithm reaches convergence and

terminates when the functional reassignment at i-th iteration drops below

convergence threshold �, a user-defined parameter.

Step 1. Update �. In this step, we assume that A is a constant and

update � to increase tð�,AÞ. For each Fi 2 A, the enriched functional

terms of the modules in Fi serve as centroids for partitioning D into

orthogonal concepts; these enriched terms as whole form the centroid

of !i, which is associated with Fi. We then reassign every candidate

subnetwork to its nearest centroid to form a partition �. The convergence

properties of such centroid-based partitioning approaches (e.g. K-means)

has been well studied (Bottou and Bengio, 1994). For every

Gj 2 Bi, 1 � i � n, we determine its closest centroid by considering Gj’s

average functional and structural distance to functional modules within

a facet. The facet that is closest to Gj is indicated by:

dcðGj,FkÞ ¼

1 if 1
ZðFkÞ

P
Ci2Fk

sð�C
i ,CiÞ � ðCi,GjÞ

� 1
ZðFk 0Þ

P
Ci2Fk

0

sð�C
i ,CiÞ� ðCi,GjÞ

k0 6¼ k, where

�ðCi,CjÞ ¼ �
df ð�

C
i ,�

C
j Þ

jVj
pjjVi

pj
þ ð1� �ÞdsðCi,CjÞ

zðFÞ ¼
P
Ci2F

sð�C
i ,CiÞ

0 otherwise

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Following that, Gj is reassigned to nearest facet candidate bundle Bk

(superset of Fk) and � is updated based on where every �C
j 2 VGO is

assigned to. Each function bundle !i 2 � represents functional terms that

are most closely associated with Fi, and the decomposition of Fi in the

following step will be bounded by the updated !i. Function partitioning

depends on the atlas of decompositions because not every partition of the

GO DAG is capable of forming a modular decomposition of functional

modules.

Fig. 2. Illustration of the FACETS algorithm. (a) GO annotated PPI network is used as input. (b) The set of candidate subnetworks are computed. (c)

An initial set of modules are randomly assigned to a facet. Candidate subnetworks are then assigned to their nearest facet based on function and

structure distance. (d) For each facet, decomposition is performed to identify modules that are functionally contained by the facet candidate bundle. (e)

The candidate subnetworks are reassigned based on their distance to the new set of modules identified. Convergence is achieved when the number of

terms reassigned to a different facet drops below the threshold parameter �. Otherwise, Steps (d–e) are repeated
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Step 2. Update A. In this step, we update A to maximize the objective

function while fixing �. To support !i-restricted decomposition of Fi,

we propose an algorithm that employs profit maximization model

(discussed below) and runs in iterations. At each iteration, we score can-

didate subnetworks based on a profit maximization model and greedily

selects the best scoring candidate as member in Fi. An iteration runs

for every Fi 2 A before moving to the next iteration. Every candidate

considered for Fi must satisfy the !i-restricted decomposition constraint,

i.e. the candidate subnetwork must be enriched with terms in !i. In other

words, Gj 2 Bi.

We now describe the profit maximization model for scoring a candi-

date Gj 2 Bi. Every v 2 V is assigned an information budget. A candidate

Gj extracts, from each v 2 VG
j , some information revenue from the budget

pool. The revenue extracted is correlated to the edge density of the sub-

network, with modular candidates giving high revenue. Each time a can-

didate is selected, revenue is removed from the budget pool and a cost is

incurred. A penalty cost is incurred for a candidate that is structurally

similar to selected clusters in other facets Fi0 6¼ Fi. This penalty is modeled

by costðGjÞ ¼
P

C02Fi0 , i0 6¼i
dsðGj,C

0Þ, which utilizes the structural distance

measure ds described earlier. At each iteration, the candidate that con-

tributes the highest information profit (revenue minus cost) is selected.

To summarize, a clustering in Fi that yields high overall revenue have

subgraphs with high facet modularity oðFiÞ, whereas a clustering with

low overall cost yields high inter-facet orthogonality tð�,AÞ. Given a

fixed �, the set of facets A with maximum overall profit maximizes

the objective function. The algorithm above approximates this through

greedy heuristic.

3 RESULTS

3.1 Experiment settings

The FACETS algorithm is implemented in Scala (Odersky et al.,

2004). We now present the experiments conducted to study the

performance of FACETS and report some of the results here. All
experiments were executed on a 1.66GHz Intel Core 2 Duo

T5450 machine with 3GB memory. We primarily used the

global human PPI network from IntAct (Kerrien et al., 2007),

as well as the yeast, fruit fly, and human autophagy networks
from IntAct (Table 1). In all experiments, we set the convergence

threshold � ¼ 5. The weight � is set to 0.091 to balance the con-

tribution of structure and function (equal order of magnitude).

We utilize only the cellular process sub-domain of the GO

so that the facets are created not merely based on different GO
domains, but on more subtle functional differences.

3.1.1 Evaluation criteria To measure the similarity/dissimilar-
ity between facets or decompositions, we employed the Jaccard

index (JI) (Ben-Hur et al., 2002) evaluation measure, which

is widely used to compare clusterings based on counting the
agreement or disagreement of co-clustered pairs of proteins.

The reader may refer to Supplementary Material for definitions

of the measure.

3.2 Experiment results

3.2.1 Quantitative assessment Table 2 shows the quantitative
comparison between facets. We measure the inter-facet decom-

position similarity using the JI score. The low clustering similar-

ity scores between facets show that they are decomposed

distinctively. This reflects significant organizational differences

between modules of signaling pathways and modules of protein
complexes. We measured the coverage of a facet and the extent of

coverage overlap between the facets. Let the coverage of a facet

Fk be CvgðFkÞ ¼ j
S

Vc2Fk
Vcj. Also, let the extent of coverage

overlap between the Fi and Fj be ExtðFi,FjÞ ¼
jVi\Vjj

jVij
, where

Vi ¼
S

Vc2Fi
Vc and Vj ¼

S
Vc2Fj

Vc. The extent of overlap be-

tween facets reaches up to 0.316. Consequently, the overlap is

not insignificant, implying that the facets are not partitions of G.

3.2.2 Validation on real data In this experiment, we compare

the FACETS atlases of the global human network to gold stand-
ard functional modules. The gold standard datasets were con-

structed as follows: (i) MIPS—We use the set of 571 human

complexes (of more than three proteins) from MIPS (Mewes

et al., 2002) to represent the decomposition of the human inter-

actome into complexes. (ii) KEGG-metabolic—To represent
decomposition into metabolic modules, we use 67 human

Table 2. Comparison between facets of the H. sapiens PPI network (n¼ 6)

JI score Coverage overlap

Facets No of

modules

Coverage Facet 1 Facet2 Facet 3 Facet 4 Facet 5 Facet 6 Facet 1 Facet 2 Facet 3 Facet 4 Facet 5 Facet 6

1 89 294 1.0 0.014 0.065 0.0050 0.0070 0.079 1.0 0.316 0.142 0.081 0.044 0.112

2 280 1079 0.014 1.0 0.0040 0.119 0.0050 0.0070 0.086 1.0 0.077 0.09 0.082 0.079

3 106 372 0.065 0.0040 1.0 0.0010 0.0 0.013 0.112 0.225 1.0 0.029 0.059 0.086

4 94 419 0.0050 0.119 0.0010 1.0 0.0 0.0080 0.057 0.233 0.026 1.0 0.028 0.052

5 114 390 0.0070 0.0050 0.0 0.0 1.0 0.0010 0.033 0.228 0.056 0.03 1.0 0.038

6 72 306 0.079 0.0070 0.013 0.0080 0.0010 1.0 0.107 0.281 0.104 0.071 0.049 1.0

Table 1. Datasets used

Dataset No of

nodes

No of

edges

Source

H. sapiens 9131 34 362 IntAct

(Kerrien et al., 2007)

S. cerevisiae 4768 40 457 IntAct

D. melanogaster 3114 6472 IntAct

Human autophagy 1241 3555 IntAct
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metabolic networks from KEGG, each representing a single func-

tional module. (iii) KEGG-signaling—We use 23 human

signal transduction pathways from KEGG to represent decom-

position into signaling pathways. The gold standard decompos-

itions were chosen such that each represents a distinct functional

organization of the human network. As such, we consider each

gold standard dataset as a facet of the human network, and the

set of these three datasets as the gold standard atlas of the human

network. We then compared these datasets against the atlas

of facets obtained through our algorithm and determine if

there is a distinctive one-to-one mapping between our facet

and a gold standard facet. We set n¼ 6 and repeated the tests

fifteen times under different starting conditions to account

for variability in facets output. We also compare the similarity

scores against graph clustering methods, namely Markov cluster-

ing (MCL) (Krogan et al., 2006), mcode (Bader and Hogue,

2003), nemo (Rivera et al., 2010) and fuse (Seah et al., 2012).

These methods create a single decomposition of the human net-

work. We removed clusters with fewer than three proteins. We

also compare against GO term enrichment (enrich) (Boyle et al.,

2004), which does not utilize structural information. Following

that, we measure the clustering similarities between the gold

standard datasets and the decompositions obtained. Figure 3

shows the clustering similarities between modules in gold stand-

ard datasets and modules in facets as well as tested graph clus-

tering methods. The JI was used to measure the agreement

between pairs of decompositions. We normalize the scores so

that the highest JI score obtained, within each gold standard

dataset, is adjusted to 1.
We consider the facet best associated with a gold standard

decomposition by comparing their relative scores. The gold

standard datasets were uniquely mapped to a distinct facet:

KEGG-metabolic is most similar to Facet 3,

KEGG-signaling is most similar to Facet 2 and MIPS is

most similar to Facet 1. This unique mapping demonstrates

that from a clustering perspective, the facets have significant

functional orthogonality such that they are uniquely associated

with different functional organization maps. Facet 6 has poor

similarity to the gold datasets, indicating a set of clusters that

could be functionally distinct from these datasets.
In contrast, the tested graph clustering methods share

common similarity patterns. Clusters are largely from a single

dominant perspective—those of protein complexes (MIPS). We

argue that objective functions based on dense connectivity tend

to favor protein complex structures over other decompositions

like metabolic pathways. GO term enrichment, on the other

hand, generates output with little similarity to all gold standard

datasets, indicating that annotations alone are unable to specif-

ically identify important functional modules within a large PPI

network. This is supported by the fact that functional analysis of

large networks often involve graph clustering prior to term en-

richment (Krogan et al., 2006).
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Fig. 3. Comparison between the decomposition similarities of FACETS, other methods and gold standard decompositions
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3.2.3 Robustness To study the robustness of FACETS, we
tested the effect of annotation perturbations and edge deletions

of the input network on FACETS output. Random edge deletion

(edge noise) simulates the effect of removing false positive inter-

actions in high-throughput interaction datasets, whereas annota-

tion perturbation (node noise) simulates errors in curated

annotations. Figure 4(a–c) shows the effect of edge and node

noise on FACETS, varying from 0 to 100% noise. The figure

shows clustering similarities (JI similarity) between the best scor-

ing facets and gold standard datasets under increasing noise per-

turbations. We repeated each test fifteen times with different

randomization seed. We observed that FACETS output quality

drops gradually under increasing edge and node noise condi-

tions. This demonstrates that the algorithm is robust to small

noise perturbations. In case of edge noise, we noted that the

quality of output only drops rapidly past the 0.5 noise ratio.

This is desirable given that false-positive rates in yeast

two-hybrid and TAP experiments range between 0.35 to 0.7

(Hart et al., 2006). MIPS clusters, which consist of densely inter-

connected clusters, are most robust to edge noise effects. The

effect of node noise is comparatively greater, but quality degrad-

ation remains gradual.

3.2.4 Effect of initial starting point Given that FACETS
belong to the class of hill-climbing methods, the algorithm

output is dependent on the initial starting point. To this end, we

study the effects of multiple random initial starting points. We

compared the variability in clustering output due to starting point

versus variability due to noise effects to give a sense of the mag-

nitude of variability. We set a single facet output as the reference

output, and compared its JI similarity with outputs from different

starting points and increasing noise effects. The boxplot Figure

5(a and b) shows the effect of initial starting point versus noise on

facets. At 0 noise rate, the variability in JI similarity is due to
initial starting point. Given the fact that high-throughput datasets

are inherently noisy (as mentioned above), the variability due to
starting point is less significant. In addition, Figure 4(a–c) shows

the effect of starting points with respect to gold standard datasets
when one observes the similarity at 0 noise rate.

3.2.5 Convergence Figure 6(a and b) shows the functional
reassignments after the i-th iteration. We conducted the tests

on varying types of datasets with n¼ 6. We also vary the
number of facets per atlas (n¼ 2–6) on the global human net-

work. All tests converge in59 rounds, demonstrating FACETS’
ability to converge quickly to a solution. Larger datasets such as
the human network requires more iterations to complete. The

number of iterations required also tends to increase with the
number of facets n.

3.2.6 Case study: human autophagy system To illustrate the
utility of multi-faceted decomposition, we analyze the functional

organization human autophagy system. The functional map of
this system was manually constructed in (Behrends et al., 2010).

We generated the facets of the human autophagy network
(n¼ 6), and a subset of the results is shown in Figure 7. The

automatically generated facets show the pertinent roles of vesicle
transport and lipid membrane metabolism in autophagy, which
is consistent with the manually constructed map. Additionally,

the network can also be clustered from the perspective of cell
cycle and apoptosis regulation modules, which is not depicted in

the manual map. This demonstrates the possibility of having
multiple perspectives that organize a network.

4 CONCLUSION

In this article, we propose FACETS, a data-driven and generic al-

gorithm for generating multi-faceted functional decompositions

Fig. 7. Multiple facets (subset) illustrating the functional organization of

the human autophagy network under different perspectives
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of a PPI network, providing multiple perspectives of the func-
tional organization landscape of the network. Our experimental
validation with real-world PPI networks demonstrates effective-
ness of FACETS in generating functionally distinctive facets. As

future work, we intend to extend FACETS to evaluate both
annotated and unannotated regions of the PPI network.

Conflict of Interest: none declared.
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