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Brain-Computer Interface (BCI) is a technology that uses electroencephalographic (EEG)
signals to control external devices, such as Functional Electrical Stimulation (FES).
Visual BCI paradigms based on P300 and Steady State Visually Evoked potentials
(SSVEP) have shown high potential for clinical purposes. Numerous studies have been
published on P300- and SSVEP-based non-invasive BCIs, but many of them present
two shortcomings: (1) they are not aimed for motor rehabilitation applications, and (2)
they do not report in detail the artificial intelligence (AI) methods used for classification,
or their performance metrics. To address this gap, in this paper the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) methodology was applied
to prepare a systematic literature review (SLR). Papers older than 10 years, repeated
or not related to a motor rehabilitation application, were excluded. Of all the studies,
51.02% referred to theoretical analysis of classification algorithms. Of the remaining,
28.48% were for spelling, 12.73% for diverse applications (control of wheelchair or
home appliances), and only 7.77% were focused on motor rehabilitation. After the
inclusion and exclusion criteria were applied and quality screening was performed,
34 articles were selected. Of them, 26.47% used the P300 and 55.8% the SSVEP
signal. Five applications categories were established: Rehabilitation Systems (17.64%),
Virtual Reality environments (23.52%), FES (17.64%), Orthosis (29.41%), and Prosthesis
(11.76%). Of all the works, only four performed tests with patients. The most reported
machine learning (ML) algorithms used for classification were linear discriminant analysis
(LDA) (48.64%) and support vector machine (16.21%), while only one study used a
deep learning algorithm: a Convolutional Neural Network (CNN). The reported accuracy
ranged from 38.02 to 100%, and the Information Transfer Rate from 1.55 to 49.25 bits
per minute. While LDA is still the most used AI algorithm, CNN has shown promising
results, but due to their high technical implementation requirements, many researchers
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do not justify its implementation as worthwile. To achieve quick and accurate online BCIs
for motor rehabilitation applications, future works on SSVEP-, P300-based and hybrid
BCIs should focus on optimizing the visual stimulation module and the training stage of
ML and DL algorithms.

Keywords: BCI, visual stimulation, classification, performance metrics, steady state visually evoked potentials,
P300, functional electrical stimulation, virtual reality

INTRODUCTION

One of the most traditional neurorehabilitation strategies aimed
at restoring motor functions lost due to various lesions of
the nervous system [stroke, spinal cord injury (SCI), cerebral
palsy, among others] is based on the neurofacilitation approach
for proprioceptive stimulation and guidance of brain plasticity
processes (Carr and Shephered, 2006; Hindle et al., 2012).
These techniques involve passive stretching, contraction and
relaxation of specific muscles groups in order to improve
their flexibility and to stimulate the sensory function, muscle
tone and recovery of movement patterns. Some key elements
for motor and sensory functional recovery (Jang, 2013)
are repetition of movement patterns (Zbogar et al., 2017),
somatosensory stimulation (Hara, 2008) and the application
of stimuli outside the motor and sensory pathways (visual,
auditory, or proprioceptive) (Bach-y-Rita and Kercel, 2003;
Bento et al., 2012; Takeuchi and Izumi, 2012; Galińska,
2015). These neurorehabilitation strategies make possible to
re-educate neural tissue that is not completely damaged or
to reactivate other areas to form new synaptic connections
(Gordon, 2005).

To this end, various technologies (devices and strategies) have
been developed to offer therapies that help patients to recover
impaired motor functions. Brain-Computer Interface (BCI),
Functional Electrical Stimulation (FES), and Neuroprostheses are
devices proposed to improve motor and neurological functions
(Iosa et al., 2012). The theoretical argument is that therapeutic
interventions based on these neurorehabilitation technologies
take advantage of the preserved neuro-muscular structures and
functions, and that they can help to compensate or re-learn
the functions previously performed by the damaged areas,
thus improving the sensory-motor function (Iosa et al., 2012;
Altaf, 2019).

Principles of Brain-Computer Interfaces
The main objective of BCIs is to decipher the user’s intentions,
registered from electrical, magnetic, thermal or chemical
signals generated by the brain, and translate them into
orders that are interpreted and translated by a computer
into commands, in order to establish direct communication
between the brain and external devices. These systems allow
the user to interact with their environment, without using the
peripheral nervous system or the muscular system, and when
used in combination with proper motor or sensory stimuli
and functional tasks, they can be used to assist, increase
or help repair cognitive or sensory-motor functions. BCIs
can be classified as invasive and non-invasive, according to

the sensors that they use to collect brain signals, and as
endogenous and exogenous, depending on if their experimental
strategy requires external stimuli or not. Each type of BCI
has advantages and disadvantages regarding its temporal and
spatial resolution, computational cost, training requirements,
and clinical application (Wolpaw et al., 2000; Birbaumer and
Cohen, 2007).

Invasive BCIs have a high signal-to-noise ratio (SNR) that
allows accurate pattern recognition or continuous decoding of
kinematic parameters. However, this BCI approach face the risk
of surgical complications and infections, short-term and long-
term signal instabilities that degrade neural decoding of intent
(Perge et al., 2013), and the challenge of maintaining stable
chronic recordings (Meng et al., 2016). Due to their ease, non-
invasive nature, high temporal resolution, portability and low
cost, most BCIs use the surface electroencephalography (EEG)
as the preferred method to obtain BCI control signals (Radaman
and Vasilakos, 2017). To implement EEG-based BCI systems
several protocols and paradigms (e.g., imagery or visual tasks)
have been used to modulate the subject’s brain electrical activity
(Abiri et al., 2019; Bonci et al., 2021).

Currently, several research centers are focused on studying
the advantages of endogenous EEG based-BCIs to decode
movement intention. To this end they use paradigms such
as motor imagery to modulate sensorimotor rhythms of the
EEG, which are recorded in the scalp over the sensorimotor
brain area (Ramos et al., 2013; Thomas et al., 2013; Müller-
Putz, 2018; Aggarwal and Chugh, 2019; Baniqued et al., 2021).
Despite the advantages of endogenous BCIs based on motor
related tasks (Aggarwal and Chugh, 2019), they generally need
of a long training period to achieve voluntary control of the
sensorimotor brain signals. Moreover, they present moderate
performance for multiclass decoding (Boernama et al., 2021)
and limited information transfer rate (ITR) (Choi et al., 2020).
These shortcomings, combined with a relatively high inter-
individual variability can limit the use of those systems outside
of a controlled laboratory environment. Unlike endogenous
BCIs, exogenous BCIs operate with brain signals known as
event related potentials (ERPs) or steady state evoked potentials,
which can be spawned by auditory, visual o somatosensorial
stimuli (Wang et al., 2008). In the category of exogenous
BCI paradigms the most widely used are those based on
visually evoked potentials (VEPs)O VEPs are generated in
response to visual stimuli, such as flashing lights presented
to the subject quickly and repeatedly. These potentials can
be controlled and characterized with relative ease, and their
properties depend closely on the type and features of the visual
stimulus (Kubler et al., 2001).
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Brain-Computer Interfaces Based on
Visual Paradigms
If a visual stimulus is presented repeatedly at a fixed frequency
in the 1–100 Hz range, a very stable response over time (in
amplitude and phase) is elicited in the occipital area (Müller-Putz
et al., 2005; Won et al., 2015). Those responses are called steady
state visually evoked potentials (SSVEP) (Vialatte et al., 2010;
Norcia et al., 2015). Recently, SSVEP-based BCIs have received
increased attention because they can provide relatively high bit
rates of up to 325 bits/min, while requiring little training (Vialatte
et al., 2010; Gao et al., 2014; Nakanishi et al., 2018). In addition,
SSVEPs are highly robust to artifacts produced by blinks and
eye movements (Perlstein et al., 2003) and to electromyographic
noise contamination.

On the other hand, exogenous ERPs can also be elicited
when infrequent visual stimuli are interspersed with other more
frequent or routine stimuli. In this case a positive peak called
P300, is evoked at about 300 ms after the stimulus (Blankertz
et al., 2011; Yeom et al., 2014), which can be recorded mainly at
parietal and occipital zones over the scalp. P300 ERPs are typically
elicited during an oddball target detection task, when a target or
relevant stimulus is presented infrequently in a background of
frequent standard stimuli. Its latency reflects processing speed or
efficiency during stimulus evaluation, independent of the motor
preparation time (Kutas et al., 1977). Many BCI applications
based on the P300 ERP use graphical interfaces operating under
the row/column paradigm, that evoke the P300 potential when
the elements attended by the user are visually intensified (the
target stimuli) (Philip and George, 2020). This paradigm requires
the subject to focus his/her attention only in the target stimulus
and not in any other stimuli (Polich, 2007; Guo et al., 2019;
Riggins and Scott, 2019), which implies the ability to inhibiting
attention drifts to irrelevant stimuli.

P300-based and SSVEP-based BCIs have been widely studied
since they are considered robust systems with high ITR (Cheng
et al., 2002; Rupp, 2014; Naeem et al., 2020) and good accuracy.
In both cases the selected parameters of the stimulation pattern
led to a trade-off between ITR and accuracy (Cecotti, 2011).
Moreover, both BCI approaches have a high potential for clinical
use, since they require few subject’s EEG data for training
classification models. This makes them feasible for practical
applications with short-term training (Polich, 2007; Yao et al.,
2012), few recording channels and therefore lower computational
cost than other BCI modalities (Müller-Putz et al., 2005; Kluge
and Hartmann, 2007; McCane et al., 2015; Kundu and Ari, 2017;
Nagel et al., 2017; Han et al., 2018). In this regard, it has been
shown previously that technologies based on these two BCI
modalities, can be transferred to be used not only in the clinical
environment, but even at the patient’s home (Sellers et al., 2010).

Artificial Intelligence Algorithms in
Brain-Computer Interfaces
Traditional machine learning (ML) methods have been widely
used in BCI applications, such as Artificial Neural Networks,
Support Vector Machine (SVM) or Linear Discriminant Analysis
(LDA). This classic ML approach require the use of namely

manually designed techniques for EEG feature extraction (e.g.,
temporal, spectral and time-frequency methods, to name a few).
The feature extraction plus ML technique approach presents
the following problems: (1) it can only learn the features that
researchers focus on, but ignores other potentially informative
ones (Lecun et al., 2015); (2) methods performing well on
certain subjects (with similar age or occupation) may not give
a satisfactory performance on others, yielding a high subject-to-
subject variability in EEG signals. For these reasons, different
deep neural networks (DNN) have been proposed to overcome
the challenges of ML techniques in BCI, allowing automatic
feature extraction and classification, while achieving competitive
performance on the target tasks. Hence, DNN have become
an useful method to improve classification performance of
BCI systems using EEG signals (Craik and Contreras, 2019)
and evoked potentials (Kwak et al., 2017), with reduced
computational cost and improved usability.

Visual Brain-Computer Interface for
Motor Related Applications
Currently, there is a growing interest in the application of
VEP- and VERP-based BCI systems for people with disabilities.
Systematic reviews have shown the potential of VEP-BCIs for
motor rehabilitation purposes (Kaufmann et al., 2013; Lazarou
et al., 2018). These systems allow the control of orthoses,
prostheses, or FES devices to assist disabled patients during
therapy (Stan et al., 2015; Zhao et al., 2016). The most common
application of these BCI systems is for spellers (at least 30%
of papers), but for the device control there are wheelchairs
(Zhang et al., 2014, 2016; Turnip et al., 2015; Lopes et al., 2016;
Waytowich and Krusienski, 2017; Yu et al., 2017; Chen et al.,
2020), robots (Zhao et al., 2015; Çiğ et al., 2017; Venuto et al.,
2017; Erkan and Akbaba, 2018; Yuan et al., 2018; Khadijah
et al., 2019; Wang et al., 2020), and domotics tools (Venuto and
Mezzina, 2018; Hossain et al., 2020; Lee T. et al., 2020).

Although several papers have been published on BCI
applications based on visual paradigms, many of them do
not report the performance of the Artificial Intelligence (AI)
algorithms used for detection and classification of evoked
potentials (P300 or SSVEP). Likewise, although numerous BCI
papers are focused on studying and analyzing the performance of
the classification algorithms, most of them do not report online
tests with a specific application, either for communication, or for
the control of motor assistive or rehabilitation technologies.

Traditionally, manually designed feature extraction
techniques and machine learning algorithms have been used to
detect and classify P300 and SSVEP signals within BCI systems
(Bashashati et al., 2007; Lin et al., 2007). Common examples
of feature extraction algorithms are spectral parameters, time-
frequency representations, parametric models, cross-correlation
and canonical correlation analysis (CCA), and matched filtering.
Regarding ML classifiers used to detect EEG states or activity
in BCI systems, examples are support vector machine (SVM),
Linear Discriminant Analysis (LDA), fuzzy logic algorithms,
and artificial neural networks, Unfortunately, these classification
techniques can only learn from the features the designer focuses
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on, missing out on others that might be useful to improve
their performance. Therefore, in recent years, deep learning
techniques such as convolutional neural networks (CNN),
recurrent neural networks (RNN), or deep belief networks
(DBN) have been used in BCIs to overcome the aforementioned
shortcomings of traditional ML methods (Cecotti, 2011; Cecotti
and Graser, 2011; Manor and Geva, 2015; Liu et al., 2018; Shan
et al., 2018).

The performance of the AI algorithms used in BCI-based
spelling applications (Huang and Huang, 2017) has been
evaluated through metrics such as accuracy, precision and ITR.
On the one hand, BCI spellers based on SSVEP signals have
reported ITR values as high as 4.5 bpm (91.04%) ITR (accuracy)
(Chen et al., 2015), 325 bpm (89.83%) (Nakanishi et al., 2018)
or 701 bpm (74.9%) (Nagel and Spüler, 2019). On the other
hand, BCI spellers based on P300 signals have reported ITR
values of 20.259 bpm (79%) (Lin et al., 2018). For hybrid
spelling systems that integrate P300 and SSVEP, authors have
reported an online classification accuracy of up to 93.85%, with
ITR of 56.44 bpm (Yin et al., 2013). Despite the extensive
number of published studies on P300-based and SSVEP-based
BCI systems, only a few are focused on the rehabilitation or
assistance of movements. Moreover, they generally do not report
the same performance metrics used in spelling systems. Such
is the case of Kaplan et al. (2016), who developed a P300-
based BCI system to control phantom fingers using visual stimuli
placed over them, as an “ideomotor training simulator.” On
the other hand, Giménez et al. (2011) presented the electronic
design of a functional electrical stimulation (FES) system and
its interface with a BCI based on P300. However, these works
focus on the integration of the BCI commands with the
actuator, but there is a lack of information about the feature
extraction methods, the AI-based classifiers, and the performance
metrics they used.

Objectives and Structure of the Paper
To address this gap, in this paper we applied the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) methodology for a systematic literature review (SLR).
The main aim of this review is to gather all relevant published
works that cover the current state-of-the-art in P300 and
SSVEP-based BCI systems, with an emphasis on those used for
motor rehabilitation applications and the AI algorithms used
for detection and classification by analyzing a large number of
recent publications. It provides a general overview of the topic
of interest, from traditional ML techniques to cutting-edge DL
trends and underlines future challenges in the field.

The review is organized as follows: Section “Introduction”
introduces key concepts and critical issues in SSVEP-based and
P300-based BCI systems, and details the objectives of the review;
section “Materials and Methods” describes how the systematic
review was conducted, and how the studies were selected,
assessed and analyzed; section “Results” focuses on presenting
the papers that reported the most important performance and
efficiency (accuracy and ITR) metrics of the selected studies, and
describes current trends and promising approaches in this type
of BCI systems. Finally, section “Discussion” discusses challenges

in VEP-based BCI systems for motor rehabilitation and provides
recommendations for future research.

MATERIALS AND METHODS

The SLR is based on the PRISMA methodology. To
ensure data quality, we searched in the scientific databases
PubMed/MEDLINE, IEEE Xplore, ScienceDirect, Scopus,
Embase, and Google Scholar. The search was performed in article
titles, abstracts, and keywords of works published in English
language. There was no lower limit for the publication date,
but the databases were searched up to June 2021. Additional
records were identified through other literature sources and
patent search engines like Google Patents, WIPO, and SIGA.

Search Strategy and Selection Criteria
This SLR covers the current state-of-the-art in BCI systems based
on P300 or SSVEP signals, and hybrid modalities, used in motor
rehabilitation applications. In particular, the SLR is focused
on the AI algorithms used for classification and the reported
performance metrics in the context of the BCI applications. Three
reviewers from our team carried out the search of papers to
reduce the risk of selection errors and selection bias.

The three steps involved in the manual literature search
process are summarized in the PRISMA flow diagram (Page et al.,
2021) in Figure 1. In the first step (Step 1- Identification) the
title of articles reporting AI algorithms for SSVEP-, P300-based
BCIs, as well as hybrid SSVEP/P300 BCI systems, were identified
from electronic databases. Then, data extraction from abstracts
and keywords was performed, and duplicate records, unrelated
studies and articles published before 2011 were removed. The
second step was a more detailed review of the full text articles
(according to the inclusion and exclusion criteria), to assess the
eligibility of the selected papers (Step 2-Screening). If the abstract
did not indicate clearly whether the inclusion and exclusion
criteria were met, the full text paper was also read. Papers not
involving a motor rehabilitation application were removed. In
the last step (Step 3-Included), the studies considered relevant
and of recent advances were selected for further analysis in this
SLR. The last filtering was applied to papers after reading the
full text, taking into consideration whether they did not report
any performance metric or did not involve a P300- or SSVEP-
based BCI strategy.

Research Questions
The goals of the SLR were translated into a set of research
questions (RQ), to better explain and summarize the evidence
about the AI algorithms used in P300- and SSVEP-based
BCIs. In this context, the following research questions
(RQs) were proposed.

RQ1: What type of evoked potential (P300 or SSVEP) is
involved in the BCI’s visual paradigm?

RQ2: Is the purpose of the BCI system aimed to some motor
rehabilitation application, including orthosis, prosthesis, virtual
reality (VR) or FES?

RQ3: Is the classification algorithm based on AI methods?
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FIGURE 1 | PRISMA flow diagram for the Systematic Literature Review.

RQ4: Are the validation methods mentioned?
RQ5: Does the paper report the performance metrics values

(accuracy, ITR, etc.) of the algorithms?
RQ6: Are patients or healthy subjects involved in the study?
RQ7: What are the future challenges foreseen by the authors?

Inclusion and Exclusion Criteria
The following medical and technical search terms were used to
query the databases: “BCI,” “P300,” “SSVEP,” “brain computer
interface,” “FES,” “evoked potential visual,” “neurorehabilitation,”
“functional electrical stimulation.” These search terms were
further combined with “artificial intelligence,” “machine
learning,” “deep learning,” and “artificial neural network,” among
others. Articles were also explored based on performance-related
terms such as accuracy and ITR. Articles were discarded if they
were not thematically relevant to the scope of this paper or they
did not include tests with patients or healthy subjects. In addition
to the structured literature search, a manual search of works
cited in the articles included in the SLR was also conducted.
Thus, some articles not identified by the original search were
included in this review, if all other requirements were met. The

level of evidence was not graded due to the exploratory nature of
many of the studies.

Data Extraction and Analysis
According to the proposed taxonomy, described in Figure 2,
only two types of articles were considered: originals and reviews.
The selected articles were divided into three major categories,
the first one being the AI methods cluster, which provides a
general overview of the used AI algorithms. The second category
is a four-tiered research cluster, related to BCIs involving motor
rehabilitation applications. Tier 1 contains articles involving
FES systems, tier 2 provides articles related to prostheses, tier
3 considers orthoses application and tier 4 included studies
aimed to the use of VR. The third category is the performance
measurement cluster, which comprises the metrics employed for
performance assessment of the classification algorithms.

RESULTS

Three thousand six hundred and ninety one studies were
retrieved from the electronic databases (Step 1-Identification), as
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FIGURE 2 | Taxonomy of the SLR: AI methods used in BCI-based P300/SSVEP systems for motor rehabilitation applications.

FIGURE 3 | Number of records identified from each database for the Systematic Literature Review.

shown in Figure 3; the first filtering step was based on the title,
abstract, and keywords of the articles. After the exclusion criteria
were applied, 2303 articles were discarded due to duplication or
publication date prior to 2011. Of the total articles published
after 2011 (1388), 1269 were excluded during full text review

(Step 2-Screening) because 51.02% (702) refer to implementation
and offline analysis of diverse classification algorithmic strategies,
without using them in an actual application. In contrast, 28.48%
(392) deal with BCI (P300- or SSVEP-based) used as speller,
and 12.73% (175) for diverse applications to control wheelchairs,
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home appliances, robots or video games; only the remaining
7.77% (107) are focused on applying (P300- or SSVEP-based)
BCIs for motor rehabilitation purposes.

The remaining 107 articles underwent a quality screening
where 27 studies were eliminated, because they did not refer to
either P300 or SSVEP BCIs; also 46 studies were eliminated for
not specifying the performance metrics of AI algorithms. Finally,
the remaining 34 papers were included as relevant to this SLR
and then selected for data extraction and further analysis (Step 3-
Included).

Categorization of the Results
Table 1 shows the 34 papers considered as relevant for this SLR,
of which 26.47% (9) refer to P300, 55.8% (19) to SSVEP strategy
and 17.64% (6) to the hybrid BCI modality. Of the six hybrid BCIs
articles, three combined P300 and SSVEP signals, and the other
three combined SSVEP (2) or P300 (1) with the motor imagery
paradigm. The papers were divided in five major categories,
corresponding to the actuator device controlled by the P300-
or SSVEP-based BCI system: FES (17.64%, n = 6), VR (23.52%,
n = 8), Orthosis (29.41%, n = 10), Prosthesis/Exoskeleton
(11.76%, n = 4), and RRS (Robotic Rehabilitation System)
(17.64%, n = 6). The main application of the selected works
is rehabilitation of the hand (52.94%, n = 18) and the lower
limb (26.47%), in the latter case by means of exoskeletons
and rehabilitation systems. In the VR category, objects and
proprioceptive stimulation (Tidoni et al., 2017) are controlled in
a virtual smart home environment (Edlinger et al., 2011).

All VEP-based BCI systems were tested on healthy subjects,
and only 4 (11.76%) of them included both abled-bodied
participants and patients, mainly with SCI and amyotrophic
lateral sclerosis (ALS). The remaining (30) works tested their
systems exclusively with healthy subjects. Nine of the identified
studies tested the BCI system in more than ten able-bodied
subjects (Brunner et al., 2011; Horki et al., 2011; Sakurada
et al., 2013; Kwak et al., 2015; Chen et al., 2018; Delijorge
et al., 2020; Son et al., 2020; Zhu et al., 2020). Of the
four studies that recruited both healthy subjects and patients
(Sakurada et al., 2013; Tidoni et al., 2017; Okahara et al.,
2018; Delijorge et al., 2020), only one (Sakurada et al., 2013)
reported the classification accuracy for both patients (88.46%)
and healthy subjects (81.1%). Moreover, all of them used a
different number of EEG electrodes (3–8), BCI paradigms
(P300, SSVEP and hybrid), and visual stimulation patterns.
Also, the four studies were focused on upper limb, but they
used different actuators: neuroprosthesis, orthosis, VR and
rehabilitation system.

Prior to classification, some feature selection algorithm is
commonly applied to (i) reduce redundancy, (ii) choose the
features more related to the target mental states in the BCI, (iii)
reduce the number of parameters to be optimized by the classifier,
or (iv) produce faster predictions for new data. Power Spectral
Density (PSD), Short-time Fourier Transform (STFT), Common
Spatial Patterns (CSP), and Independent Component Analysis
(ICA) are commonly used algorithms for feature extraction, but
amplitude/spectral power (37.83%) and CCA (10.81%) were the
most reported methods in this SLR.

Regarding the use of AI methods for classification, the most
reported ML algorithms were LDA (48.64%) and SVM (16.21%),
with reported accuracy range from 38.02 to 100% and ITR from
1.55 to 49.25 bpm. The best ITR (49.25 bpm) was for the SSVEP
paradigm using an ensemble classifier (Chen et al., 2018). Only
one study used a DL algorithm: CNN, with excellent classification
accuracy (99.28 and 94.93% in static and dynamic conditions)
but unspecified ITR (Kwak et al., 2017). On the other hand,
only five papers reported other performance metrics besides
classification accuracy: true positive rate, positive predictive
value, false positive rate, Area under the ROC Curve (AUC),
sensitivity and specificity. Finally, less than one out of three of
the selected papers reported the validation method they used:
k-fold cross-validation (29.41%, n = 10) and leave one-out cross
validation (2.94%, n = 1).

Other Results
As mentioned, hybrid VEP-based BCI systems were also found,
which use two BCI control signals, each one for a specific
task. For example, the hybrid SSVEP/MI system reported by
Savić et al. (2012) is used to active a FES system, where the
SSVEP signal is used for target selection and the MI strategy for
activation of the FES-assisted reach-to-grasp of a certain object.
Other hybrid BCI systems using P300 and SSVEP signals have
been reported, one for controlling a smart home environment,
where a SSVEP-based toggle switch was implemented to activate
and deactivate the P300 BCI (Edlinger et al., 2011). Another
hybrid BCI allows subjects to simultaneously imagine themselves
moving both hands or both feet, while fixing the sight on one of
two oscillating visual stimuli to activate an SSVEP BCI system
(Brunner et al., 2011).

Regarding EEG electrodes, SSVEP and P300 BCI systems used
a minimum of two recording channels for SSVEP (Li et al.,
2018) and 1 for P300 (Bhattacharyya et al., 2014), and it goes
up to a maximum of 19 for SSVEP (Son et al., 2020) and 32
for P300 BCIs (Duvinage et al., 2012; Huang et al., 2019). They
are placed predominantly over the parietal and occipital (visual
cortex) regions, in the positions P3, Pz, P4, PO3, PO4, T5, T6,
O1, Oz, and O2 of the 10–20 International system for EEG
electrode placement.

A key component in P300-/SSVEP-based BCI systems is
the visual stimulation module. Although this element is not
considered in detail in this paper, it is worth mentioning that
there is a great variety of visual stimulation patterns (Amaral
et al., 2017; Choi et al., 2019), ranging from flashes with variable
duration (tens or hundreds of ms), with matrices of different
types (LEDs, characters, or icons) to evoke P300 signals, and
a range of frequencies (from 5 to 25 Hz) to produce SSVEP
signals. For P300 BCIs, two strategies were used to improve the
performance, 3D virtual visual stimuli (Huang et al., 2019), and
overlay of smiley faces over targets (Delijorge et al., 2020).

However, if a low visual stimulation frequency is used by the
visual stimulation module, the system’s ITR may be limited. To
overcome this limitation, diverse stimuli colors and flickering
frequencies have been proposed for hybrid BCI’s. With these
variations of the visual stimulation paradigm, a good trade-off
is achieved between accuracy (92.30%) and ITR (82.38 bpm),
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TABLE 1 | Artificial Intelligence Algorithms applied for detection and classification of P300 or SSVEP signals in BCI Applications for motor rehabilitation.

First author,
year

BCI signal Application/actuator Subjects # Electrodes Visual stimulation
pattern

Feature
extraction
method

Classifier Performance Validation
Method

Impaired Healthy Accuracy (%) ITR (bpm)

Stan et al.,
2015

P300 Hand orthosis None 9 8 Flashes: 75 ms
Flash-time: 100 ms

NS LDA 100 NS NS

Kwak et al.,
2017

SSVEP Lower limb exoskeleton None 7 8 5 LEDs flashing at 9,
11, 13, 15, 17 Hz with
50% DC

NR CNN Static: 99.28,
Ambulatory:
94.93

NS 10-fold CV

Kwak et al.,
2015

SSVEP Lower limb exoskeleton None 11 8 5 LEDs: 9, 11, 13, 15,
17 Hz with 50% DC

CCA k-nearest
neighbors

91.3 32.9 5-fold CV

Delijorge et al.,
2020

P300 Robotic hand orthosis 8 ALS 18 8 2–30 random flashes CCA RLDA Offline: 78.7
(target), 85.7
(non-target).
Online: 89.83

18.13 5-fold CV

Zhao et al.,
2016

SSVEP FES, upper limb
rehabilitation

None 5 14 Squares flashing at 12,
15, 20 Hz

Power spectrum LDA Offline:
79.37–85.13
Online:
54.32–87.5

Offline: 27.54 10-fold CV

Tidoni et al.,
2017

SSVEP VR, Propioceptive
Stimulation

3 SCI 18 8 3 × 3 grid. flash-time:
133.33 ms dark-time:
83.34 ms

NS LDA 83.33 1.55 NS

Yao et al., 2011 SSVEP FES, upper limb
rehabilitation

None 4 8 White blocks of lights
flickering at 6.82, 7.5,
8.33, 9.37, and 12.5 Hz

5 flickering
frequencies and
their harmonic
components

LDA Online: 82.22 Ns Ns

Brunner et al.,
2011

Hybrid:
SSVEP + P300

Moving both hand or
both feet

None 12 SSVEP: 2. MI:
3.

LEDs flickering at 8 Hz
(top) and LED at 13 Hz
(bottom)

logarithmic band
power: SSVEP and
ERD

LDA ERD: 79.9
SSVEP: 98.1
Hybrid: 96.5

ERD: 3.2.
SSVEP (6.1)
hybrid (6.3)

CV

Edlinger et al.,
2011

Hybrid:
SSVEP + P300

VR, control of virtual
smart home
environment

None 3 SSVEP: 8.
parietal/
occipital. P300:
8 frontal,
central
occipital,
parietal

P300: rectangular
matrix with characters
or icons, flashed in a
random order SSVEP:
flickering lights (LEDs)
or flickering symbols (5
-25 Hz)

SSVEP: minimum
energy (ME)
algorithm, P300:
NA

P300: LDA,
SSVEP: LDA

P300: 100 NS NS

Su et al., 2011 Hybrid:
P300 + MI

VR None 4 P300: 14. MI:
22.

NS P300: piecewise
cubic spline
interpolation+
Butterworth
filter + average. MI:
multiple band-pass
filters

P300: SVM, MI:
FLDA

Offline (MI):
92.5–100

NS NS

(Continued)
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TABLE 1 | (Continued)

First author,
year

BCI signal Application/actuator Subjects # Electrodes Visual stimulation
pattern

Feature
extraction
method

Classifier Performance Validation
Method

Impaired Healthy Accuracy (%) ITR (bpm)

Sakurada et al.,
2013

SSVEP + P300 Upper limb
rehabilitation,.
Occupational therapy

3 (upper
cervical
SCI)

12 SSVEP: 3 SSVEP: 3 LEDs
flickering at 8 Hz (green
and blue). P300: Flash
matrix

power spectrum
(FFT) + CCA

SVM Healthy: 88.46.
Patients: 81.19

NS NS

Choi et al.,
2016

SSVEP + MI FES, hand-wrist
rehabilitation. SSVEP to
stop FES

None 4 MI: 3 central.
SSVEP: 2
occipital.

SSVEP: LED flickering
at 9 Hz

MI: ERD/ERS,
SSVEP: averaged
Pearson’s
correlation (r-value)

MI: FLDA
SSVEP: CCA

MI: 90.485 NS 10-fold CV

Yao et al., 2012 SSVEP FES, knee rehabilitation
(movement training
system)

None 2 8 a red horizontal bar,
flickering light at 6.82,
8.33 and 12.5 Hz

Power spectrum LDA Online:
80.36–96.4

NS 10-fold CV

Duvinage et al.,
2012

P300 Lower limb
rehabilitation. Foot
lifting orthosis

None 5 32 NS xDAWN + two
epochs average

LDA 94.30 NS NS

Ortner et al.,
2011

SSVEP Hand Orthosis None 7 1: O1 2 LEDS, flickering at 8
and 13 Hz

PSD HSD 78 NS NS

Rohani et al.,
2014

P300 VR None 5 4 NS NS SVM NS NS NS

Son et al., 2020 SSVEP FES, upper limb
rehabilitation

None 11 19 flickering action video
at 15 Hz

STFT, Power
average

CSP
(discriminating
2 class)

93.51 NS 10-fold CV

Chen et al.,
2019

High-frequency
SSVEP

Robotic arm None 10 9: parietal or
occipital

Flicker: 30, 31, 32, and
33 Hz

Spectral amplitude FBCCA Online: 97.75 Online: 17 NS

Li et al., 2018 SSVEP Hand prosthesis None 6 2: occipital Scene graph paradigm
-drinking & eating-, (8,
9.24, 10.9, and 12 Hz)

Time-frequency
spectra, STFT

CCA 94.58 19.55 NS

Horki et al.,
2011

SSVEP + MI Prosthesis: artificial
upper limb, elbow
control

None 12 26: occipital
and central

2 bars of red LEDs,
flickering at 8 and
13 Hz

Sequential floating
forward selection

CCA Offline: 91 NS 10-fold CV

Koo et al., 2015 SSVEP VR None 3 8: central,
parietal and
occipital

Flickering lights at 5.5,
6.7, 7.5, and 8.6 Hz

NS CCA for SSVEP
detection

100 24.58 NS

Chu et al.,
2018

SSVEP Robotic rehabilitation
system

None 6 14: frontal,
parietal,
occipital

Three squares flashing
at 12, 15, 20 Hz

Power spectrum LDA (voting) 82.30 27.40 NS

(Continued)

Frontiers
in

H
um

an
N

euroscience
|w

w
w

.frontiersin.org
9

N
ovem

ber
2021

|Volum
e

15
|A

rticle
772837

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum
-15-772837

N
ovem

ber24,2021
Tim

e:10:37
#

10

G
utierrez-M

artinez
etal.

P
300/S

S
V

E
P

-B
C

Is
for

M
otor

R
ehabilitation

R
eview

TABLE 1 | (Continued)

First author,
year

BCI signal Application/actuator Subjects # Electrodes Visual stimulation
pattern

Feature
extraction
method

Classifier Performance Validation
Method

Impaired Healthy Accuracy (%) ITR (bpm)

Gui et al., 2015 SSVEP Lower limb
rehabilitation system
(hip and knee)

None 6 4: occipital and
parietal

Flickering at 6.82, 7.5,
8.33, and 12.5 Hz

Spectral amplitude LDA 92.40 NS NS

Huang et al.,
2019

P300 VR None 6 32 3D stereo visual stimuli NS BLDA 96 42.51 10-fold CV

Yao et al., 2019 SSVEP VR None 10 9: parietal and
occipital

2 stimulus presentation
methods. 3D stimulus
at 9, 10, 11, 12, 45 Hz

NS FBCCA Static mode: 92 Static mode:
22.49

Leave
one-out CV

Touyama and
Sakuda, 2017

Collaborative
SSVEP

VR None 8 2: parieto-
occipital

two virtual cubes
flickering at 6 and 8 Hz

Spectral amplitude FLDA 95.2 NS NS

Bhattacharyya
et al., 2014

P300 Robot arm control for
prosthetics application

None 5 1: Pz Oddball-like paradigm (Temporal) Average
of 4 epochs

SVM (linear
kernel)

Offline: 95.2.
Online: 81.5

Online: 23.83 NS

Chen et al.,
2018

SSVEP Robotic arm control None 12 10: P3, Pz, P4,
PO3, PO4, T5,
T6, O1, Oz, O2

15 targets (8–15 Hz in
0.5 Hz steps)

FBCCA for EEG
decomposition

Ensemble
Classifier

Robotic
movement
task: 92.78

49.25 NS

Casey et al.,
2019

P300 Robotic arm control None 4 6: Pz, P3, P4,
PO3, PO4, and
Oz

P300 speller
programmed to control
a robotic arm

Minimum and
maximum
amplitudes in the
frequency domain
(6 features per
electrode)

2 classifiers:
SVM (RBF
kernel), and
Random Forest

38.023 NS NS

Achanccaray
et al., 2019

P300 Robotic arm Control None 8 16 Two images flashing
randomly: a wheelchair
and a robotic arm

CSP BLDA Training: 91.6.
Test: 82.6.

NS NS

Ding-Guo and
Ying, 2012

SSVEP FES, lower limb None 6 NS NS Frequency-domain LDA 85 NS NS

Huang et al.,
2013

P300 Elbow rehabilitation
robot

None NS NS Panel with 25
commands

NS SVM Online: 90.82 NS NS

Okahara et al.,
2018

SSVEP Neuro-prosthesis 3-ALS NS 1: Oz 4 × 4 LED flicker at
32–54 Hz

PSD Classification
Threshold

Online 83.3 NS NS

Xu et al., 2021 SSVEP Upper Limb
Exoskeleton

None 5 6: O1, O2, Oz,
P3, Pz, P4

4 Flickering squares at
8.57, 10, 12, 15 Hz

Frequency domain CCA Offline: 86.1 NS NS

BLDA, Bayesian linear discriminant analysis; CCA, canonical correlation analysis; CSP, common spatial patterns; DC, duty cycle; FLDA, Fisher’s Linear discriminant analysis; LDA, linear discriminant analysis; NS,
non-specified; SVM, support vector machine; VR, virtual reality; CV, cross validation; FES, Functional Electrical Stimulation; MI, motor imagery; SSVEP, steady state visually evoked potentials; SCI, spinal cord injury;
HSD, harmonic sum decision; STFT, short-time Fourier Transform.
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enhancing the potential to develop P300/SSVEP-based BCIs for
the control of rehabilitation devices (Katyal and Singla, 2020).

DISCUSSION

The results of the SLR are discussed according to the Research
Questions stated in section “Research Questions.”

RQ1: What Type of Evoked Potential
(P300 or Steady State Visually Evoked
Potentials) Is Involved in the
Brain-Computer Interface Visual
Paradigm?
As shown in this SLR, despite the large number of articles
related to BCI systems based on VEPs, most of them report
the implementation and analysis of diverse algorithmic strategies
to train and test their classification performance, without any
actual application, such as motor rehabilitation. We found that
using either P300 or SSVEP signals, it is possible to operate a
BCI system by performing visual attention tasks. EEG signal
features in those systems are extracted in the time or frequency
domain, without compromising greatly the system’s accuracy and
requiring little or no training.

The SSVEP signal has some advantages over the P300: (1)
no mental task is required to induce the intended potential,
(2) enables subjects to use the paradigm without requiring
great mental load, and (3) it achieves higher ITR. However,
the number of command choices in an SSVEP paradigm is
generally represented by frequencies within the band of 5–20 Hz
(Katyal and Singla, 2020).

SSVEP-based BCIs can encode multiple commands without
any extensive user training and show potential for high-speed
communication. For example, Chen et al. (2015) reported an
ITR of 267 bpm in a 45-target system (Chen et al., 2015) and
in Nakanishi et al. (2018) was reported an ITR of 325.33 bpm
in a 40-target system. Although the efficiency and performance
of different algorithms for detecting the P300 and the SSVEP
in BCI applications have already been evaluated in a variety of
laboratory demonstrations (Kluge and Hartmann, 2007; Kundu
and Ari, 2017), many difficulties are still faced to implement
this type of BCI systems for the control of devices with
clinical purposes. One of these problems is the limitation in the
number of available stimulation frequencies (Müller-Putz et al.,
2005). One limitation of those papers is that not all of them
report a full set of technical descriptions, such as the signal
processing techniques for feature extraction and performance
metrics of the classification algorithms, in most cases they
only report classification accuracy. However, from the reported
online performance of SSVEP-based BCIs (Table 1), it is clear
they provide effective communication speed with good average
accuracy after a very short training period (Guger et al., 2012).
However, flickering lights could be disturbing for some people.
In the other hand, P300-based BCIs are less accurate than SSVEP-
based BCIs but are more suitable for people suffering epilepsy or

people having difficulties with accurate control of the eye muscles
(Allison et al., 2010).

RQ2: Is the Purpose of the BCI System
Aimed to Some Motor Rehabilitation
Application, Including Orthosis,
Prosthesis, Virtual Reality or Functional
Electrical Stimulation?
As shown in Table 1 and Figure 2, SSVEP- and P300-based
BCIs have been used in motor rehabilitation applications to
drive primarily four types of actuators and then facilitate brain
plasticity in patients with limb motor dysfunction. They are (1)
Orthosis (Ortner et al., 2011; Duvinage et al., 2012; Stan et al.,
2015; Delijorge et al., 2020) and exoskeleton (Gui et al., 2015;
Kwak et al., 2015; Bhagat et al., 2016), used to perform sequences
of movements to activate the hand, wrist, arm, leg or foot. (2) FES,
which has been reported to be of help to regain coordination and
improve performance in functional tasks (Do et al., 2011; Ding-
Guo and Ying, 2012; Yao et al., 2012; McCabe et al., 2015; van
Dokkum et al., 2015; Choi et al., 2016; Osuagwu et al., 2016; Zhao
et al., 2016; Son et al., 2020). (3) Prosthesis (Li et al., 2018), and (4)
VR (VEP-based BCI systems immersed in virtual environment)
(Su et al., 2011; Koo et al., 2015; Tidoni et al., 2017; Touyama
and Sakuda, 2017; Choi et al., 2019; Huang et al., 2019; Yao et al.,
2019).

RQ3: Is the Classification Algorithm
Based on Artificial Intelligence Methods?
Most algorithms for classification of VEP-based BCI signals
are based on AI methods. The advantages and disadvantages
of each of them depend on the signal and the application.
A simple and efficient ML algorithm, LDA, was among the
best methods in terms of classification accuracy and ITR used
in P300-based (ACC = 100% orthosis) (Stan et al., 2015)
(ACC = 94.3%) (Duvinage et al., 2012), and SSVEP-based BCI
systems selected in the SLR (ACC = 79%, ITR = 27.54 bpm-
FES) (Zhao et al., 2016), (ACC = 83.33%, ITR = 1.55 bpm
-VR) (Tidoni et al., 2017) (ACC = 82.22% -FES) (Yao et al.,
2011), (ACC = 80-96% -FES) (Yao et al., 2012), (ACC = 82.30%,
ITR = 27.4 bpm) (Chu et al., 2018) (ACC = 92.4%) (Gui
et al., 2015), (ACC = 85% -FES) (Ding-Guo and Ying,
2012). Moreover, classification Accuracy obtained with LDA
in P300-based BCI is slightly higher than with SSVEP-
based BCI. Hence, LDA can be considered a first-choice ML
classification algorithm for BCIs based on visual paradigms for
rehabilitation applications.

Some ML classifiers such as FBCCA, FLDA, and BLDA
have been proposed to improve the trade-off between accuracy
and ITR of VEP-based BCI systems. They presented accuracies
over 90% for both modalities (P300 and SSVEP) (Touyama
and Sakuda, 2017; Achanccaray et al., 2019; Chen et al.,
2019; Yao et al., 2019). The FBCCA and BLDA algorithms
were superior to LDA in terms of ITR; for example, using
a FBCCA (Chen et al., 2018) achieved an ACC = 92.78%
with a high ITR (49.25 bpm), when an SSVEP signal was
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used to control a robotic arm. In the other hand, a BLDA-
based classification algorithm was applied in a P300-based BCI
coupled to the VR environment; in this case ACC = 96%
and ITR = 42.51 bpm were achieved (Huang et al., 2019).
The filter bank CCA (FBCCA) method has been extensively
studied by Chen et al. (2018). This method incorporates
the fundamental and harmonic frequency components to
improve the detection of SSVEPs and has demonstrated its
superiority over the standard CCA method (Chen et al., 2015,
2019).

The only work in the SLR that used a DL algorithm
(CNN) for signal classification was (Kwak et al., 2017). In
that study, the authors reported a BCI system for control of
a lower limb exoskeleton via a visual stimulus generator that
produced five different frequencies for SSVEP signals. They used
CCA, Multivariate Synchronization Index (MSI) and CCA with
k-Nearest Neighbors (CCA-KNN) to compare the classification
result with three different classification methods. Using CNN-1
(three-layer network), they achieved an accuracy of up to 91.3%
and an ITR of 32.9 bpm.

Beyond the works included in this SLR, DL methods have
some advantages for classification of SSVEP and P300 BCI signals
in comparison with the traditional ML algorithms, including:

(1) Higher Classification Accuracy (Thomas et al., 2017).
(2) DL methods reduce the dependence on manually designed

feature extraction.
(3) As the size of the dataset increases, DL techniques tend

to perform better than traditional classifiers (Kwak et al.,
2017; Lee J. et al., 2020).

(4) The development of new powerful GPUs (graphics
processing units) and cloud-based AI services have
improved the cost-effectiveness of DL systems.

Despite those advantages, DL techniques have some
disadvantages compared to ML algorithms:

(1) They are complex, computationally expensive, and require
a large amount of data to be trained.

(2) Configuration of the different parameters of DL systems is
still a major challenge.

(3) DL methods have not yet shown convincing improvements
over state-of-the-art ML classification algorithms for BCI
(Lotte et al., 2018).

RQ4: Are the Validation Methods
Mentioned?
Regarding validation methods, about one third of the studies
reported the type of cross validation they used (1: leave one-out,
2: 5-fold, and 7: 10-fold). This data is relevant as an indicator
of the robustness and confidence on the reported performance
(accuracy) of the of the AI-based classification algorithms, and
of their generalization ability. When the validation methods are
not explicitly reported, the certainty about the results may be
questionable (Abdulaal et al., 2018).

RQ5: Does the Paper Report the
Obtained Values of the Performance
Metrics Values (Accuracy, Information
Transfer Rate, etc.) of the Algorithms?
Two important performance criteria for classification algorithms
in BCI systems are accuracy and ITR. According to BCI literature
(Hwang et al., 2013), an accuracy greater that 70% must be
achieved by any subject to be able to use a BCI system effectively
for the control of external devices. The average classification
accuracy of SSVEP-based BCI systems was 90.3% (n = 20), while
for P300 was 85.9% (n = 9), and 93.41% (n = 6) for hybrid systems.
In contrast, few works report the ITR, with a mean value of
20.88 bpm for SSVEP (n = 10), 28.15 bpm for P300 (n = 3), and
6.3 bpm for the only hybrid BCI that reported it (Brunner et al.,
2011). It is worth mentioning that the average accuracy of P300
systems was lower than for SSVEP due to a single paper (Casey
et al., 2019) that reported 38% classification accuracy. Without
taking into consideration that article (n = 8) the average accuracy
of P300 would be very similar to SSVEP (91.88%).

However, the above comparisons must be taken with reserve,
since the number of works reporting the metrics varies a
lot across modalities. Moreover, there is a high heterogeneity
in different aspects of their experimental paradigms, visual
stimulation features (frequencies, colors, signs, figures), subjects
(healthy or patients), rehabilitation application (FES, prosthesis,
orthosis, VR, etc.), length of data analysis windows, signal
acquisition hardware, type (passive, active) and number of
electrodes, etc. Each of those aspects affect different parts of
the system that influence performance metrics, such as the
complexity and execution time of the signal processing and
classification algorithms.

Despite all the differences across the articles in technical
and human aspects that can affect performance metrics, it is
noticeable the high similarity in the average accuracy for the
three BCI types considered. Regarding hybrid BCIs, they did not
significantly increase the classification accuracy in comparison
with single modality BCIs, as was the case for Brunner et al.
(2011), with 96.5% for SSVEP and 98.1% for the MI/SSVEP
hybrid modality. Moreover, most hybrid BCIs did not report the
ITR value. A possible reason for this is, that in comparison with
single modality VEP-BCIs, hybrid BCIs have relatively low ITRs
due to more complex setups, involving one operation stage for
each BCI signal, each one with a signal processing block, plus the
necessary pauses between operation stages. For these and other
reasons, when the users present motor imagery BCI illiteracy,
single modality VEP-based BCI systems could be a better option
that hybrid ones (SSVEP + MI), as suggested by Brunner et al.
(2011) for SSVEP.

RQ6: Are Patients or Healthy Subjects
Involved in the Study?
All VEP-based BCI systems included abled-bodied and only a
handful of them included both healthy subjects and patients
with SCI or ALS disease. Several human factors directly related
with the experimental setup of the BCIs, such as reaction times,
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mental load and fatigue, and user engagement and motivation,
could have impacted the performance metrics results. Those
factors become especially relevant in users with severe motor
impairments. Regarding P300-based BCIs, it has been reported
that the P300’s latency is higher for disabled subjects (around
500 ms) when compared to able-bodied ones (around 300 ms),
and that the amplitude at the P300 peak is smaller for disabled
(around 1.5 µV) than for the able-bodied subjects (around
2 µV) (Hoffmann et al., 2008). As an example, Sakurada et al.
(2013) presented a hybrid (SSVEP + P300) BCI system, that
compared the classification accuracy of healthy subjects (88.46%,
n = 12) and SCI patients (81.1%, n = 3). These differences can be
explained, at least in part, by the difficulty of patients to control
eye gaze, and head or trunk posture during the BCI sessions,
which could have in turn exacerbated physical and mental fatigue.

Beyond Research Questions
Other topics of interest were identified during the development
of the SLR, that fall outside the scope of the above
Research Questions. These topics are discussed in the
following subsections.

Visual Stimulation Patterns
Some studies have suggested that different visual stimuli patterns
produce variations in the VEP signals, and thus have an impact
on the BCI performance (Speier et al., 2017; Li et al., 2020).
Mainly, low- (up to 10 Hz) and medium-frequency (13–25 Hz)
stimuli have been adopted in SSVEP (Kuś et al., 2013). Although
stimulation in these frequency ranges evoke SSVEPs with a
large amplitude, it can be annoying or tiring for some users.
A possible solution to this problem is to use high-frequency
stimulation. High-frequency stimuli can decrease visual fatigue
caused by flickering, thus making the SSVEP-based BCI a
more comfortable system (Wang et al., 2005; Diez et al., 2011;
Volosyak et al., 2011). Other visual stimulation techniques
have been proposed to enhance SSVEP BCIs performance,
like amplitude modulation (Chang et al., 2014), variation of
the duty cycle (Shyu et al., 2013) or interpolation techniques
(Andersen and Müller, 2015).

For P300-based BCIs, variations in color and arrangement
of the visual stimuli (Guo et al., 2019) and overlay of targets
with pictures of faces of famous people (Kaufmann et al.,
2011), have shown to increase the classification performance for
spelling applications. Flashing elements can change the color
from blue to green at the time of intensification, (Takano
et al., 2009), or 3D virtual visual stimuli can also be presented
to the subject (Huang et al., 2019). However, if a low visual
stimulation frequency (interstimulus interval) is used by the
visual stimulation module, the system’s ITR may be limited
(Mainsah et al., 2015). To overcome this limitation, diverse
stimuli colors and flickering frequencies have been proposed
for hybrid BCI’s achieving a good trade-off between accuracy
(92.30%) and ITR (82.38 bpm) (Katyal and Singla, 2020). These
approaches have the potential to enhance the development
and performance of P300/SSVEP-based BCIs for the control of
rehabilitation devices.

Electrode Setup
The configuration of electrodes (number and placement)
determines the suitability of the system for daily use. In the
SLR systems with 4–32 electrodes were found, predominantly
located over the parietal-occipital area for SSVEP and widespread
from frontal to occipital areas for P300. VEP-based BCI systems
using fewer electrodes require also shorter donning times and are
more user friendly than systems with many electrodes. However,
if too few electrodes are used, there is a risk of not capturing
all necessary features for accurate classification. This has been
shown previously for both P300 (McCann et al., 2015) and SSVEP
(Carvalho et al., 2015; Ravi et al., 2019) BCI systems, in studies
that find optimal subsets of channels, that enhance classification
accuracy. Although small subsets of electrodes (even with one or
two) are selected as optimal for some users and feature extraction
algorithms (McCann et al., 2015), in most cases a third or more
of all available electrodes are selected through channel selection
algorithms (Carvalho et al., 2015) to work properly. Interestingly,
in users with low SSVEP responses (BCI illiteracy) the electrode
subsets chosen through channel selection algorithms may include
preferentially those located in regions (central and frontal) not
typical (occipital and parietal) for this BCI modality (Carvalho
et al., 2015). Likewise, it has been proposed in (visually evoked)
P300-based BCIs (McCann et al., 2015) the search of non-
standard sets of electrodes, to optimize the performance in
individuals with motor impairments, who have little or no control
of eye movements.

Steady State Visually Evoked Potentials and P300
Brain-Computer Interfaces for Motor Rehabilitation
Although both SSVEP and P300 BCI systems based on
visual stimuli were found in this SR, there are fundamental
and technical aspects of each one that can influence their
suitability to be incorporated in rehabilitation applications,
to name: the experimental paradigm, the degree of cognitive
and sensory requirements, covert and over attention, and
synchronous/asynchronous operation. These aspects are further
discussed below.

First, their experimental paradigms and neurophysiological
basis are essentially distinct. On the one hand, SSVEP signals
directly reflects the (fixed) frequency of presentation of visual
stimuli in EEG oscillations. These signals are recorded typically in
occipital electrodes over the visual cortex area (Müller-Putz et al.,
2005), and they reflect the sensory processing of visual stimuli.
On the other hand, P300-based BCIs based on visual stimuli
are designed around the oddball paradigm, in which a series of
stimuli (one relevant, or target, and other irrelevant, and ignored)
are presented repeatedly in random order. In this case, the key
variables are the probability of occurrence of the target stimulus
and the inter-stimuli interval, which can be varied randomly.

A main difference in the experimental paradigm of SSVEP and
P300 BCIs is the task required for the subject while looking at
the target. For the SSVEP, the only requirement is to maintain
the gaze fixed on the target visual stimulus. Generally, time
windows of 1–3 s are enough to identify when the subject is
visually attending the target (Liu et al., 2020). In the P300 case,
the user is asked to perform some mental activity for each flashing
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of the visual target that he or she acknowledges consciously,
while ignoring the non-target stimuli. Generally, this mental task
involves counting mentally the number of times that the target
symbol or picture is intensified (visual stimuli) (Arvaneh et al.,
2019). This is performed to engage continuously the working
memory, thus involving a definite cognitive activity besides the
visual attention task. Thus, cognitive (N200, P300) and visual
(P100, N100) potentials are often found on EEG signals from
P300 BCIs (Aloise et al., 2012). In contrast, sinusoidal-like SSVEP
signals directly reflect the frequency (and harmonics) and phase
of the attended stimuli (Sozer, 2018), without the need of any
cognitive or behavioral task. Therefore, while P300-BCIs can be
more cognitive demanding, SSVEP BCIs tend to induce more
visual fatigue, especially when multiple targets are presented
simultaneously (Dreyer et al., 2017). The cognitive demand of
P300 BCIs may explain in part the lower average accuracy of
papers included in the SLR, and why more (twice) papers used
SSVEP instead of P300 signals. Moreover, of the four articles in
the SLR involving patients, three were based on SSVEP and only
one in P300, with relatively good levels of classification accuracy
(80–90%). Therefore, differences in cognitive and visual fatigue
can be also a key factor when choosing a BCI approach for
patients with cognitive and motor impairment, like stroke or SCI.

One shared experimental requirement of SSVEP and P300
BCIs is that, to evoke the expected EEG activity, user attention
must be focused on the current visual target for some time.
For both paradigms the BCI system performs better when the
sight is centered on the visual target (foveal vision) (Walter
et al., 2012; Ron-Angevin et al., 2019). This is known as overt
attention and is one of the key differences of SSVEP-based with
P300-based BCIs, the latter having proved to work well also
when visual stimuli are attended covertly, through the peripheral
vision (Aloise et al., 2012). Although promising efforts have also
been made to develop SSVEP BCIs based on covert attention
(Zhang et al., 2010; Reichert et al., 2020), their performance
still is lower than with overt attention. This aspect of visual
BCIs has implication for the development of applications. In
the case of motor rehabilitation of users with restrained control
of gaze and neck movement (such as those with ALS or
high cervical SCI), the possibility of attending stimuli covertly,
and still obtaining informative EEG signals, would improve its
clinical feasibility.

P300-based BCIs seem to have some advantages over SSVEP
ones, since multi-target systems are feasible even using covert
attention (Aloise et al., 2012), while SSVEP BCIs using this
approach have been limited to a couple of targets (Zhang et al.,
2010). Hence, a P300-based BCI system designed for covert
attention, would allow the subject to attend visual stimuli (for
selection of multiple actions or commands) while performing
functional motor tasks, aided by some of the actuators mentioned
in the SLR (FES, orthosis, robot, etc.). In the other hand,
an SSVEP BCI system, based on overt attention, would be
better suited for VR-based rehabilitation applications, with the
user’s visual attention centered (overtly) in the visual target,
since all stimuli and interactions are designed to be performed
through the virtual environment. The papers analyzed in this
SLR did not consider explicitly covert attention in their design,

which remains an approach to be explored for visual BCI-based
motor rehabilitation.

Another relevant aspect of visual BCI paradigms regarding
their feasibility for motor rehabilitation is their type of
operation: asynchronous or synchronous. In other words, if the
system allows the user to convey commands at any moment
(asynchronous) or only at times established by the system
(synchronous) (Nooh et al., 2011). Clearly, this can be a
key factor in the design of motor rehabilitation systems and
interventions based on visual BCIs. For motor and neurologic
rehabilitation systems and interventions, a key factor is the user’s
active engagement and participation, while performing some
functional tasks by their own voluntary effort or with the help of
assistive technologies. This approach to rehabilitation is known as
activity-based (Backus, 2008), and to develop systems compatible
with this approach, continuous and reliable interaction between
the user and the technology is highly desirable. However,
these requirements are not easy to fulfill when using BCIs
for the control of rehabilitation applications. Motor related
BCI paradigms, such as motor imagery and motor intention,
have been used extensively for BCI-controlled rehabilitation
technologies (Khan et al., 2020). However, they’re limited by
the number of possible commands (Lotte et al., 2010) and BCI
illiteracy (Lee et al., 2019), particularly for patients with severe
disability (Rupp, 2014).

SSVEP and P300-based systems have proved to obtain higher
classification performance and ITR than Motor-related BCI
paradigms (Rupp, 2014). Hence, the importance of developing
and studying visual BCI systems for these applications or
combine them with motor paradigms, like the ones found on
these SLR (Horki et al., 2011; Choi et al., 2016). For P300 BCIs,
multiple repetitions (5 or more) of the whole stimuli sequence are
typically needed to predict accurately the user’s choice (Bianchi
et al., 2021). Depending on the number of possible targets and
interstimulus interval, the selection time for a single command
can be relatively slow (tens of s) (Mainsah et al., 2015). Therefore,
P300-based BCIs are not optimal for continuous control of
actuators (Prosthesis, orthosis, FES, etc.) in the context of motor
rehabilitation applications. Moreover, by its own nature, P300
BCIs operate in a synchronous way, a feature that restricts the
operation of the system to certain times and cues indicated by
the system. Thus, P300-based systems are often used to select and
convey discrete and preprogrammed commands to the actuator,
as those found in this SLR to control orthoses (Stan et al.,
2015), VR systems (Rohani et al., 2014), or rehabilitation robots
(Achanccaray et al., 2019). Interestingly, none of the analyzed
papers combined a P300 BCI with an FES system, being an
interesting possibility for future developments.

Regarding SSVEP BCIs, involving steady state signals they
are suitable to implement asynchronous systems by continuously
presenting the visual stimuli. In such case, the user could choose
to perform a target selection task at any moment, and the system
would be able to recognize it. In contrast to P300 BCIs, SSVEP
BCIs have generally fewer possible targets, which correspond to
the number of discernible frequencies, phases, and other features
of the visual stimuli (and the evoked EEG signals). However,
stimuli in SSVEP BCIs must be carefully designed since the
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system must be capable to identify a zero-class (non-control)
besides the classes associated to the actual commands. When this
is not considered, false positives are very likely to occur, like
Ortner et al. who reported an SSVEP-based BCI for the control
of a hand orthosis (Ortner et al., 2011). Therefore, the orthosis
often opened or closed when the user did not want to convey
any control signal, since the flickering lights were still within their
visual field. In contrast, this would not be an issue with a P300-
based BCI, that requires cognitive engagement of the subject in
the task, as discussed earlier.

Challenges and Future Directions
In this SRL, a large heterogeneity was identified in the reported
BCI signals (P300, SSVEP or hybrid), applications (orthosis,
prosthesis, FES, VR) and feature extraction methods, while
the reported performance metrics were predominantly accuracy
and ITR. Regarding classification methods, classical supervised
ML algorithms (LDA and SVM) and some variations prevail,
letting open the opportunity for the development of DL-
based classification algorithms for visual BCI-based motor
rehabilitation applications. The results of this work suggest
the need to develop standard protocols for assessment of
classification performance, when using VEP-based BCI systems
for motor rehabilitation and assistive applications.

There are few reports of prototypes in pre-clinical stages
of development with online tests. Therefore, there is a great
opportunity to develop VEP-based BCI systems for motor
rehabilitation. In this context, classification accuracy is a key
metric to improve the BCI-user interaction and facilitate their
adoption in clinical settings. Hence, strategies to improve the
system’s performance for users with low accuracy must be
implemented, and the visual interfaces must be closely adapted
to the user needs. Special attention should be paid to the visual
stimulation module since stimulus patterns have a direct impact
on the performance of P300 or SSVEP-based BCIs.

Also, it is important to investigate further the application
of VR combined with BCI systems where patients can be
stimulated simultaneously through multiple sensory modalities:
visual, auditory, and somatosensory. That way, patients can
have a richer experience while playing an active role in
effective rehabilitation interventions, that could potentially
help to improve and accelerate the motor recovery processes.
Furthermore, it is essential to carry out pre-clinical studies
and controlled interventions that include patients with different
conditions such as stroke, ALS or SCI. Once those studies are
performed and clinical scales are evaluated, it will be possible to
validate the use of these systems in the clinic.

Finally, future works should focus on optimizing the
implementation and training of artificial intelligence algorithms
(especially DL-based methods) to enhance classification
performance and achieve faster and more efficient online
P300-based and SSVEP-based BCI systems. Only then, these
systems could enhance their potential for the development of
rehabilitation interventions aimed to help in the recovery of lost
motor functions.
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