Chapter 5
Angiotensin II Signaling in Vascular
Physiology and Pathophysiology

Niels Engberding and Kathy K. Griendling

Abstract Initially recognized as a physiologic regulator of blood pressure and
body fluid homeostasis, angiotensin (Ang) II has now been shown in innumerable
experiments and clinical studies to contribute to the development and maintenance
of cardiovascular disease. Dissection of its signaling mechanisms over the past
decades has led to the discovery of several novel concepts, such as tissue-specific
metabolism of Ang peptides. Identification and cloning of the various receptors
through which Ang II acts on almost all tissues has led to the development of
specific pharmacologic inhibitors with proven clinical benefit in patients with
cardiovascular disorders. Work on the G-protein-coupled Ang II Type 1 receptor
has demonstrated that different receptors interact through oligomerization, com-
partmentalization, and transactivation, and may explain how Ang II can activate
G-protein-independent pathways. Unraveling the downstream effects of Ang II in
specific cell types corroborates the importance of the cellular redox state on certain
signaling pathways. Finally, the effects of Ang II on cell function and phenotype,
such as the expression of inflammatory cytokines and receptors promoting the
recruitment of inflammatory cells into vascular tissues, have indicated its role in
local inflammation as a general pathogenetic basis of cardiovascular disease. The
recognition of Ang II as a contributor to such fundamental pathophysiologic mech-
anisms, which are believed to be a common pathway for diverse cardiovascular
risk factors like hypertension and diabetes, has greatly advanced our knowledge
of pathologic signaling in vascular tissues and may help to eventually define novel
targets for pharmacologic interventions.

The Renin—-Angiotensin System (RAS)

Classic RAS

The canonical renin—angiotensin system (RAS) is a circulating hormonal sys-
tem that controls systemic Ang II production. The octapeptide Ang II was first
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discovered in the 1940s as the actual pressor substance in animal models of renal
hypertension, and is considered the primary effector molecule of the RAS, regu-
lating blood pressure by vasoconstriction and fluid homeostasis (Braun-Menendez
et al. 1940; Page and Helmer 1940). Generation of Ang II occurs in two enzymatic
steps. The aspartyl protease renin, which is produced by specialized juxtaglomerular
smooth muscle cells in the kidneys in response to reduced renal perfusion pressure
or salt depletion, catalyzes the first and rate-limiting reaction. By splitting a Leu-Val
peptide bond in humans or a Leu-Leu bond in other species, it releases the final
ten N-terminal amino acids from its only known substrate, angiotensinogen (AGT).
AGT is a liver-derived «,-globulin that belongs to the family of serine-protease in-
hibitors (serpines), and its concentration is the major determinant of systemic renin
activity. The peptide fragment resulting from cleavage of AGT, Ang I, is the inactive
precursor of Ang II. Ang Il is generated by cleavage of two C-terminal amino acids
(His-Leu) from Ang I by the dipeptidyl carboxypeptidase angiotensin-converting
enzyme (ACE) that is anchored to the luminal surface of the endothelium as a trans-
membranous ectoenzyme and is particularly abundant in the pulmonary vasculature
(Caldwell et al. 1976).
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Fig. 5.1 Metabolism of angiotensin peptides. Various peptidases regulate the production and
degradation of diverse angiotensin peptides, accounting for tightly regulated agonist and antag-
onist functions systemically and locally. ACE, angiotensin-converting enzyme; Ang, angiotensin;
APA, aminopeptidase A; APN, aminopeptidase N; CAGE, chymostatin-sensitive angiotensin II-
generating enzyme; Chym, chymase; CathG, cathepsin G; NEP, neutral endopeptidase; PEP, pro-
lylendopeptidase.
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Recent advances in the metabolism of angiotensin peptides have revealed novel
functional peptides, which challenge the view of Ang II as the primary effector of
the RAS (Figure 5.1). Aminopeptidase A can split off Asp from Ang II, yielding
the less potent vasoconstrictor Ang III (Ang 2—8), which can further be transformed
to Ang IV (Ang 3-8) by aminopeptidase N. Another angiotensin peptide, Ang 1-7,
which is derived either directly from Ang I by tissue-endopeptidases or from Ang II
by ACE2, acts as a vasodilator (Ferrario and Iyer 1998). ACE2 is an ACE homo-
logue that acts as a carboxypeptidase by selectively removing the C-terminal Phe
from Ang II. Through its contribution to Ang II degradation as well as Ang 1-7 gen-
eration, ACE2 has received much attention as an opposing factor of Ang II action.
To highlight the heterogeneous functions of the various RAS components, ACE2 has
also been recognized as a functional receptor for the SARS coronavirus, mediating
its cell intrusion (Kuhn et al. 2004).

Local Tissue RAS

The vascular wall possesses the ability to independently generate Ang II, suggesting
local paracrine/autocrine functions of Ang II. Except for renin, all components of
the RAS have been found in the vascular wall. The rate-limiting step of local Ang II
generation is the conversion of Ang I to Ang II, which can be catalyzed by a num-
ber of enzymes in addition to ACE, namely, chymase, cathepsin G, and chymostatin-
sensitive Ang II-generating enzyme (CAGE). Several reninlike enzymes that release
Ang I from AGT, such as cathepsin D, tonins, tissue plasminogen activator, and
other aspartyl proteases, have been proposed as a means to mediate the local RAS
independent of kidney-derived renin. While there is no convincing evidence for local
synthesis of renin (Hilgers et al. 2001), tissue levels of renin become undetectable
within 48 hours after bilateral nephrectomy (Thurston et al. 1979). This suggests
accumulation of renin in tissues. Renin uptake into cardiovascular tissues has been
reported to result in sustained Ang II effects in local vascular beds (Miiller et al.
1998). Furthermore, a functional renin receptor has recently been found on mesan-
gial cells that enhances the catalytic activity of renin upon binding (Nguyen et al.
2002). This receptor specifically binds renin and its precursor prorenin, which may
explain why local concentrations of renin (e.g., in interstitial fluid) are oftentimes
higher than predicted by simple diffusion from the plasma (Danser et al. 1994).

Angiotensin II Receptors

The cellular effects of Ang Il are mediated by distinct high-affinity cell surface
receptors. Two subtypes can be discriminated by specific nonpeptide antagonists.
Additionally, exposure to the sulfhydryl-reducing dithiothreitol (DTT) inactivates
Ang II Type 1 receptors (ATRs), whereas Ang II Type 2 receptors (AT,Rs) remain
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intact (Chiu et al. 1989). The AT|R was initially cloned from rat aortic smooth
muscle and bovine adrenal cells (Murphy et al. 1991; Sasaki et al. 1991), while the
AT,R was cloned from a rat pheochromocytoma cell line and from fetal rat tissue
(Kambayashi et al. 1993; Mukoyama et al. 1993).

Additional receptor subtypes (e.g., AT3R and AT4R) have been described phar-
macologically. Based on binding studies in the brain, the AT4R was originally de-
fined as the binding site for the hexapeptide Ang IV. Later on, the AT4R was found
to be identical to insulin-regulated aminopeptidase (IRAP), a protein first identified
as membrane-bound metalloprotease in insulin-sensitive GLUT4 vesicles of fat and
muscle cells (Keller et al. 1995). Ang IV binds and inhibits IRAP and enhances
cognitive functions in experimental animals (Chai et al. 2004).

The human AT R and AT,R are single-copy genes, but rodents have two AT1R
gene (AGTR1) loci (AGTR1a on chromosome 17; AGTR1b on chromosome 2)
and accordingly express two AT{R isoforms (AT1aoR and AT;gR) that differ in 18
amino acids, mainly in the carboxy-terminal region. Overall, they are 94% homolo-
gous and pharmacologically indistinguishable (Iwai and Inagami 1992). AT sRs are
expressed predominantly in vascular smooth muscle, endothelial cells, liver, lung,
kidney, brain, ovary, and testis, whereas AT ;gRs occur mainly in the adrenal and an-
terior pituitary gland (Burson et al. 1994). The human AT;R is ~ 95% homologous
to the rodent isoforms (Curnow et al. 1992).

ATiRs

Most vascular Ang II effects known to date are mediated by ATRs, the best-
characterized Ang II receptor so far. The AT|R can be blocked by biphenylim-
idazoles including losartan (DuP 753), valsartan, and candesartan, and is mainly
expressed in vascular smooth muscle cells (VSMCs), but also in heart, lung, liver,
adrenal cortex, kidney, and brain. Several reports show that Ang II has effects on
endothelial cells, but not always do they seem to be mediated by known Ang II re-
ceptors (Vaughan et al. 1995). Aside from rodent endothelial cells, which clearly
express AT1aRs, ATiRs have also been found on bovine and porcine endothelial
cells. In primary cultured human arterial umbilical endothelial cells, AT;Rs have
been detected by binding studies; however, the receptors rapidly disappear in vitro.
Interestingly, a low-affinity binding site persists even in later cell passages, which
is not inhibitable by specific receptor blockers (Ko et al. 1997). On the other hand,
ATRs have not been found on human endothelial cells using immunohistochem-
istry (Allen et al. 2000).

Structure and Genomics

The ATR is a seven-transmembrane-domain rhodopsinlike peptidergic G-protein-
coupled receptor (GPCR) that upon ligand binding activates heterotrimeric
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G-proteins to direct subsequent signaling events. The AT;R has 359 amino acids
(MW ~50kDa). Structurally, it consists of four extracellular (N-terminus and three
connecting loops), four intracellular (three connecting loops and C-terminus), and
seven «-helical transmembrane domains. Extracellular glycosylation sites are in the
N-terminus (Asn4) and the second extracellular loop (Asp176 and Asnlgg) (Desar-
naud et al. 1993). Two disulfide bonds between extracellular loops one and two and
between extracellular loop three and the N-terminus stabilize the tertiary structure
of the receptor. The N-terminus as well as the first and third extracellular loops
contain the epitopes for peptide binding. The binding of nonpeptide antagonists
is independent from these epitopes, suggesting distinct modes of interaction for
peptide and nonpeptide ligands (Hjorth et al. 1994). Several conserved residues,
Asp’4, Tyr215, and Tyr???, are important in G-protein binding and activation (Marie
et al. 1994). The cytoplasmic tail can be phosphorylated in the basal and Ang II-
stimulated state at its numerous Ser and Thr residues, but also at the few Tyr residues
at positions 302, 312, 319, and 339 (Kai et al. 1994). Among these the Asp-Pro-
Leu-Phe-Tyr (NPLFY?30?) sequence is a variant of the highly conserved tyrosine-
containing NPXY motif found in the cytoplasmic tail of many receptor tyrosine
kinases (RTKs), in which it is linked to coated pit-mediated receptor internalization.
However, in the AT|R the NPLFY motif is not linked to receptor internalization.
Instead, the extra Phe’*! seems to be important for agonist binding (Hunyady et al.
1995). Tyr3!'? is also part of a functionally important motif: YIPP. This sequence is
similar to motifs in the platelet-derived growth factor receptor (PDGF-R) and epi-
dermal growth factor receptor (EGF-R), which, when phosphorylated, are important
in SH2-domain coupling to those receptors. In the AT|R, Tyr’!® mediates interac-
tion with JAK?2 (Ali et al. 1997), a member of the Janus family kinases (JAK), and
is also important for EGF-R transactivation.

The human AGTRI1 is located on chromosome 3q21-25 and spans about 60 kb,
including five exons and four introns. Exon sizes range from 59 to 2014 bp with exon
5 being the largest and the only coding exon, while the first four exons encode the
5 untranslated region (UTR) (Guo et al. 1994). Several splice variants with differ-
ent exon composition have been described. The open reading frame of the AGTR1
spans 1080 bp. AGTR1 polymorphisms have been described as a potential link to
vascular morbidity. The single nucleotide polymorphism (SNP) A1166C in the 3’
UTR is more common in hypertensive patients than normotensive controls (Bon-
nardeaux et al. 1994). In addition, patients with coronary artery disease (CAD) who
are homozygous for the A1166C mutated allele (CC genotype) have increased AT|R
sensitivity (van Geel et al. 2000). Some other SNPs in the AGTR1 have been impli-
cated in the genetics of hypertension, but much work needs to be done to evaluate
the association of other AGTR1 SNPs with cardiovascular disease.

Regulation of Surface Expression

The density of Ang II receptors on VSMC:s is a central determinant of the cellular
sensitivity to Ang II. Thus, factors that regulate AGTR1 expression have a marked



94 Niels Engberding and Kathy K. Griendling

Table 5.1 Regulation of AT|R expression in VSMCs

Upregulation Downregulation

LDL Angiotensin II

Insulin Epidermal growth factor
Insulin-like growth factor-1 Fibroblast growth factor
Progesterone Platelet-derived growth factor
Erythropoietin o-Thrombin

Interleukin-1 o ATP

Interleukin-6 Interferon-y

TNF- Nitric oxide

C-reactive protein Reactive oxygen species
Glucocorticoids HMG-CoA reductase inhibitors
Sodium chloride PPAR-vy agonists

Hypoxia Estrogen

Hyperglycemia Vitamin A

Thyroid hormone
All-trans retinoic acid
Forskolin
Isoproterenol

LDL, low-density lipoprotein; ATP, adenosine triphosphate; TNF, tumor necrosis factor;
HMG-CoA, 3-hydroxy-3-methyl-glutaryl-coenzyme A; PPAR, peroxisome proliferator-activated
receptor.

effect on cardiovascular function. Among these are cytokines, hormones, growth
factors, and vasoactive agents (Table 5.1). In vascular tissues, chronic Ang II ex-
posure itself induces downregulation of the AT|R in a negative feedback fashion
(Nickenig et al. 2000). Both mRNA and protein are significantly downregulated af-
ter 2—6 hours of Ang II exposure in vitro (Lassegue et al. 1995) and in vivo (Gunther
et al. 1980). Various pathophysiological conditions affect AT{R regulation. For ex-
ample, hypercholesterolemia leads to AT R overexpression (Strehlow et al. 2000).
This may explain why hyperlipidemia is frequently associated with hypertension.
Intriguingly, oxidized low-density lipoprotein (0xLDL), which has been linked to
early atherosclerotic events, increases AT R expression on endothelial cells (Li et al.
2000), but in contrast to unmodified LDL, it does not affect AT|R expression on
VSMCs (Nickenig et al. 1997). 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase inhibitors (statins), which are potent cholesterol-lowering drugs,
have been shown to reduce AT|R expression by reducing the half-life of AT|R
mRNA. This mechanism is dependent on their inhibitory effect on geranylgerany-
lation and may therefore explain lipid-lowering independent (pleiotropic) effects of
statins on the vasculature (Wassmann et al. 2001). Proinflammatory cytokines in-
crease AT1R expression in vascular tissues (Sasamura et al. 1997), whereas nitric
oxide (NO) downregulates AGTRI1 transcription (Ichiki et al. 1998).

Stability of AT{R mRNA depends on specific binding motifs for polyso-
mal proteins in the 3’ UTR immediately upstream of the polyadenylation tract
(Nickenig et al. 2001). There are two putative polyadenylation sites in the 3’ UTR
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as well as six AUUUA motifs (Furuta et al. 1992). Mutation of the AU-rich ele-
ment (3’ UTR 2159-2175) decreases AT|R mRNA decay, while AU-repeat mRNA-
binding proteins promote AT{R mRNA destabilization. In addition to the primary
base composition, the secondary structure of the mRNA, displaying a stem-loop
sequence, seems to be necessary for interaction with degrading mRNA-binding pro-
teins (Berger et al. 2005). Moreover, the 5 UTR sequence has been found to be
involved in posttranscriptional regulation. Although in all known splice variants the
open reading frame is not affected, variants in the 5’ leader sequence contribute to
tissue-specific changes in AGTR1 expression at least in part by altering rates of
mRNA translation (Elton and Martin 2003; Zhang et al. 2004).

Initiation of mRNA synthesis is another control point of AGTR1 expression.
Aside from binding sites for activator proteins AP-1 and AP-2, and cyclic AMP
regulatory element (CRE), there are binding sites for the eukaryotic transcription
factor Spl in the ATGR1a promoter, including a GC-box-related sequence within
the —58/—34 region (Takeuchi et al. 1993). Direct binding of the activated peroxi-
some proliferator-activated receptor (PPAR)-y to Spl causes inhibition of AGTR1a
transcription (Sugawara et al. 2001). Another GC-box-related sequence is located at
—98/—79 of the AGTRI1 promoter in rats and humans (Zhao et al. 2000). Both Sp1
binding sites are additively involved in driving basal AGTR1 expression (Kambe
et al. 2004). It has also been suggested that increased levels of Spl proteins in the
hypothalamus contribute to the hypertensive phenotype in spontaneously hyperten-
sive rats (SHRs) via increased AT R expression (Kubo et al. 2003). In proximal
tubular cells, a cis-acting GAGA-box at —161/—149 has also been identified as an
important regulator for basal and growth factor-induced AGTR1 transcription, sug-
gesting that the AGTR1 may possess alternative initiation sites (Wyse et al. 2000).

Oligomerization

Although a single AT R is fully functional, emerging data show that ATRs are ca-
pable of forming homo- and heteromers with other GPCRs. Homodimerization of
the AT{R on monocytes correlates with enhanced Ang II signaling and monocyte
adhesion to the endothelium (AbdAlla et al. 2004). Coexpression of nonfunctional
AT R mutants abrogates coupling to G-proteins, whereas recruitment of (3-arrestins
and subsequent stimulation of the mitogen-activated protein kinase (MAPK) path-
way remains intact suggesting, that oligomerization of intact AT|Rs is particularly
pertinent for G-protein signaling (Hansen et al. 2004). Receptors that dimerize
with the AT R include the bradykinin B, receptor, the (3,-adrenergic receptor, the
dopamine D receptor, and the AT>R (AbdAlla et al. 2000, 2001; Barki-Harrington
et al. 2003; Zeng et al. 2003). The AT 1R /B, heterodimers confer increased Ang II
sensitivity, and an increased number of these heterodimers has been clinically cor-
related with preeclampsia (Quitterer et al. 2004). It has not been conclusively de-
termined if oligomerization is affected by ligand binding, since some data suggest
that it may occur even before surface expression (Hansen et al. 2004). Oligomeriza-
tion may differentially couple the ATR to specific downstream signaling proteins,
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or change receptor ligand binding characteristics or receptor trafficking patterns, all
of which may integrate information from multiple receptors and modulate Ang II
sensitivity of cells.

Internalization and Trafficking

A characteristic consequence of AT|R activation is cellular desensitization to Ang
II. Within 10 minutes, the receptor is internalized via clathrin-coated pits into en-
dosomes. The intracellular Ang II/AT|R complex continues to signal until its inac-
tivation, which occurs either by degradation after fusion with lysosomes or by de-
phosphorylation with subsequent recycling to the cell surface membrane (Hunyady
et al. 2002). Approximately 25% of the internalized receptors are recycled back to
the cell membrane. Internalization and cellular processing of the Ang II/AT|R com-
plex itself may have a specific role in signal transduction by engaging the complex
with second messenger systems other than those at the cell membrane. The prin-
cipal mechanism depends on Ser- and Thr-phosphorylation of the activated AT;R
C-terminus mediated by G-protein-related kinases (GRKs). Phosphorylation in the
region from Thr’*? to Ser’® facilitates interaction with B-arrestins (Qian et al.
2001), which impair further G-protein activation and subsequently promote recep-
tor endocytosis (Kule et al. 2004). 3-Arrestins recruit non-receptor tyrosine kinases
(NRTKS) like c-Src and other adapter proteins to the cell membrane to form com-
plexes that orchestrate the internalization process (Fessart et al. 2005). After recep-
tor phosphorylation by GRKs 5/6, (3-arrestins can direct signaling events toward the
MAPK pathway independent of G-proteins (Kim et al. 2005b). For instance, mu-
tant AT|Rs incapable of G-protein coupling have been found to activate ERK via
[3-arrestin-2 (Wei et al. 2003). Of interest, hypertension per se upregulates GRKS
in VSMC:s in vivo, suggesting that modulation of GRKS5 levels may be an adap-
tive cellular means to autoregulate Ang II sensitivity (Ishizaka et al. 1997). After
endocytosis, the AT|R remains tightly bound to 3-arrestin and travels to an early
sorting endosome, from which the complex fuses either to a lysosome or to a perin-
uclear recycling endosome (Gaborik and Hunyady 2004). Sorting of the receptor—
ligand complex between intracellular membrane organelles is an important traffick-
ing mechanism. It has been shown that AT Rs preferentially traffic to Rab5-positive
endosomes (Seachrist et al. 2002). Rab GTPases regulate intracellular vesicle trans-
port and fusion. Furthermore, Rab5 and {3-arrestin binding to the AT{R C-terminus
appear to mediate retention of the complex in early endosomes, thereby preventing
recycling and degradation (Dale et al. 2004). This could represent a mechanism to
prolong Ang II effects intracellularly. Nuclear accumulation of the AT{R has also
been described with effects on cellular proliferation, and it has been speculated that
the AT R directly participates in transcriptional regulation (Cook et al. 2006).
Interestingly, direct microinjection of Ang II into VSMCs with concomitant ex-
tracellular AT R blockade has been demonstrated to generate an intracellular cal-
cium increase. However, concomitant microinjection of an AT|R blocker abolished
this Ang II effect (Haller and Luft 1998). This confirms a functional coupling of
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Ang II and ATR intracellularly as seen in the internalization process described
above, but direct actions of free intracellular Ang II, which either has escaped from
the internalized AT1R—Ang II-ligand complex or has been synthesized de novo,
have also been hypothesized. The functional relevance of this mechanism in vivo
remains to be determined.

Microdomains and Lipid Rafts

It has become apparent that the lipid bilayer cell membrane has distinct regional
characteristics with different functions particularly related to cell signaling. Re-
gions that are predominantly composed of sphingolipids and cholesterol in the outer
lipid layer, called lipid rafts, are regions of concentrated signaling proteins such as
G-proteins, suggesting that the lipid composition surrounding a GPCR may influ-
ence receptor function. Caveolae are special invaginated lipid rafts characterized
by the presence of caveolin (Cav)-1, -2, and -3, which are of particular importance
for Ang 1II signaling. Upon stimulation with Ang II, the AT{R rapidly (<2 min)
translocates laterally to Cav-enriched membrane fractions, and directly interacts
with Cav-1, promoting the assembly of a Cav scaffolding domain (Ishizaka et al.
1998). This process requires a functional cytoskeleton and cAbl, an actin-binding
NRTXK, to direct proper translocation of AT{R into lipid rafts with subsequent Racl
and NADPH oxidase activation, which eventually mediates VSMC hypertrophy
(Zuo et al. 2005). It is possible that the AT|R complex is also internalized at these
noncoated caveolae.

AT>R

The AT,R has 363 amino acids (MW ~44 kDa) with only ~30% homology to the
AT R sequence. The AGTR?2 is located on the X chromosome. It is mainly ex-
pressed in uterine smooth muscle, brain, ovary, adrenal medulla, heart, and fetal
mesenchyme, and is specifically antagonized by tetrahydroimidazopyridines like
PD123319 and PD123177 (EXP655) (Wharton et al. 1998). Its wide expression in
fetal tissues supports the concept that it has modulatory functions during embryonic
development; however, AT;R surface expression increases under certain patholog-
ical conditions. For instance, in heart failure patients the ratio of AT>R to AT|R in
the heart increases (Tsutsumi et al. 1998). Additionally, it has been reported that
AT7R is reexpressed in vascular inflammation and injury (Akishita et al. 2000). In-
terestingly, gene targeting of the AT,R blocks cardiac hypertrophy and fibrosis in
mice with Ang II-induced hypertension (Ichihara et al. 2001). The AT,R is also
present on bovine pulmonary endothelial cells where it increases endothelial NO
production and counterbalances AT|R-mediated vasoconstriction in the setting of
hypoxia (Olson et al. 2004). In contrast to the AT|R, the AT,R does not undergo
receptor internalization (Hunyady et al. 2004). The third intracellular loop seems to
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carry the unique features of the AT,R in regards to G-protein interaction (Lehtonen
et al. 1999). AGTR2 expression is also regulated by multiple extracellular factors.
Interestingly, Ang II infusion upregulates vascular AT>R expression in mesenteric
arteries of rats (Bonnet et al. 2001).

Signaling Pathways of the AT;R

Contraction

Ang II activates a complex series of signaling events that are temporally and spa-
tially tightly controlled. Some second messenger systems are activated within sec-
onds, while others are delayed and persist for more than an hour (Griendling
et al. 1986). Upon Ang II binding to VSMCs, the ATR activates G-proteins of
the pertussis toxin-insensitive subfamilies: Goq and Gayz/13. Within 30sec of
Ang 1II stimulation, a rapid and transient activation of phosphatidylinositol-specific
membrane-bound phospholipase C (PLC)-31 leads to the production of inosi-
tol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Gog/11 and Goyyz pro-
teins as well as their respective Gy subunits couple the AT|R with PLC-31
(Figure 5.2). Subsequently (>30sec), PLC-y activation accounts for the majority

{ AT,R J < H Sirc )—'[ Plg-CY ]—.
e o — e

[ P, | [ pAG J—{ PA ] [choling

Fig. 5.2 Early G-protein signaling events at the AT;R. Phospholipases C and D are sequen-
tially activated by heterotrimeric G-protein subunits to produce important second messengers
such as IP3 and DAG. See text for details. AT1R, angiotensin II type 1 receptor; DAG, diacyl-
glycerol; IP3, inositol 1,4,5-trisphosphate; PA, phosphatidic acid; PC, phosphatidylcholine; PIP,,
phosphatidylinositol-4,5-bisphosphate; PKC, protein kinase C; PLC, phospholipase C; PLD, phos-
pholipase D.
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of IP3 production. PLC-y is activated in a tyrosine kinase-dependent manner and re-
turns to baseline activity in 10 min (Ushio-Fukai et al. 1998b). Some evidence exists
to suggest the NRTK Src as the responsible tyrosine kinase in this step (Haendeler
et al. 2003). IP5 rapidly diffuses to the endoplasmic reticulum (ER) where it binds to
IP3 receptors to release calcium (Ca®") into the cytosol. In addition to IP3-triggered
release of Ca’* from intracellular Ca>* stores, sustained Ang II-induced vasocon-
striction depends on transmembrane Ca”* influx (Ruan and Arendshorst 1996). The
production of the membrane-bound DAG by Ang II is biphasic. The initial peak
at 15 sec results from hydrolysis of phosphoinositides by PLC, whereas the second
phase, which has its maximum at 5 min, results from phospholipase D (PLD) activa-
tion. G2 and Gy activate PLD through c-Src and RhoA-dependent mechanisms.
PLD remains active for at least 1 hour, splitting phosphatidylcholine into choline and
phosphatidic acid (PA) (Ushio-Fukai et al. 1999a), which is subsequently converted
to DAG. For this prolonged phase of DAG production, internalization of the ligand-
bound AT;R complex is required, implying that PLD activation occurs spatially
separated from the plasma membrane. DAG, in conjunction with phosphatidylser-
ine and Ca’*, subsequently activates protein kinase C (PKC). The early increase
in intracellular Ca>* stimulates the Ca>*/calmodulin-dependent myosin light chain
kinase to phosphorylate Ser!® of the myosin regulatory light chain (MLC) with sub-
sequent VSMC contraction through MLC interaction with actin. This process is im-
portantly modulated by the Ca>* sensitivity of the myofilaments, which is largely
determined by Rho-associated kinase (ROCK)-mediated inhibition of MLC phos-
phatase (Uehata et al. 1997).

In addition, Ang II rapidly phosphorylates and activates PLA; to produce arachi-
donic acid (Rao et al. 1994). Cytochrome P450 metabolites of arachidonic acid, such
as 20-hydroxyeicosatetraenoic acids (20-HETESs), have been implicated in vasocon-
striction in various vascular beds (Roman 2002).

Controlled relaxation following contraction is vital to the dynamic regulation of
blood vessel diameter and hence flow. Termination of Ang II signaling is achieved
by regulator of G-protein signaling-2 (RGS2). Ang II upregulates RGS2 mRNA in
a PKC-dependent manner thereby providing functional negative feedback (Grant
et al. 2000). RGS2-deficient mice have dramatically increased blood pressure due
to a prolonged response to Ang II in resistance vessels, as evidenced by the fact
that their hypertension is rapidly reversed by Ang II blockade (Heximer et al.
2003).

Cell Growth

Tissue growth is characterized by cellular hypertrophy with increased protein trans-
lation, and cellular hyperplasia (proliferation) with increased DNA synthesis, cell
cycle progression, and presumably inhibition of cell death pathways. This latter re-
sponse eventually depends on regulation of gene expression by transcription fac-
tors. Although extracellular signals regulating cell growth have classically been
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Fig. 5.3 Angiotensin II stimulates vascular smooth muscle cell growth.Growth-promoting effects
of Ang II are largely mediated by EGF-R transactivation and stimulation of tyrosine kinase signal-
ing cascades. See text for details. ADAM, a disintegrin and metalloproteinase; AT|R, angiotensin
II type 1 receptor; EGF-R, epidermal growth factor receptor; HB-EGF, heparin-binding epider-
mal growth factor; HSP, heat shock protein; JAK, Janus kinase; JNK, c-Jun NH;-terminal kinase;
PKC, protein kinase C; PI3K, phosphatidylinositol 3-kinase; PDK1, 3-phosphoinositide-dependent
kinase-1; ROS, reactive oxygen species.

considered to be mediated by growth factors and cytokines with activation of RTKs
and NRTKs, Ang II has been found to be a potent growth stimulus for VSMCs
(Figure 5.3). This is reflected by an increase in cell volume and protein content
(Berk et al. 1989; Geisterfer et al. 1988), whereas a proliferative effect of Ang II
has been found to be dependent on the cellular milieu (e.g., autocrine production
of transforming growth factor-f31 can suppress the hyperplastic response) (Gibbons
etal. 1992). Within 1 min of Ang II exposure, numerous cytosolic proteins have been
found to be tyrosine phosphorylated (Molloy et al. 1993). Furthermore, the growth-
promoting effects of Ang II were found to be abrogated by tyrosine kinase inhibitors
(Leduc et al. 1995). It is now well accepted that Ang II rapidly activates the MAPK
family, including c-Jun NHj-terminal kinase (JNK), also termed stress-activated
protein kinase, extracellular signal-regulated kinases (ERK, p42/44MAPKY] /2 and
p38MAPK " which are considered upstream mediators of transcription factors in-
volved in VSMC growth.

ERK1/2 activation by Ang II, which can be blocked by PLC inhibition, intra-
cellular Ca>* chelation, and tyrosine kinase inhibition, eventually proceeds through
a Ras-dependent pathway (Eguchi et al. 1996). One intermediate tyrosine kinase
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between AT|R and Ras is Src (Schieffer et al. 1996). Growth factor receptors,
which are typically RTKs such as EGF-R, characteristically propagate their sig-
nal to the small GTPase Ras via the GTP-exchange factor son of sevenless (SOS),
which forms multimeric signaling complexes with the receptor and adapter pro-
teins such as Grb2 and Shc. Importantly, it has been demonstrated that the atypical
PKC-( mediates Ang II activation of Ras, which seems to be a unique aspect of
the Ang II-induced response as compared to other growth factors (Liao et al. 1997).
Ang 11 induces EGF-R activation by an intracellular Ca’* — and reactive oxygen
species (ROS)-dependent mechanism, which has been termed EGF-R transactiva-
tion (Eguchi et al. 1998; Ushio-Fukai et al. 2001), and the EGF-R then acts as a
scaffold, mediating a number of downstream signaling molecules including phos-
phatidylinositol 3-kinase (PI3-K) and Akt. Src recruits another NRTK of the focal
adhesion kinase (FAK) family, called proline-rich tyrosine kinase (Pyk) 2, and af-
ter assembling a signaling complex, activates subtype ADAM17 of the a disintegrin
and metalloprotease (ADAM) family to release cell surface-bound EGF, which sub-
sequently activates its receptor (Eguchi et al. 1999; Ohtsu et al. 2006; Prenzel et al.
1999) and Ras. An important consequence of Ang II-induced ERK1/2 activation in
conjunction with PI3-K activity is an increase of protein translation by PHAS-1-
eukaryotic initiation factor-4E (Rocic et al. 2003).

Interestingly, EGF-R transactivation is only required for ERK1/2 and p3
activation, but not for JNK activation (Eguchi et al. 2001). A parallel and indepen-
dent mechanism of ERK1/2 activation by Ang II occurs via (3-arrestin-2 as men-
tioned above (Wei et al. 2003). Apoptosis signaling-related kinase (ASK) 1 is re-
quired for INK and p38MAPK activation (Tobiume et al. 2001), while JNK activation
also depends on Rho/ROCK activation and subsequent rac stimulation (Ohtsu et al.
2005). Activation of p38MAPK by Ang II leads to the stimulation of MAPKAPK-2,
heat shock protein-27 (HSP-27), and Akt (Taniyama et al. 2004), the latter of which
is crucial for VSMC hypertrophy.

JAKSs, which are classically activated by cytokine receptors, are upstream con-
trollers of the transcription factors signal transducers and activators of transcription
(STATSs), which in turn regulate transcription of early growth response genes such
as c-fos, c-myc, and c-jun (Horvath and Darnell 1997). JAK2 binding to Tyr>!® of
the ATR is facilitated by SH2 domain-containing tyrosine phosphatases (SHPs)
(Marrero et al. 1998).

Several aspects of the growth-promoting pathways have a special characteristic
of being ROS-dependent, which means that enzyme activity is susceptible to ox-
idation. In fact, many signaling proteins, such as transcription factors and protein
tyrosine phosphatases (PTPs), rely on reduced Cys residues for activity. Ang II
via its AT|R generates ROS via a membrane-bound multisubunit protein com-
plex, called NADPH oxidase (Nox) (Griendling et al. 1994). Arachidonic acid
metabolites play an important role in Nox activation (Zafari et al. 1999). ROS,
in turn, modify critical signaling cascades such as p38MAPK (Ushio-Fukai et al.
1998a). Several different isoforms of Nox have now been identified that differ
in subunit composition, subcellular localization, and probably type of ROS pro-
duced (Bedard and Krause 2007; Hilenski et al. 2004). Different ROS may have

8MAPK
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distinct vascular effects. For instance, vascular hypertrophy in Ang II-mediated
hypertension is mediated by VSMC-derived H,O», while a main effect of superox-
ide (O;") is to inactivate antiatherogenic NO (Rajagopalan et al. 1996; Zhang et al.
2005c).

Tissue growth also occurs through expansion of noncellular components.
Chronic Ang II stimulates collagen production (Kato et al. 1991). This observa-
tion is frequently referred to as transformation of VSMCs into a synthetic pheno-
type, which then produce proteoglycans, glycosaminoglycans, collagen type 1, and
fibronectin, all of which are constituents of the extracellular matrix. The synthetic
phenotype of VSMCs is predominant in hypertensive animals, whereas their nor-
motensive littermates contain more VSMCs of the contractile phenotype (Fukuda
et al. 1999). At the same time, VSMCs modulate extracellular matrix degradation
by activation of matrix metalloproteinases (MMPs). Extracellular matrix degrada-
tion is a prerequisite for cell migration on the one hand, but on the other it has been
implicated in plaque instability.

Cell Migration

Ang II-induced VSMC migration is strongly implicated in atherosclerosis and
restenosis after vascular injury, because abnormal accumulation of VSMCs in the
vessel intima entails movement out of the media (Prescott et al. 1991). It was sug-
gested that VSMCs migrate from the media to the intima as a result of a PDGF
gradient (Okuda et al. 1995). In vitro studies further confirmed that Ang II is also
capable of stimulating VSMCs to migrate, although less potently than PDGF (Bell
and Madri 1990), and that NO antagonizes this effect (Dubey et al. 1995). A role
for Ang II in the neointima formation of restenosis was suggested based on studies
showing that tissue ACE activity is elevated after vessel injury and that ACE in-
hibition can prevent restenosis (Rakugi et al. 1994), although the relevance of this
observation to human disease has been questioned.

Ang Il induces VSMC migration by recruiting growth pathways such as the EGF-
R-MAPK pathway (Saito et al. 2002; Xi et al. 1999). Additionally, cell migration
requires dynamic reorganization of the cytoskeleton and focal adhesion complexes,
a process that involves Src activity in VSMCs (Ishida et al. 1999). Ang II stimu-
lates the phosphorylation of FAK, Pyk2, and paxillin (Eguchi et al. 1999; Leduc
and Meloche 1995; Okuda et al. 1995), which regulate focal adhesion dynamics.
Together with Src, Pyk2 also leads to tyrosine phosphorylation of PDK1, which
is critical for focal adhesion assembly (Taniyama et al. 2003). JNK has emerged
as key mediator of cell migration through its interaction with these cytoskeleton
components and focal adhesion-associated proteins (Huang et al. 2003). The JNK
pathway can be activated by the small G-protein Rho and its effector ROCK through
PKC-% and Pyk2 (Ohtsu et al. 2005). Ang Il itself is a weak migratory factor, but im-
portantly, it enhances the ability of VSMCs to migrate toward PDGF-BB, possibly
by inducing focal adhesions (Dubey et al. 1995).
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Apoptosis

A specific suicide capability, apoptosis, allows tissues to regulate their own cell
number, which is an essential process in atherosclerosis and restenosis (Isner et al.
1995). Indeed, many growth-promoting factors have been found to also suppress
cell death, which may contribute to the deleterious accumulation of VSMCs in the
intimal space. Ang II, via its AT R, directly inhibits cGMP-induced apoptosis in
VSMC (Pollman et al. 1996) by upregulating an enzyme that degrades cGMP, phos-
phodiesterase SA (PDESA) (Kim et al. 2005a). Another mechanism by which Ang I1
exerts antiapoptotic effects is via stimulation of Noxes to generate HyO,, which in
turn stimulates antiapoptotic MAPK and Akt activity (Ushio-Fukai et al. 1999b).
Conversely, in addition to its antiapoptotic function, Ang II can cause a delayed
apoptosis in the epithelioid-shaped subtype of VSMC, which has been suggested
to contribute to locally heterogeneous plaque weakening and rupture (Bascands
et al. 2001). Apoptosis alone does not cause inflammation in normal arteries, but in
atherosclerotic lesions it does, leading to plaque vulnerability (Clarke et al. 2006).
Thus, apoptosis is considered both beneficial and detrimental.

Proapoptotic actions of Ang II seem to be mediated substantially by AT,>R ac-
tivation. It has been demonstrated in vivo that AT,Rs mediate negative vascular
remodeling by inducing VSMC apoptosis (Yamada et al. 1998). While ACE in-
hibitors (ACE-I) block this effect, AT|R blockers (ARBs) do not (Tea et al. 2000).
Interestingly, overexpression of the AT,R alone stimulates apoptosis in the absence
of Ang II (Miura and Karnik 2000). It has been found that PTPs like SHP-1 and
MAPK phosphatase (MKP)-1 are linked to the AT>R via Gi protein coupling to the
unique third intracellular loop of the receptor (Lehtonen et al. 1999); however, the
signaling pathways linked to the AT, R have not been well characterized yet.

Inflammation

Numerous studies have shown that VSMCs are capable of producing cytokines in
the vessel wall. Cytokines are considered the main modulators of inflammatory
events during atherogenesis. Ang II, like inflammatory cytokines, activates proin-
flammatory transcription factors (Brasier et al. 2000). The resulting inflammatory
gene products can be grossly subdivided into adhesion molecules, cytokines, and
acute phase reactants. The prototypical Ang II-inducible transcription factors, such
as AP-1, STATs, and nuclear factor-kB (NF-kB), are also known cytokine-inducible
transcription factors. Ang II dose-dependently stimulates interleukin-6 (IL-6) pro-
duction in cultured VSMC, which is accompanied by activation of NF-kB. Antiox-
idants reverse this effect, indicating a role for ROS (Kranzhofer et al. 1999). Ang Il
increases IL-6 expression as early as 15 min, peaking at 1 h and falling thereafter,
whereas NF-kB activation is biphasic with peaks at 15 min and 24h (Han et al.
1999). Cell cycle regulatory genes, like AP-1 and c-myc, are stimulated via the
AP-1 transcription factor (Naftilan et al. 1989; Taubman et al. 1989). Ang II also
stimulates transcription of intercellular and vascular adhesion molecules (ICAM,
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VCAM) in a NF-kB-dependent manner (Tummala et al. 1999). The link between
AT R and NF-kB activation involves direct phosphorylation of the p65 subunit of
NF-kB by ribosomal S6 kinase (RSK) and by IKK, and both pathways appear to be
redox-dependent (Zhang et al. 2005a,b).

In addition to NF-kB, Ang II-induced vascular inflammation is critically regu-
lated by the ETS family of transcription factors such as Ets-1. Systemic adminis-
tration of Ang II to Ets™/~ mice has been associated with a marked reduction in
medial hypertrophy and recruitment of inflammatory cells into the vascular wall
compared to that in wild-type mice, independent of the blood pressure effect (Zhan
et al. 2005).

It is therefore likely that the proinflammatory milieu in atherosclerotic lesions
is at least in part a consequence of Ang II-induced inflammatory gene expression.
Ang II-stimulated production of VCAM-1 and chemokine monocyte chemotactic
protein-1 (MCP-1) enhances leukocyte accumulation in the vessel wall. MCP-1 is
thought to function locally by establishing a chemical gradient to attract monocytes
and T lymphocytes expressing the CC chemokine receptor-2 (CCR2). It has been
found that C-reactive protein (CRP), a known systemic acute phase reactant, is syn-
thesized by VSMCs in response to inflammatory cytokines and Ang II (Peng et al.
2006). In turn, CRP upregulates AT R expression, creating a vicious cycle of proin-
flammatory signals. Furthermore, CRP has been established as useful biomarker for
cardiovascular risk stratification.

Physiological Vascular Functions

The main direct physiological function of Ang II in the vasculature is acute regula-
tion of vascular tone, thereby controlling blood flow to various vascular beds. The
classic RAS functions as an adaptive mechanism to maintain circulatory homeosta-
sis, regulating blood pressure acutely by vasoconstriction and chronically by releas-
ing aldosterone and expansion of intravascular volume. Effects of Ang II outside of
the vasculature include modulation of sympathetic tone and dipsogenic stimulation
to maintain vegetative autoregulatory functions of the vasculature. In the adult ves-
sel, VSMCs are present in the quiescent contractile phenotype until an insult triggers
a change in phenotype. Ang II seems to mediate this transformation, which may be
adaptive and beneficial in the short term, but in the long term sustains unfavorable
and unstable vessel architecture prone to increase the likelihood for adverse clinical
events.

Pathophysiologic Functions

Hypertension

Patients with essential hypertension can be divided into subgroups with low and
high plasma renin activity, with distinct pathophysiological features. Low-renin or
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Fig. 5.4 Angiotensin II mediates multiple physiological and pathophysiological responses in the
vessel wall.The vessel wall undergoes numerous structural and functional changes mediated by the
AT/R, all of which are considered proatherogenic once physiological thresholds are crossed. See
text for details. Ang II, angiotensin II; EC, endothelial cell; MC, monocyte/macrophage; MMP,
matrix metalloprotease; NO, nitric oxide; PAI-1, plasminogen activator inhibitor-1. ECM, extra-
cellular matrix; ROS, reactive oxygen species.

renin-independent hypertension is characterized by salt-sensitivity, good response
to diuretics, and familial aggregation (Fisher et al. 2002). Blockage of the RAS is
most effective in hypertensives with high plasma renin activity, whereas it has only
limited effectiveness in low-renin states. Patients with hypertension have a multitude
of structural and functional disturbances affecting all compartments and cell types
of the vascular wall. In particular, increased media thickness has been consistently
found in vessels of hypertensive animals and can be attenuated by Ang II inhibition
(Rizzoni et al. 1998). This increased media thickness is due in part to hypertrophy of
the VSMCs themselves, but also to an increased production of extracellular matrix
(Lee 1987). As described above, Ang II has the potential to increase both of these
components by its effects on VSMC growth and synthetic capacity (Figure 5.4).
In addition to these trophic effects on the vessel wall implicated in chronic hyper-
tension, prolonged contraction of resistance arteries (as illustrated above for the
RGS,” mouse) and endothelial dysfunction are additional mechanisms of hyper-
tension linked to RAS activity. Ang Il-induced O,  from VSMC Nox enzymes
reacts with endothelial-derived NO leading to impaired endothelial-dependent va-
sorelaxation (Rajagopalan et al. 1996). Aside from the vessel wall, Ang II also acti-
vates Noxes in various other tissues. Recently, it has been shown that activation of
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circulating T cells is essential for Ang II-induced hypertension, implying that cir-
culating cells may provide a link to this widespread pattern of Nox activation and
ROS production in various tissues and organs (Guzik et al. 2006).

Metabolic Syndrome/Insulin Resistance

Based on the clinical observation that essential hypertension and insulin resistance
often coexist, it has been suggested for some time that both entities share com-
mon pathogenetic links. The Atherosclerosis Risk in Communities (ARIC) study
showed that hypertensive patients are much more likely to develop type 2 diabetes
(DM2) than their normotensive peers (Gress et al. 2000). Intriguingly, inhibition of
the RAS appears to reduce new onset of DM2 (Yusuf et al. 2000), suggesting a role
for Ang II in insulin resistance. Furthermore, diabetic patients benefit overpropor-
tionally from RAS inhibition as these agents reduce diabetic nephropathy as well
as microvascular and macrovascular complications. Aside from direct functions of
Ang II on the endocrine pancreas like control of local blood flow, hormone release,
and prostaglandin synthesis, there is substantial evidence that Ang II cross-talks
to insulin signaling in VSMCs. Interplay of these two important hormones at the
level of VSMCs is an attractive hypothesis for accelerated atherosclerosis found in
patients with DM2 or insulin resistance. Observations made in vitro suggest that
Ang II stimulation of VSMCs leads to serine phosphorylation of the insulin recep-
tor substrate-1, which has been implicated in its premature degradation (Taniyama
et al. 2005). Of note, Ang Il modulates insulin signaling at multiple levels by serine
phosphorylating not only insulin receptor substrate-1, but also the insulin receptor
and PI3-K (Folli et al. 1997). In addition, Ang II downregulates the vascular ex-
pression of PPARys (Tham et al. 2002), which are nuclear hormonal receptors and
transcription factors that promote beneficial effects on lipid metabolism, insulin sen-
sitivity, and atherosclerosis development. Moreover, they exhibit anti-inflammatory
properties by negatively modulating inflammatory gene expression. It is noteworthy
that certain ARBs have been shown to directly and ATR-independently activate
PPARys in adipocytes, which has been suggested as a mechanism for the insulin-
sensitizing/antidiabetic effect of certain ARBs (Schupp et al. 2004).

Atherosclerosis

The development of atherosclerotic lesions involves migration and proliferation of
VSMCs. Essentially all of the above-mentioned chronic effects of Ang II on the vas-
culature are therefore considered atherogenic. While the initiating event for athero-
genesis remains elusive, it is clear that a subsequent change in VSMC phenotype
maintains disease progression. As opposed to the concentric medial thickening ob-
served in hypertension, atherosclerosis results from the buildup of focal or diffuse



5 Angiotensin II Signaling 107

lipid-laden and fibroproliferative plaques in the vessel intima with subsequent nar-
rowing of the vessel lumen. Prior to formation of a plaque, endothelial dysfunction
and upregulation of adhesion molecules occurs in atherosclerosis-prone vascular
segments (Nakashima et al. 1998). Ang II induces expression of adhesion mole-
cules promoting monocyte invasion into the vasculature. In addition, Ang II not
only induces expression of the oxLDL receptor (LOX-1) on macrophages with sub-
sequent macrophage activation, but it also provides the basis for LDL oxidation by
stimulating the production of ROS by VSMCs (Griendling et al. 2000). Not surpris-
ingly, Ang II infusion into apoE~/~ mice significantly enhances atherosclerotic
lesion progression independent of its effect on blood pressure (Weiss et al. 2001).
Conversely, Ang II inhibition is known to reduce atherosclerotic lesion formation
(Daugherty et al. 2000).

Furthermore, Ang II has been found to contribute to VSMC senescence, which
has been implicated in the pathogenesis of atherosclerosis (Kunieda et al. 2006).
Cell senescence may promote plaque instability, since loss of VSMCs leads to trans-
formation into a rupture-prone plaque with a thin fibrous cap over the lipid-rich core
(Geng and Libby 2002).

Conclusion

Increased RAS activity has emerged as a key mechanism in the pathogenesis of
highly prevalent vascular diseases such as hypertension and atherosclerosis. It is
therefore vital to understand mechanisms of local Ang II production, Ang II respon-
siveness, as well as its signaling pathways in normal and disturbed vascular cell
function, particularly in VSMCs, the most abundant cell type in the vessel wall. The
cellular events initiated by Ang II binding to its AT{R are complex, with distinct
temporal and spatial characteristics, and are far from completely understood. More-
over, cross-talk between the RAS and other metabolic systems such as lipoproteins
and insulin may explain common pathogenetic links for cardiovascular diseases.
Thus, advancing our knowledge of Ang II signaling in cardiovascular disease bears
enormous potential in identifying novel targets for pharmacologic intervention.
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