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Therapeutic targeting of leukemic stem cells is widely studied to control leukemia. An
emerging approach gaining popularity is altering metabolism as a potential therapeutic
opportunity. Studies have been carried out on hematopoietic and leukemic stem cells to
identify vulnerable pathways without impacting the non-transformed, healthy
counterparts. While many metabolic studies have been conducted using stem cells,
most have been carried out in vitro or on a larger population of progenitor cells due to
challenges imposed by the low frequency of stem cells found in vivo. This creates artifacts
in the studies carried out, making it difficult to interpret and correlate the findings to stem
cells directly. This review discusses the metabolic difference seen between hematopoietic
stem cells and leukemic stem cells across different leukemic models. Moreover, we also
shed light on the advancements of metabolic techniques and current limitations and areas
for additional research of the field to study stem cell metabolism.
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INTRODUCTION

Cancer cells metabolically reprogram to thrive in a stressed environment, lead to disease
progression and even drug resistance. This is considered as metabolic adaptability of cancer cells.
They can be metabolically flexible (ability to use different substrates as a source of energy) and/or
metabolically plastic (ability to process a substrate through different pathways). Although metabolic
adaptability is beneficial for the cancer cells, it can also serve as a limiting factor for their survival
and hence making them vulnerable to inhibitors. This review will focus on such metabolic
adaptations seen in leukemic stem cells compared to healthy counter parts as well as
advancement and limitation in the field (1).

Like hematopoietic stem cells (HSCs), leukemic stem cells (LSCs) are quiescent, have self-
renewal potential and the ability to engraft. Additionally, LSCs are also defined by their
leukemogenic potential. To eradicate LSCs, researchers are exploring the field of metabolism to
find metabolic differences between LSCs and their healthy counterparts. In leukemia, transformed
cells acquire metabolic changes, which could be oncogene driven in addition to environmental or
stress cues to aid survival. Not only do LSCs in the bone marrow metabolize differently from non-
transformed cells, but they also have a different metabolic profile from the bulk of the disease.
Furthermore, LSCs are a heterogeneous population and, in some cases, rare cells, posing a limitation
to study. However, with an increase in the number of studies related to metabolism, new techniques
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have been developed to overcome the shortcomings of older
methods. In this review, we focus on the metabolic difference
between hematopoietic and leukemic stem cells, the new
techniques developed and the challenges in studying and
metabolically targeting leukemic stem cells.
METABOLISM OF HEMATOPOIETIC
STEM CELLS

HSCs are found in a hypoxic environment of the bone marrow
(2). HIF-1a (Hypoxia Inducible Factor) is a hypoxic sensor
stabilized under low oxygen concentration (3). Among other
genes, HIF-1a induces expression of lactate dehydrogenase
(LDH) and pyruvate dehydrogenase kinase (PDK) gene family,
which are essential regulators of anerobic glycolysis (4).
Inhibition or deletion of HIF-1a, PDK2/4, and LDHA leads to
increased proliferation and exhaustion of the HSCs (4–6).
However, inhibition of pyruvate kinase (PKM2), another
glycolysis rate-limiting enzyme, has no impact on the regular
function of HSCs unless they are stressed by serial transplant (4).
On top of glucose metabolism, fatty acid desaturation (FADS)
and oxidation (FAO) are also essential for the maintenance,
proliferation, and differentiation of HSCs (7–9). An active FAO
leads to asymmetric cell division of HSCs giving rise to
downstream progenitors, while inhibition of FAO leads to
symmetric cell division, promoting self-renewal (8).

Owing to the glycolytic nature of HSCs, compared to the
hematopoietic progenitors and mature hematopoietic cells, they
have reduced mitochondrial respiratory capacity, turnover rate,
and mitochondrial activity but a high mitochondrial mass (10,
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11). Inhibition of mitochondrial carrier homolog 2 (MTCH2), a
regulator of mitochondrial activity, leads to an increase in
mitochondrial size, ATP production, and reactive oxygen
species (ROS), leading to a shift from glycolysis to oxidative
phosphorylation (OxPhos) that triggers the entry of HSCs into
cell cycle (12). This subsequently causes a functional decline of
HSCs, marked by the accumulation of dysfunctional
mitochondria due to asymmetric cell division and loss of
Dynamin-related protein 1 (Drp1) function, a key regulator of
mitochondrial fission (13). On the contrary, mitochondrial
fusion protein, mitofusin2 contributes to maintaining
lymphoid potential in HSCs (14). Moreover, inhibiting
fumarate hydratase, a critical enzyme of the citric acid cycle
(CAC), reduces the long-term repopulating potential of HSCs
(15). On the contrary, inhibiting mitochondrial phosphatase,
Ptpmt1, impairs HSC differentiation by activating 5’ Adenosine
Monophosphate-activated Protein Kinase (AMPK), aiding in the
maintenance of self-renewal potential (16, 17). Individual
metabolites also play an important role in maintaining of
HSCs (18); however, significantly more work needs to be done
to understand their role in HSC function.

Most of the data collected above were done with young HSCs,
however, opposed to young HSCs, aged HSCs have increased
autophagy, dysfunctional chaperone-mediated autophagy,
metabolic activity, myeloid bias with reduced engraftment, and
hematopoiesis potential, as well as accumulation of dysfunctional
mitochondria (9, 13, 19). However, increasing the mitochondrial
membrane potential using mitochondrially targeted coenzyme-
Q10 (Mitoquinol, MitoQ) or pharmacological activation of
chaperon mediating autophagy reverses the aging HSC
phenotype (9, 20). This indicates that the right balance of
FIGURE 1 | Metabolic regulation of HSCs. Young hematopoitic stem cells have a higher mitochondrial mass, but the mitochondria are inactive, and the cells rely on
glycolysis. However, under stress, increase in metabolic activity, OXPHOS (oxidative phosphorylation) and FAO (fatty acid oxidation) lead to impaired stem cell
function. This phenomenon can be reversed by increasing mitochondrial membrane potential (MMP).
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anerobic glycolysis and OxPhos is essential for maintaining
healthy HSCs (Figure 1).
METABOLISM IN MYELOID LEUKEMIA

Acute Myeloid Leukemia (AML)
AML is mostly a clonal disorder commonly seen in the aged
population and comprises 62% of all leukemia-related deaths
(21). It is genetically heterogeneous and complex leukemia with
multiple known mutations (NPM1, CEBPa, DNMT3A, Flt3-
ITD, IDH, TET2, ASXL, SF3B1) and translocations (AML-
ETO, MLL-AF9) (22). Patients usually have more than one of
these cytogenetic abnormalities, and based on the combination, a
patient’s prognosis can be predicted (23, 24). AML LSCs are
metabolically classified as cells with low levels of ROS. LSCs with
less ROS are quiescent, have a self-renewal potential, and resist
drug treatment (25). These cells are dependent on mitochondrial
function as well as mitophagy for their survival. Inhibition of
mitochondrial translation, mitochondrial chaperonin, CLPB or
even mitophagy regulator, FIS1 (Mitochondrial Fission 1
protein) and its upstream target AMPK leads to loss of LSC
self-renewal potential, myeloid differentiation, and cell cycle
arrest and ultimately cell death even for the resistant AML
LSCs (26–28).

Dependency of AML LSCs on mitochondrial function is
associated with decreased levels of mitochondrial reactive
oxygen species and concomitantly increased reliance on
OxPhos rather than glycolysis as in normal HSCs to meet the
Frontiers in Oncology | www.frontiersin.org 3
cell’s energy demand (25). Indeed, instead of relying on
incomplete glucose oxidation through the Embden-Meyerhof-
Parnas glycolytic pathway, AML LSCs depend on substrate
oxidation – especially fatty acid and amino acid catabolism –
in mitochondria. One potential reason could be increased
expression of pyruvate dehydrogenase kinase (PDK) observed
in AML patients, which inhibits glycolysis by phosphorylating
and inactivating the enzyme pyruvate dehydrogenase (29, 30).
Inhibiting amino acid metabolism and FAO – especially very-
long-chain, polyunsaturated fatty acids - along with the
traditional therapy eradicates the sensitive and resistant AML
LSCs, respectively (31–36). More specifically, non-essential
amino acid cysteine, which forms an integral part of
glutathione synthase functionality as the rate-limiting substrate
for glutathione biosynthesis, maintains the redox balance in
AML and prevents oxidative stress (Figure 2). Inhibition of
cysteine or depletion of glutathione impairs the activity of
electron complex II, subsequently inhibiting OxPhos,
eradicating the AML LSCs (37, 38). Glutamine is another
amino acid that feeds into the CAC and regulates OxPhos.
Inhibition of glutaminase, a critical enzyme for glutamine
metabolism, has also been found to eliminate AML LSCs (39–
41). Glutaminolysis also fuels the synthesis of glutathione – the
main soluble antioxidant metabolite - by providing one of the
rate-limiting substrates along with cysteine – glutamate (42–44).
Regulation of glutathione synthesis by a mechanism of cysteine
depletion or inhibition of glutaminolysis is in part controlled by
sirtuin 5 (SIRT5) and is a targetable metabolic vulnerability in
AML (38, 45). Glutathione synthesis and recycling are also
FIGURE 2 | Metabolic difference between AML and CML LSCs. AML LSCs are reliant on OxPhos and yet have low ROS level controlled by mitophagy. Moreover,
AML LSCs use amino acid and fatty acid metabolism to fuel the citric acid cycle. CML LSCs on the other hand exhibit increased mitochondrial biogenesis, FAO,
OXPHOS and ROS. ROS leads to DNA instability and subsequently. Causes mutation in the BCR-ABL oncogene, rendering the cells resistant to drug treatment.
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influenced by the kinase ataxia telangiectasia mutated (ATM)
through transcriptional control of glucose 6-phosphate
dehydrogenase (G6PD), the rate-limiting enzyme of the
pentose phosphate pathway (PPP) (46). PPP generates
reducing equivalent (the reduced form of nicotinamide adenine
dinucleotide phosphate - NADPH) essential to the recycling of
oxidized glutathione, and rate-limiting cofactors for anabolic
reactions, like fatty acid and cholesterol synthesis. The
availability of NADPH, and its non-phosphorylated precursor
NAD (critical for metabolic reactions in glycolysis and CAC/
OxPhos), is also constrained by NAD synthesis, which can be
pharmacologically targeted in AML (43). Both ATM and G6PD
are targetable to sensitize AML cells to chemotherapy (47).
Another alternate glucose metabolism pathway, the
hexosamine biosynthesis pathway (HBP), is also upregulated in
AML patient samples. Inhibition of glutamine fructose-6-
phosphate amidotransferase (GFAT), a rate-limiting enzyme of
HBP, induces differentiation and apoptosis of AML cells and
eliminates the tumor burden not only from the bone marrow but
also the peripheral blood in AML xenograft mouse models (48).
Although extensive studies have been done to understand
metabolism in AML and drug-resistant AML, it is still
unknown whether these metabolic changes are common across
all AML sub-types or whether the oncogene plays a role in
deciding the metabolic fate of the AML cells, both the blast
and LSCs.

Chronic Myeloid Leukemia (CML)
CML is more prevalent in the geriatric population. Due to a
single translocation in phenotypic HSCs, it forms BCR-ABL, a
constitutively active tyrosine kinase. Unlike normal HSCs, CML
cells are highly dependent on OxPhos regulated by sirtuin 1
(SIRT1)-mediated activation of peroxisome proliferator-
activated receptor g coactivator 1a (PGC1a) (49–51). SIRT1 is
a NAD-dependent histone deacetylase that deacetylates and
activates PGC1a, a regulator of mitochondrial biogenesis, both
of which are found upregulated in CML. Dual treatment with
SIRT1 and tyrosine kinase inhibitors (TKI) reduces CML cell
proliferation, mitochondrial gene suppression and subsequent
cell death in transgenic CML mouse model (51). Additionally, as
opposed to AML, in CML, an increase in OxPhos also increases
ROS production, causing DNA damage and genomic instability.
This leads to mutations in the BCR-ABL oncogene, eventually
causing oncogene-dependent resistance to TKI (Figure 2) (52–
54). With TKI treatment, CML stem and progenitor cells
accumulate lipids as well as nucleic acids with an increase in
FAO (55). Moreover, metabolic stress created by TKI activates
AMPK, suppressing which reduces disease progression (56).
AMPK regulates energy homeostasis and leads to glucose and
fatty acid uptake upon activation. And in the case of BCR-ABL-
independent TKI resistance, glycolytic genes are upregulated
along with increased glucose uptake, lactate production, and
reduced oxygen consumption (50, 57–59). Although, this
metabolic phenotype is partly similar to normal HSCs, the
difference between HSCs and resistant CML LSCs is the
dependency on the glycolytic pathway. Inhibition of PKM2
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and LDHA, important enzymes for aerobic glycolysis, reduces
disease progression and improves survival of CML mice, without
impacting the surrounding HSCs (4, 59, 60). On the other hand,
in advanced blast crisis CML, the stem cells have increased
branched-chain amino acid metabolism (61). Additionally,
these cells also upregulate CD36 fatty acid transporter and
utilize gonadal adipose tissue lipolysis to fuel fatty acid
metabolism as a source of energy as well as evade
chemotherapy (62). Hence, targeting mitochondrial metabolic
pathways in the CML stem and progenitor cells along with TKI
treatment increases cell death and improves survival (49, 58, 63).
METABOLISM IN LYMPHOID LEUKEMIA

Acute Lymphocytic Leukemia (ALL)
ALL is the most common childhood leukemia marked by
accumulation of immature B-cells (B-ALL) or T-cells (T-ALL).
Chromosomal abnormalities like BCR-ABL translocation in the
lymphoid progenitor lead to B-ALL, while T-ALL occurs due to
gain-of-function Notch1 mutation in the lymphoid progenitor
cells (64). B-ALL CD34+ cells from human BM have an
upregulation of genes regulating glycolysis like glucose
transporters Glut1, Glut4, and Ldh, with downregulation of
CAC and FAO-related genes like Idh3b, Sdhc, Fh, and Mdh
(65). They have increased glucose consumption and lactate
production compared to the non-transformed human CD34+
cells indicating utilization of aerobic glycolysis in the former (65,
66). Additionally, increased glucose consumption in B-ALL cells
and glutamine metabolism are linked to therapy resistance (67–
69). Inhibiting glycolysis and glucose uptake reduced nucleotide
and amino acid metabolism, decreased leukemogenesis and
proliferation, increased apoptosis of B-ALL cells and sensitized
these cells to glucocorticoid treatment (66, 68). Moreover,
glucose is utilized not only for glycolysis but also as a starting
point for PPP to reduce oxidative stress. B-cell genes Pax5 and
Ikzf1 usually repress G6pd, a rate-limiting enzyme of PPP, hence
reducing PPP activity (Figure 3). However, in B-ALL, the
enzyme PP2A (Protein Phosphatase 2) switches glucose
utilization from glycolysis to PPP while glycolysis is
predominant HSCs. Inhibiting PP2A as well as G6PD or
activating Pax5 and Ikzf leads to reduced PPP activity
sensitizing B-ALL cells to treatment (70). This target’s the
unique vulnerability of B-ALL cells without impacting the non-
transformed cells. Glucose utilization is important for the
survival of B-ALL cells, whereas NOTCH1 activation in T-ALL
leads to a metabolic switch from glycolysis to glutaminolysis (71,
72). The reduced glycolysis in T-ALL cells compared to normal
T-cells can be attributed to Notch1-mediated AMPK activation
(73). Moreover, inhibition of Notch1 signaling also leads to
accumulation of glutamine and increased activity of complex 1
in the mitochondrial electron transport chain, conferring
resistance to treatment (Figure 3) (72). Inhibition of glutamine
synthesis as well as loss of AMPK signaling along with Notch1
inhibition sensitizes T-ALL cells towards apoptosis (72, 73). In
addition to glucose and glutamine metabolism, targeting one
June 2022 | Volume 12 | Article 846149
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carbon metabolism through the inhibition of serine
hydroxymethyltransferase (SHMT) interferes with the supply
of NADPH and one-carbon pools for proliferation has shown
promise as a therapeutic strategy in treating T-ALL. In line with
these findings, the amount of dietary folate has been shown to
modulate metabolism in hematopoietic cells (74, 75). This
signifies that depending on the type of ALL cells rely on
different metabolic pathways.

Chronic Lymphocytic Leukemia (CLL)
CLL like CML is found mainly in older adults marked by
mutated mature CD5+ B-cells or memory B-cells in BM,
blood, and even lymph nodes (76). Resting B-cells and
memory B-cells are more glycolytic than activated B-cells (77).
However, in CLL, the mutated B-cells rely on OxPhos over
glycolysis and have reduced glucose uptake unlike normal
HSCs (78, 79). CLL lymphocytes have an increase in ROS plus
mitochondrial respiration and also have an active antioxidant
activity via glutathione metabolism, protecting CLL cells from
chemotherapy (Figure 3) (80, 81). In line with this, CLL
lymphocytes also have overexpressed glutamine dehydrogenase,
which plays a role in glutathione synthesis, and abolishing the
glutathione-mediated protection mechanism leads to apoptosis
of CLL cells (81, 82). Moreover, poor prognosis in CLL is marked
by an accumulation of lipids, particularly ceramide and
lipoprotein lipases, indicating active lipid metabolism, making
them susceptible to FAO inhibitors, even in cases of treatment
resistance (83–87).

Overall, one can affirm that metabolism is plastic, and
different leukemia types have various metabolic vulnerabilities.
Moreover, metabolism also changes with drug treatment.
Frontiers in Oncology | www.frontiersin.org 5
Understanding the mechanisms of metabolic change in
leukemia, and following drug treatment, is important to
identify target pathways without impacting the normal cells.
LIMITATIONS AND ADVANCEMENTS

Cell Number
Cell number limitation is one of the major impediments to
understanding metabolic differences in the cells of interest, such
as LSC. Due to the need for millions of cells for metabolic assays,
the studies are usually conducted with a broader pool of cells or
cell lines instead of the specific cells of interest in a complex
model. Furthermore, metabolic differences due to phenotypic
cellular heterogeneity, even within genetically homogeneous cell
populations should be considered. All of this makes it
challenging to have conclusive results for the cell of interest.
This highlights the need to improve metabolic techniques to
study smaller numbers of cells. One such advancement has been
in metabolic profiles using ultra-high pressure liquid
chromatography-mass spectrometry (UHPLC-MS). A high-
throughput UHPLC-MS method developed recently can profile
metabolites from as few as 10,000 cells (59, 88–90). The
technique involves the use of a larger pool of cells from the
same tissue and of heavy labeled standard spike-in to call peaks
while analyzing the few cell samples (59, 88). Additional methods
are being developed to afford the quantitation of small molecule
metabolites from hundreds of cells at the expense of the breadth
of the coverage of multiple metabolic pathways (18, 91). More
targeted, single-cell metabolomics approaches have also been
proposed, which leverage CyTOF (cytometry of time of flight)-
FIGURE 3 | Metabolic difference between ALL and CLL LSCs. B-ALL LSCs are reliant on Pentose phosphate pathway (PPP) and glycolysis where as T-ALL LSCs
rely more on glutamine metabolism. CLL on the other had sees an increase in ROS and is reliant on OXPHOS. Increase in glutathione metabolism is also reported as
an antioxidant to the high amount of ROS.
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or capillary electrophoresis (CE)-based MS techniques for
rapidly detecting a subset of metabolites (92). This technique
allows to determine metabolite abundance in a specific
population pool where cell number is a limitation, for instance,
HSCs and LSCs (9, 31, 89, 93). Global metabolic profiling at
steady state provides a snapshot view of the abundance of
metabolites in cells. However, it fails to determine whether
metabolites accumulate because of increased production or
reduced usage. Thus, to infer the activity of a specific
metabolic pathway, UHPLC-MS needs to be accompanied by
other metabolic assays.

In Vivo Metabolic Flux
To understand the metabolic pathway activity over time and in
different conditions, metabolic flux analysis provides more
detailed information about substrate preference and
consumption rate for catabolic or anabolic purposes. Metabolic
tracing with stable isotope-labeled substrates has been widely
utilized but more in cell lines which are usually not
representative of the complexity of the cells within their
environment. In vivo metabolic flux analysis (especially with
radiolabeled or fluorescent tracers), on the other hand, proves
efficient in such cases (94, 95). The most widely used methods to
administer heavy carbon labeled tracers in a mouse are by gastric
gavage or bolus injection via a tail vein or continuous infusion via
cannulation (96). These administration methods can achieve a
high plasma concentration of the tracer; however, they also cause
stress to the animal due to anesthesia or animal handling,
defeating the purpose of studying metabolism at steady state
(97). To overcome this limitation and enable long-term tracer
administration, tracers can also be delivered through water (97).
Although this technique reduces stress in mice, facilitating studies
at steady state, it fails to consider the variability in the diet among
individual mice and hence the variability of the amount of tracer
administered. Additionally, the possible metabolism of tracer as it
circulates through the hepatic portal system and before it reaches
the organ of interest must be taken into consideration. Even
though metabolic flux assays provide more information than
global metabolic profiles, the limitation to these methods is the
time window available to harvest the tissue and cells of interest
without losing the cellular tracing. For this reason, researchers
flash-freeze the whole organ soon after harvesting. But this limits
the study of the metabolic flux to an organ as a whole instead of
individual cell types within the organ. The field needs a better
technique to understand metabolic fluxes at the cellular level, and
this is one of the reasons why in vivo metabolic tracing of bone
marrow has not been carried out until very recently (98).

Metabolic Heterogeneity
Metabolic heterogeneity between tissues has been widely studied;
however, it is yet uncovered between cells within the same tissue
and between tumors (96). One major impediment in analyzing
metabolites at a single cell level is the sensitivity of metabolite
detection. Metabolite reporter using an alkyne tagged ‘Click’
chemistry is a potential solution to overcome this limitation (99).
Using different alkyl groups can aid in multiplexing different
samples and facilitate the use of multiple tracers in the same
Frontiers in Oncology | www.frontiersin.org 6
experiment, thus saving cost and time (99). Moreover, the
enhanced signal of alkyne detection by MS helps determine
metabolites at a single-cell level (99). However, it becomes
difficult to identify one cell especially with overlapping peaks
(99). In the current era of single-cell analysis, a computational
model for studying metabolic phenotypes in the tumor
microenvironment at a single cell level has also been developed
(100), along with methods for imaging single-cell behavior in
various microenvironments (101). They combine global
metabolic gene expression with dimensional reductionists
model and clustering algorithm to determine the metabolic
gene expression profile of individual cells in head and neck
tumors and melanoma (100). Although this technique considers
heterogeneity and depicts metabolic profiles of different cell
types, gene expression cannot always be correlated to
metabolic activity. Further metabolic enzyme-based assays
should be carried out to validate the computational analysis.

Some of the widely used techniques to determine
heterogeneity based on mitochondrial mass and activity
involve electron microscopy and confocal imaging using
fluorescent markers like mitotrackers for mitochondrial
abundance in each cell, TMRE for determination of
mitochondrial membrane potential, or even fluorescent
labeling of metabolic enzymes. However, these ex vivo
fluorescence markers do not yield reproducible information.
The results vary with changes in concentration, temperature,
oxygen concentration, and cell count, pointing towards the
importance of detailed experimental descriptions in
publications. One recent imaging technique developed to
measure mitophagy in vivo is based on a transgenic mouse
model expressing the pH-sensitive fluorescent protein mt-
Kiema localized to the mitochondria (102). Upon mitophagy,
the pH of the mitochondria drops, changing the color of the mt-
Kiema protein (102). Crossing these mice to transgenic leukemic
mice would help expand our understanding of mitophagy in
normal HSCs versus LSCs with or without drug treatment. This
model can also be used for time-lapse studies as well as live-cell
imaging. Another technique to study metabolic heterogeneity,
called fluorescence-activated mitochondria sorting (FAMS), is
based on flow cytometry. Using this technique, mitochondria
from different types of tissues can be isolated based on their
membrane potential, mitochondrial protein markers and (103).

Currently, no technique alone can be used to understand the
metabolic complexity of a heterogeneous cell population.
Therefore, it is important to use different metabolic assays to
address the same question before making a conclusive statement.

Drug Targeting
Understanding metabolic differences in tumor versus normal
cells has recently seen significant advancements. Many drugs
have been repurposed as metabolic inhibitors or activators, like
tigecycline (a known antibiotic) which can inhibit mitochondrial
protein translation leading to inhibition of OxPhos (49, 104).
Another drug repurposed is metformin (clinically used as an
anti-diabetic) which is being used as an AMPK activator,
currently in phase II clinical trials for CLL (ClinicalTrials.gov:
NCT01750567) (105, 106).
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However, most of these drugs are non-specific or have
multiple targets; for instance, a widely used AMPK inhibitor,
dorsomorphin, can also inhibit VEGF and BMP-SMAD
signaling (107), while shikonin, a drug used for PKM2
inhibition, can also inhibit STAT3, Fak, Src, cMyc and PI3K-
AKT signaling pathways and cause cellular apoptosis via
activation of c-JUN-N-terminal kinase (JNK) (108–111).
Another example would be mubritinib, a known inhibitor of
ERRB2, that can localize to the mitochondria and inhibit
complex I of the electron complex chain (112). New metabolic
inhibitors are being developed, for instance, IACS-010750, an
inhibitor of elector complex chain complex 1, a drug currently
under phase I clinical trials for AML (ClinicalTrials.gov:
NCT02882321) (113). To keep up with the metabolic
discoveries, inhibitors with more specificity need to be
developed to reduce side effects and off-target impacts and
provide better therapeutic options.
CONCLUSION

Metabolism can still be considered a developing field of cellular
biology. No single technique can or should be used to address
questions regarding stem cell metabolism. With the advent of
single-cell technologies for transcriptomic and epigenetics,
science has moved from bulk cellular analysis to understanding
Frontiers in Oncology | www.frontiersin.org 7
cellular heterogeneity within the same population, which needs
to be adapted even in metabolism. Moreover, the changes in
metabolism are not unique to stem cells, highlighting the need
for studies to be carried out with appropriate controls to enhance
LSC specificity and reduce side effects of metabolic inhibitors on
HSCs. These metabolic differences would represent a condition
of LSC-specific vulnerability that could potentially be targeted.
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