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Unstable angina pectoris (UA) is one of the most dangerous clinical symptoms of acute
coronary syndrome due to the risk of myocardial ischemia, which can lead to high mor-
bidity and mortality worldwide. Though there are many advantages in understanding the
pathophysiology of UA, the identification of biomarkers for the diagnosis, prognosis, and
treatment of UA remains a challenge in the clinic. A global metabolomics research based on
ultra-performance liquid chromatography (UPLC) combined with Q-TOF/MS was performed
to discover the metabolic profile of health controls, UA patients, and UA patients with dia-
betes mellitus (DM), and screen for potential biomarkers. Twenty-seven potential biomarkers
were determined using pattern recognition. These biomarkers, which include free fatty acids,
amino acids, lysoPE and lysoPC species, and organic acids, can benefit the clinical diag-
nosis of UA. Pathway analysis indicated that arginine and proline metabolism, glycerophos-
pholipid metabolism, and purine metabolism were affected in the UA patients, uniquely. Ad-
ditionally, alterations in the metabolic signatures between UA and UA-complicated DM were
also explored. As a result, six differential metabolites with an area under the curve (AUC) of
more than 0.85 were identified as biomarkers for the diagnosis of UA and UA complicated
with DM. Pathway analysis implied tryptophan metabolism was a key metabolic pathway
in UA patients with DM, which provides new insights into the pathological study and drug
discovery of UA.

Introduction
Unstable angina pectoris (UA), is a clinical manifestation of acute coronary syndrome (ACS), which
presents as ST-segment elevation myocardial infarction (STEMI) or non-STEMI (NSTEMI). Resulting
from platelet adhesion due to the rupture of fibrous plaques on the surface of the atheroma, UA occurs
secondary to acute exacerbation of coronary occlusion. Compared with stable angina, UA is more painful
with longer episodes, occurs spontaneously at rest (onset angina) and more frequently, which is also a
progressively worsening disorder [1,2]. However, the current diagnosis of UA depends on symptoms in-
terpreted by patients. These symptoms include dyspnea, vomiting, sweating, fatigue, dizziness or sudden
weakness, and pain or pressure in the chest, neck, jaw, abdomen, back, shoulders, or arms. Unlike other
angina patterns, the above symptoms, which usually appear at rest, suddenly become more frequent or
prolonged in UA patients, and do not change with rest or nitroglycerin. Besides, the release of myocar-
dial necrosis enzymes during the progress is hardly detected [3].In addition, the patient’s case history
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and diagnosis are generally considered to be more sensitive and specific to UA than physical examination for diagno-
sis, and resting 12-lead electrocardiography (ECG) has been applied to evaluate the patient’s vital signs and symptoms
and perform a cardiac classification for several years. Therefore, more effective and objective diagnosis methods are
desperately needed for UA patients on a global scale. Despite more than a century of extensive research, the molecular
pathophysiological process highlighting this complex ACS remains unclear.

Metabolomics has its advantages in high throughput metabolite analysis and is feasible to apply in disease diagnosis
and mechanism research. Integrating bioinformatics and biostatistics, metabolomics enables the quantification and
identification of biological molecules to explore the response in an organism to a disease [4]. Previous studies have
demonstrated that decreasing endogenous antioxidant defenses and increasing production of reactive oxygen species
are common features in UA patients [5]. Recent studies indicated that UA is a global metabolic disturbance rather
than a disturbance of individual biomarkers, which suggests the need for an integrated understanding of the role
of metabolites in its pathophysiology [6]. Therefore, metabolomics is the most effective approach to describe the
metabolic patterns, which have the potential ability to identify patients at risk of developing unstable coronary artery
disease (CAD).

Diabetes mellitus (DM), which can aggravate the deterioration of cardiac function, is one of the main complica-
tions of UA. Distinguishing the features of UA from the features of UA complicated with DM will have a benefit on
the precision treatment of UA and slowdown the progression of UA. However, little attention has been given to the
identification of biomarkers and pathological metabolisms of UA complicated with DM. Therefore, in the present
study, the biomarkers of UA and UA complicated with DM were identified based on global metabolomics. Further-
more, the metabolic differences between UA and UA complicated with DM were also investigated systematically. The
results of the present study will assist in the diagnosis of UA and UA complicated with DM in the clinic, and provide
further understanding for the pathophysiologic process of UA from the initial occurrence through progression.

Materials and methods
Demographic baseline features
The protocol of the present study was approved by The Ethical Committee of Beijing University of Chinese Medicine
(No. 81302914), and informed consent of the protocol was obtained from all participants. Patients (n = 40) were
recruited from the Beijing Anzhen Hospital and were diagnosed with UA between January 2016 and September 2016.
The diagnostic criteria of UA included: (1) severe and newly developed angina; (2) angina pectoris occurs at rest or
with minimal exertion; and/or (3) angina with crescendo pattern. Healthy controls (n = 39) were recruited from the
medical center of an affiliated hospital of the Beijing University of Chinese Medicine. The exclusion criteria included
liver disease, vascular disease, cancer, thyroid disease, renal disease, and acute/chronic inflammatory disease. The
patient and control participants in the present study were well-matched, and the detailed information is shown in
Table 1.

Materials
HPLC-grade methanol and acetonitrile were purchased from Burdick & Jackson (USA). Formic acid (98%) was pur-
chased from Sigma-Aldrich (USA). Ultrapure water was prepared from the Milli-Q system (Millipore, USA).

Plasma collection and preparation
The blood samples from the participants were collected on the same day of inclusion. Patient information, including
gender, age, electrolyte, ejection fraction, creatinine, BNP, hemoglobin, urea, fasting blood glucose, platelet count,
high-sensitivity C-reactive protein (hs-CRP), triglyceride, total cholesterol, and medication, was recorded at inclu-
sion. Associated diabetes, dyslipidemia, or hypertension were also added to the patient record. The venous blood
of the participants was collected with EDTA as an anticoagulation and centrifuged at 3500 rpm for 15 min. Plasma
samples were divided into equal aliquots and stored at −80◦C. The plasma samples went through no more than two
freeze-thaw cycles before metabolomics analysis.

The metabolites extraction was performed following a previous protocol with some modifications [7–9]. An aliquot
of 150 μl from each plasma sample was extracted with 750 μl of precooling methanol and vortexed thoroughly for 3
min. Subsequently, let the mixture stand for 20 min. After centrifuging at 14,000 rpm for 20 min at 4◦C, the upper layer
(500 μl) was collected, dried by nitrogen, and then reconstituted with 150 μl of 5% acetonitrile. After centrifuging at
14000 rpm for 20 min, the supernatant was collected for LC–MS analysis.
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Table 1 Basic information of clinical patient samples

Cases UA (n =
39) SD Range

Controls (n =
40) SD Range P-value

Age 43 7 25–70 45 4 23–65 0.12

Sex 19:20 18:22 0.74

Canadian
Cardiovascular
Society

Class 2 N/A

Coronary artery
stenosis:
non-stenosis

29:10 N/A

BMI(mean) 25 3 17–33 21 2 18–25 0.54

Smoker:
non-smoker

18:21 N/A

Complication

Hyperlipidemia:
non-hyperlipidemia

21:19 N/A

Hypertensive:
non-hypertensive

6:33 N/A

DM: non-DM 5:34 N/A

Physical
Chemistry Index

Na+ (mean) 139 4 126–145 141 2 139–146 0.05

K+ (mean) 4 1 1.5–4.5 4 0 2.1–4.3 0.05

Urea (mean) 7 2 3–14 6 1 4–8 0.13

Creatinine (mean) 101 32 43–229 67 13 52–95 0.01

Hemoglobin (mean) 125 21 76–165 120 29 68–148 0.38

C-reactive protein
(mean)

6.17 2 4.33–10.56 N/A

Drug information

β-blockers Y:N 14:25 N/A

ACE inhibitors Y:N 12:27 N/A

Nitroglycerin Y:N 38:1 N/A

Aspirin Y:N 33:6 N/A

Clopidogrel Y:N 23:16 N/A

Herb Medcine Y:N 38:1 N/A

CCB Y:N 10:29 N/A

Plasma metabolite analysis
Plasma metabolites were acquired using Agilent 1290 ultra-performance liquid chromatography (UPLC) equipped
with 6540 Q-TOF/MS. Zorbax Eclipse plus C18 chromatography column (1.8 μm, 3.0 × 100 mm; Agilent) was
adapted for chromatography separation. Acetonitrile (solvent B) and water (solvent A) with 0.1% formic acid were
used as the mobile phase with a gradient program as follows: 0–2 min, 5% B; 2–4 min, 5% B to 40% B; 4–5 min, 40
to 50% B; 5–10 min, 50% B; 10–15 min, 50 to 70% B; 15–19 min, 70 to 80% B. The flow rate was 0.8 ml/min, and
the injection volume was 5 μl. The column temperature was 40◦C. MS was performed in ESI and positive ion mode.
The MS parameters were as follows: the mass range was from 100 to 1700; voltage was 3.5 kV; dry gas flow rate was 5
l/min; nebulizer gas was set at 40 psig; capillary temperature was 350◦C; internal reference was used for the real-time
correction to ensure the stability and accuracy of instrument. Quality control (QC) samples were obtained by pooling
20 μl aliquots of all plasma samples for assessing the quality of the metabolomics workflow. All of the samples were
analyzed randomly.

Data processing
XCMS online [10] (https://xcmsonline.scripps.edu) was applied for data preprocessing. First, the raw data from the
MS were converted to mzData files and then analyzed using XCMS. The important XCMS parameters are shown be-
low: polarity, positive mode; retention time format, 60 min; ppm, 30; minimum peak width and maximum peak
width, 10 and 60, respectively; signal/noise threshold, 6; mzdiff, 0.01; prefilter intensity, 500; and profStep, 0.5.
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Figure 1. Pattern recognition results of patients with UA and control subjects

(A) PCA-DA result, R2X = 0.72, Q2 = 0.713; (B) OPLS-DA scatter plot, R2X = 0.72, R2Y = 0.997, Q2 = 0.977; (C) Permutation

validation plots.

Metabolomics data were preprocessed through peak discrimination, filtering, and alignment, and normalized us-
ing probabilistic quotient normalization (PQN), log transformation, and Pareto scaling based on MetaboAnalyst 3.0
[11] (http://www.metaboanalyst.ca/MetaboAnalyst/). Pattern recognition was performed using orthogonal partial
least squares discriminant analysis (OPLS-DA) with SIMCA-P 13.0 software (Umetrics, Sweden). Significance anal-
ysis was performed on SPSS Statistics17.0 software. Heatmap of specific differential metabolites was visualized using
MeV software, and the classification performance (specificity and sensitivity with the highest accuracy) was assessed
by the receiver operating characteristic (ROC) curve based on the SPSS 17.0 statistics software.

Metabolic pathway and network analysis
Additionally, MetaboAnalyst 3.0 was used for metabolic pathway analysis. Other open databases, including Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Human Metabolome Database (HMDB), were applied for re-
lated metabolic pathways analysis. Metscape, a plug-in for Cytoscape [12], was applied to visualize and elucidate the
metabolic network of specific differential metabolites.

Results
Global pattern analysis of plasma metabolites
The metabolic disturbances in UA patients were analyzed using a global metabolomics strategy. Obvious chromato-
graphic differences were observed in the control, UA, and UA with complicated DM. The QC results, which indi-
cated that the method was reliable, are shown in Supplementary Figure S1. Variables with coefficient of variation
percent (CV%) more than 30% in each group were removed from further statistical analysis. For detecting subtle
metabolomics differences between UA patients and the healthy controls, PCA-DA and OPLS-DA were performed as
pattern recognition methods to discriminate between the above two groups (Figure 1A,B). The OPLS-DA score plot
shows that there were great discrepancies between the UA patients and healthy controls (R2X = 0.72, R2Y = 0.997,
Q2 = 0.977), which verifies the validity of the original mode. A response permutation test with 200 iterations was
adopted to avert over fitting of the OPLS-DA model (Figure 1C).
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Table 2 Candidate biomarkers of patients with UA and control subjects screened by OPLS-DA (VIP value > 1.0)

Identification HMDB IDs m/z Formula �ppm P-value
Fold
change VIP values

Methyl-hexadecanoic acid HMDB61859 271.2631 C17H34O2 0 1.12E-27 0.41 1.9363

Cystinylglycine HMDB00709 315.0799 C8H15N3O5S2 2 1.94E-30 1.80 1.8903

Propionylglycine HMDB00783 132.0654 C5H9NO3 0 4.26E-08 1.22 1.81453

2(5H)-Furanone HMDB32330 102.0548 C4H7NO2 1 1.45E-13 1.80 1.88709

4-Methylphenyl octanoate HMDB37710 235.1691 C15H22O2 0 3.91E-33 2.88 1.65923

Creatinine HMDB00562 114.0661 C4H7N3O 0 2.40E-26 2.39 1.66512

4-Methylene-L-glutamate HMDB29433 160.0603 C6H9NO4 0 1.08E-30 2.27 1.54896

12-Methyl-tridecanoic acid HMDB31072 246.2429 C14H28O2 0 2.23E-21 2.54 1.53262

5-Hydroxy-hexadecanoic acid HMDB0112184 290.2689 C16H32O3 0 7.54E-19 2.23 1.73917

Hydroxystearic acid HMDB62549 318.3003 C18H36O3 0 7.95E-14 1.91 1.91949

Acetylcypholophine1 C10564 378.2406 C20H28N2O4 4 2.89E-23 6.66 1.54375

LysoPC(18:2) HMDB10386 542.3215 C26H50NO7P 0 1.44E-16 14.9 1.58752

Phosphocholine HMDB01565 184.0733 C5H14NO4P 0 1.46E-21 0.28 1.56932

LysoPE(20:4) HMDB11518 502.2928 C25H44NO7P 0 4.90E-20 7.36 1.56313

LysoPE(22:6) HMDB11526 526.2928 C27H44NO7P 0 1.23E-12 4.35 1.59866

LysoPC(20:4) HMDB10395 544.3399 C28H50NO7P 0 1.98E-15 7.36 1.58752

LysoPE(0:0/18:2) HMDB11477 478.2923 C23H44NO7P 1 1.01E-14 78.9 1.72129

(S)-2-Methylbutanal HMDB31525 104.1069 C5H10O 0 2.11E-16 2.97 1.90524

LysoPC(22:6) HMDB10404 568.3399 C30H50NO7P 0 5.36E-12 4.35 1.90152

LysoPC(20:3) HMDB10394 546.3552 C28H52NO7P 0 1.57E-13 10.7 1.74299

LysoPC(22:5) HMDB10403 570.3555 C30H52NO7P 0 2.95E-13 9.55 1.52973

LysoPE(0:0/18:1) HMDB11476 480.3083 C23H46NO7P 0 5.59E-22 0.07 1.5225

PC(0:0/18:1) HMDB62651 522.3547 C26H52NO7P 1 1.79E-30 0.07 1.62132

Acetylcarnitine HMDB00201 204.0599 C9H17NO4 0 2.32E-06 0.73 1.87673

Myristicic acid HMDB30800 219.0243 C9H8O5 8 1.15E-07 1.47 1.51825

Uric acid HMDB00289 169.0337 C5H4N4O3 0 1.02E-07 0.67 1.5791

Cycloleucine HMDB62225 130.0861 C6H11NO2 1 0.02068 0.96 2.1655

1KEGG ID, for the metabolites that have no HMDB ID.

Potential biomarkers identification of UA patients and healthy controls
Screening for candidate biomarkers remains a great challenge in improving UA clinic diagnosis and evaluating
the therapeutic effect in future. In the present study, an OPLS-DA model was employed to explore the intrinsic
differences between the UA patients and healthy controls and identify the potential biomarkers. As presented in
Figure 1B, the OPLS-DA scatter plot shows a division between UA patients and healthy controls with a clear sepa-
ration. Twenty-seven metabolites, including mostly of amino acids, lysophosphatidylcholine (lysoPC) and lysophos-
phatidylethanolamine (lysoPE) species, organic acids, and free fatty acids (FFAs), were detected as potential biomark-
ers for assisting the clinic diagnosis of UA, according to their variable importance of projection (VIP) values (VIP>1)
and the Mann–Whitney U test (P< 0.05) (Table 2). Heat maps in Figure 2A illustrate the discriminative ability of each
biomarker. UA is a complex holistic disorder involving many metabolites and biochemical pathways; thus, multiple
biomarkers could be more powerful for diagnosis and exploring the metabolic mechanism of UA.

Pathway analysis and network construction
Metabolic pathway analysis has practical significance for systematically evaluating the metabolic status of disease and
revealing the related metabolic functions. This analysis indicated that three pathways were found to be obviously
affected in UA patients, including glycerophospholipid metabolism, arginine and proline metabolism, and purine
metabolism. The detailed results of this pathway analysis are shown in Table 3. A disease metabolic network can
display the complex interaction between genes, proteins, metabolites, and drugs. In the present study, the metabolic
network of UA was reconstructed according to the potential biomarkers of UA patients by Cytoscape (Figure 2B).
There were 75 nodes and 78 edges in the UA-related network, and the network density and heterogeneity were 0.028
and 1.137, respectively. These results indicated that UA is a network phenomenon. Constructing UA-related metabolic
networks may have a high intrinsic potential for disease diagnosis and drug discovery in the future.
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Figure 2. Biomarker identification and pathway analysis

(A) Heat map of potential biomarkers obtained based on peak intensity; (B) Disease network construction.

Table 3 Results of pathway analysis

Pathway
Match
status Metabolites Raw p -log(p)

Holm
adjust FDR Impact

Glycerophospholipid metabolism 2/39 Phosphocholine,
LysoPC(18:2)

2.37E-44 1.00E+02 7.12E-44 7.12E-44 0.05

Arginine and proline metabolism 1/77 Uric acid 1.36E-32 7.34E+01 2.72E-32 2.04E-32 0.01

Purine metabolism 1/92 Creatinine 6.11E-02 2.80E+00 6.11E-02 6.11E-02 0.01

Figure 3. Biomarkers identification and validation of UA and UA complicated with DM

(A) OPLS-DA scatter plot, R2X = 0.268; R2Y = 0.981; Q2 = 0.817; (B) Evaluation of potential biomarker based on ROC analysis.

Alteration in metabolic signature between UA and UA complicated DM
DM, which aggravates the deterioration of cardiac function, is one of the most common complications in CAD and
also a risk factor for UA. UA complicated with DM is more likely to progress to a myocardial infarction; therefore,
prevention and treatment are particularly important. In the present study, the differential metabolism between UA
and UA complicated with DM has been explored, providing valuable references for clinical diagnosis and precise
treatment. Similar to UA, the potential metabolic biomarkers between UA and UA complicated with DM were identi-
fied through OPLS-DA pattern recognition (Figure 3A). Statistical analysis determined a distinct separation between
UA patients and UA complicated with DM (R2X = 0.268, R2Y = 0.981, Q2 = 0.817). The characteristic biomarkers of
UA complicated with DM are listed in Table 4, and the biomarkers, which may be helpful to improve the diagnosis of
UA complicated with DM, are visualized in the box plots in Supplementary Figure S2. There were 22 biomarkers that
were different between UA and UA complicated with DM, including eight upregulated metabolites and 14 downreg-
ulated metabolites. The box plot shows that (E)-10,11-dihydro-alpha-atlantone, 2-heptoxyethanethiol, D-fuconate,
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License 4.0 (CC BY).



Bioscience Reports (2019) 39 BSR20181658
https://doi.org/10.1042/BSR20181658

Table 4 Candidate biomarkers of patients with UA and UA complicated with DM

Identification HMDB IDs m/z Formula P-value
Fold
change VIP values

Creatinine HMDB00562 114.066 C4H7N3O 2.03E-08 0.81 2.48247

Cycloleucine HMDB62225 130.0861 C6H11NO2 1.35E-05 0.42 2.09198

Myristicic acid HMDB30800 219.0245 C9H8O5 3.12E-04 1.28 1.89559

Acetylcarnitine HMDB00201 204.1229 C9H17NO4 1.67E-03 1.29 1.61667

Uric acid HMDB00289 169.0355 C5H4N4O3 5.56E-05 0.75 1.73531
12-Hydroxy-cis-hex-2,4-dienoate C11354 151.0366 C6H8O3 4.84E-06 0.83 2.04841

2-Heptoxyethanethiol HMDB32380 185.0991 C8H18OS 3.01E-07 2.11 2.64919

(E)-10,11-Dihydro-alpha-atlantone HMDB36201 241.1563 C15H22O 8.30E-06 1.89 2.17376
1Hexadecasphinganine C13915 274.2757 C16H35NO2 9.33E-09 0.76 2.5634

16-Oxo-palmitate C19614 288.2556 C16H30O3 8.76E-06 0.74 2.11338
2PS(O-18:0/0:0) LMGP03060002 512.3375 C24H50NO8P 7.00E-07 2.04 2.47083
1D-Fuconate C01680 203.0538 C6H12O6 6.57E-04 1.49 1.86809
29Z,11E,13-Tetradecatrienal LMFA06000182 229.1563 C14H22O 1.165E-03 0.82 1.52906

Indole HMDB00738 118.0659 C8H7N 0.76E-03 0.80 1.84156

3-Methylindole HMDB00466 132.0817 C9H9N 1.14E-03 0.82 1.81453

Indoleacrylic acid HMDB00734 188.0715 C11H9NO2 1.38E-03 0.81 1.73732

L-Tryptophan HMDB00929 205.0983 C11H12N2O2 3.45E-03 0.84 1.57986
1N-Acetyldemethylphosphinothricin C17949 227.0807 C6H12NO5P 3.79 E-03 1.35 1.8096
2Palmityl acetate LMFA07010379 285.2808 C18H36O2 1.74 E-03 0.76 1.74697

12-Methyl-tridecanoic acid HMDB31072 246.2447 C14H28O2 6.01E-03 1.16 1.53262

Myristic aldehyde HMDB34283 230.2497 C14H28O 4.95E-06 0.86 1.65054
1Etherolenic acid C16319 310.2375 C18H28O3 4.44E-08 0.88 1.8903

1KEGG ID, for the metabolites that has no HMDB ID.
2LipidMaps ID, for the metabolites that has no HMDB ID and KEGG ID.

Table 5 ROC analysis results of candidate biomarkers of patients with UA and UA complicated with
DM

Variable(s) AUC
Std.
error

Asymptotic 95%
confidence Interval Sensitivity Specificity
Lower Upper

1-Phenyl-2-pentanol 0.96 0.03 0.00 1.00 0.90 0.95

Creatinine 0.95 0.04 0.00 1.00 0.95 0.90

C16 Sphinganine 0.95 0.03 0.00 1.00 0.90 0.90

Cycloleucine 0.88 0.05 0.77 0.98 0.90 0.70

16-Oxo-palmitate 0.87 0.05 0.76 0.97 0.75 0.85

2-Hydroxy-cis-hex-2,4-dienoate 0.85 0.06 0.73 0.97 0.85 0.75

Etherolenic acid 0.82 0.07 0.69 0.96 0.80 0.80

Uric acid 0.81 0.07 0.67 0.96 0.75 0.90

Indole 0.81 0.07 0.67 0.94 0.70 0.85

3-Methylindole 0.81 0.07 0.67 0.94 0.80 0.75

Indoleacrylic acid 0.80 0.07 0.66 0.93 0.85 0.65

Palmityl acetate 0.80 0.07 0.65 0.94 0.80 0.75

Myristic aldehyde 0.78 0.07 0.64 0.93 0.65 0.85

L-Tryptophan 0.76 0.08 0.61 0.91 0.75 0.70

PS(O-18:0/0:0), and myristicic acid were the main upregulated biomarkers, while hexadecasphinganine and creati-
nine were the main downregulated ones. To our knowledge, this is the first report of biomarkers screened for UA and
UA complicated with DM, which could accelerate the precision medicine process. The diagnostic performance of each
metabolite was evaluated using a ROC curve. Area under the curve (AUC) values with 95% confidence interval, sen-
sitivity, and specificity are shown in Figure 3B and Table 5. Six out of twenty-two differential metabolites achieved an
AUC of more than 0.85 with high sensitivity and specificity. As a result, creatinine, cycloleucine, 1-phenyl-2-pentanol,
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License 4.0 (CC BY).

7



Bioscience Reports (2019) 39 BSR20181658
https://doi.org/10.1042/BSR20181658

C16 sphinganine, and 16-oxo-palmitate have the potential to be non-invasive diagnosis metabolites of UA and UA
complicated with DM.

A metabolic pathway analysis was performed using the above 22 biomarkers, and three distinctive pathways were
discovered for UA complicated with DM, including arginine and proline metabolism, purine metabolism, and tryp-
tophan metabolism. Compared with the three pathways of UA, arginine and proline metabolism, purine metabolism
were indicated as significant in UA and UA complicated with DM. Of the pathways, glycerophospholipid metabolism
has a greater impact on UA patients and tryptophan metabolism has a greater impact on UA patients with DM. This
is the first study identifying tryptophan metabolism as a critical pathway in UA complicated with DM, which will
initiate further research revealing the related mechanisms.

Discussion
Up to now, the clinical diagnosis of UA has been a challenge for the prevention and treatment of CAD. Meanwhile,
advanced understanding of the metabolic alteration that occurs in CAD patients with complications is quite urgent.
For example, DM is known to increase the severity of heart function. In the present study, a UPLC-QTOF/MS-based
global metabolomics approach was performed on the plasma of patients with UA and UA complicated with DM to
screen for potential biomarkers and reveal the pathways associated with those diseases. Additionally, the present study
filled a gap in understanding UA complicated with DM and provided new insights into the biological mechanisms
surrounding this disorder.

Plasma metabolomics data demonstrated that specific metabolites exhibited various patterns between UA and UA
complicated with DM. Rather than evaluating the diagnostic performance of the metabolomics results, the critical
metabolites discriminating patients with UA, UA complicated with DM, and healthy controls were identified. Ulti-
mately, 27 biomarkers in UA patients and 22 biomarkers of UA complicated with DM were determined, which has
great advantages in visualizing the metabolic differences between UA and UA with complications, and improving the
diagnostic performance of our model. Six common biomarkers, including creatinine, 12-methyl-tridecanoic acid,
acetylcarnitine, myristicic acid, uric acid, and cycloleucine, were identified between the two groups. Based on our
analysis in the present study, it is reasonable to believe that the expression changes of these six metabolites have a
vital impact on the onset and development of UA. Noteworthy, creatinine is phosphorylated to phosphocreatine in
muscles, which is the most common indicator of renal function [13,14]. Additionally, an elevated creatinine con-
centration has been associated with the order of severity in CAD patients, which also indicates a physiological state
that is energy-depleted [15,16]. Our data also illustrate this point. Moreover, high uric acid concentration is a risk
factor for both cardiovascular disease and abnormal glucose tolerance, which is affected by various complications of
metabolic syndrome [17].Meanwhile, lipid oxidation metabolism, which accounts for most of the altered metabolites
in the present study, correlates with the production of oxidized low-density lipoproteins (ox-LDL) and inflammatory
conditions in UA. In LDL particles, circulating lysoPC constitutes about 1–5% of the total phosphatidyl choline (PC).
Moreover, during the LDL oxidation process, about 50% of PC is converted to lysoPC and FFAs by phospholipase a2
(PLA2) [18,19]. Circulating lysoPC has proatherogenic effects on monocyte recruitment, macrophage proliferation,
smooth muscle cell proliferation, and endothelial dysfunction; thus, it has been regarded as one of most significant
underlying pathogenic factors for atherosclerosis [20,21]. Increasing lysoPC is a metabolic feature during the ox-
idative changes found in CAD patients, which is consistent with previous study [20,22]. In our perspective, these
potential biomarkers could guide clinical practice. The disturbances of the metabolic pathway, which was beneficial
to identify the early stage of diagnosis, explore pathological mechanism, and discover new drugs.

In addition, metabolic pathways are modified by a series of enzymatic reactions, which participate in specific bi-
ological processes. Many diseases are proven to be network phenomena, and a metabolic network could help to de-
scribe the complex relationship among various kinds of metabolites, contributing to drug discovery. Here, MetPA
and Metscape were used to reveal the pathways related to UA and UA complicated with DM, and construct metabolic
networks separately. The pathway analysis indicated that arginine and proline metabolism, purine metabolism, and
tryptophan metabolism were the distinctive pathways of UA complicated with DM. It is worth noting that trypto-
phan metabolism is a typical metabolic pathway of UA complicated with DM. Therefore, the key metabolites and
enzymes in the tryptophan metabolism pathway were investigated systematically; the detail information is shown
in Figure 4. The tryptophan metabolism pathway mainly contained two main metabolic patterns: an indole ring
maintained to form indoles and tryptophan oxidation to form kynurenine. The quantitative results of the biomark-
ers in Table 4 showed that tryptophan and the indole metabolites (indole, 3-Methylindole, indoleacrylic acid) were
down-regulated. This indicates that the metabolism of the indole pathway was decreased, while the oxidation path-
way was strengthened. Notably, oxidized products of tryptophan (kynurenic acid, xanthurenic acid, quinaldic acid,
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Figure 4. Tryptophan metabolism pathway

Hexagons represent metabolites in tryptophan metabolism pathway and the red ones are compounds related to insulin resistance.

The yellow ellipse represents the key.

8-hydroxyquinaldic acid), labeled in Figure 4, have a direct correlation with insulin resistance [23,24]. This suggests
that tryptophan metabolism could regulate insulin resistance, which also proves the biomarkers identified in the
present study are reliable. Further studies on the mechanisms regarding this issue are also imperative.

Summary
The identification of biomarkers is one of the main applications of metabolomics. In the present study, a global
metabolomics strategy based on UPLC combined with Q-TOF/MS was used to screen for biomarkers of UA and UA
complicated with DM. There were 27 and 22 plasma biomarkers identified in patients with UA and UA complicated
with DM, respectively. The identified metabolites associated with UA were key participants in energy metabolism,
lipid complexes, and amino acids, which provided a reference for clinical diagnosis. Pathway and network analysis
based on the biomarkers revealed that tryptophan metabolism was a key metabolic pathway in UA patients with DM,
which provided a new understanding in the biological metabolic mechanism of UA complicated with DM. It is be-
lieved that systematically exploring potential biomarkers and distinguishing the metabolic mechanism of UA from
its complications will promote personalized medicine and drug discovery.
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