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Introduction
Magnetic resonance imaging (MRI) is the most commonly 
used medical imaging technique to demonstrate tumor mor-
phology and the relationships between malignant lesions and 
the neighboring structures. MRI also provides relevant clini-
cal information for clinical management and surgical plan-
ning. In recent years, sequential sets of MRI data and the 
development of small molecular weight paramagnetic contrast 
agents have had a major impact in the assessment and moni-
toring of tumor treatment response.1

The blood–brain barrier (BBB)2 is a membrane that sepa-
rates the parenchyma of the central nervous system from the 
blood. It consists of endothelial cells interconnected by tight 
junctions that cause a selective permeability based on molec-
ular weight and osmotic characteristics. In pathologies such 
tumors,3 multiple sclerosis,4 and acute ischemic strokes,5 the 
BBB is disrupted by various mechanisms. The BBB disruption 

is reflected by, for example, MRI contrast enhancement in 
pathological areas.

Dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) is a useful imaging technique for assess-
ing the BBB leakage; it is based on the extravasation of the 
contrast agent (CA) from arteries to the parenchyma, which 
leads to decreased longitudinal relaxation time and therefore 
increased MRI signal intensity. It relies on fast T1-weighted 
MRI sequences obtained before, during, and after the intrave-
nous administration of a gadolinium (Gd)-based CA.

There are several models for the quantification of DCE-
MRI data that can be applied in many anatomical areas such 
as brain, prostate, and breast tissue, aiming to extract tissue 
physiological parameters. These models provide independent 
markers of angiogenic activity, and therefore act as diagnostic 
and prognostic indicators in a broad range of tumor types.  
A number of physiological parameters of vascularization 
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coming from pharmacokinetic (PK) models play an important 
role in quantitatively assessing tumor angiogenesis within 
a region. Neovascularity and leaky vessels are associated  
with higher ktrans (volume transfer constant between plasma and 
EES) values, while response to therapy has been correlated with 
a drop in ktrans values between imaging sessions.6 The results 
can be combined with other quantitative measures such as T2*  
perfusion7 in brain and H2

15O-PET8 in body imaging for 
the evaluation of treatment response. In this paper, we study 
the applicability of PK models for the early characteriza-
tion of therapy response in glioblastoma multiforme (GBM) 
patients and also present a novel framework for enhancing 
the imaging biomarkers by pre-segmenting the tumor region 
of interest (ROI) into subregions according to vascular 
heterogeneity metrics.

Methods
MRI acquisition protocol. All MRI acquisitions were 

performed on a 3-T Philips scanner. Prior to the CA injection, 
two acquisitions were made for the variable flip angle (VFA) 
data using flip angles (FA) of 5° and 15°, repetition time (TR) 
of 10 ms, and echo time (TE) of 2 ms. DCE-MRI data were 
acquired using fast three-dimensional spoiled gradient echo 
(SPGR) with TR 3.6 ms, TE 1.75 ms, and FA 6°. The dimen-
sions of the image was 192 ×  192 voxels with 36  slices and 
50 time points for DCE-MRI protocol, temporal resolution 
6  s, and the size of one voxel 1.15  ×  1.15  ×  2.99  mm. The 
type of CA that was used was Dotarem, and the quantity was 
0.1 mmol/kg of body weight.

Preprocessing. All datasets (both DCE-MRI and VFA) 
were co-registered to the arterial phase [maximum signal- 
to-noise ratio (SNR)] of the DCE-MRI, and a temporal 
smoothing algorithm was subsequently used to remove the 
intrinsic noise of the MRI signal. Due to the large discrep-
ancies in the values of arterial concentrations among differ-
ent subjects, we used a theoretical arterial input function 
(AIF) for all subjects. To this end, biexponential decay was 
assumed to describe the plasma concentration using values 
from earlier work.9

Estimation of contrast agent concentration. To pro-
ceed to the quantification of CA kinetics from signal intensi-
ties (SIs), the concentration of CA should be determined at 
each time point of the dynamic scan; possibly the most crucial 
step. A first approach is to assume that the CA concentration 
is proportional to the change in SI. However, when CA con-
centrations are high, the relationship between concentration 
and SI becomes nonlinear10 and the previous approximation 
may lead to significant errors.

There are several techniques for measuring changes in 
T1 due to CA presence, such as inversion recovery,11–13 Look-
Locker,14,15 and VFA.3,16–18 The VFA method was chosen in our 
work because of the good SNR and reduced acquisition times.

The CA concentration is related to the change in relax-
ation time via the following formula:
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where r1 is the longitudinal relaxivity of the CA, T10 is the 
longitudinal relaxation time without CA, and T1(t) is the lon-
gitudinal relaxation at time t after the injection.

The MRI signal S1 acquired with TE ,, T2* is given by 
the following equation:
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where S0 is the relaxed signal for a 90° pulse when TR  T1, 
af is the flip angle, and TR is the repetition time. Substituting 
in Equation (2) the measurements acquired from the VFAs 
data and solving the nonlinear problem per voxel, the vector 
[S0, T10] is calculated.

Substituting in Equation (2), S1 with S(t) (the SI in 
DCE-MRI data) and af with a (flip angle that was used in 
DCE-MRI protocol), and solving for T1, the time course 
of the longitudinal relaxation time can be calculated from  
Equation (3).
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The overall procedure is depicted in Figure 1, where 
using the VFAs data, vector [S0, T10] is estimated using 
Equation (2).  Afterward, using DCE-MRI data, the time 
course of the longitudinal relaxation time (T1(t)) is calcu-
lated by Equation  (3). Substituting the pre-contrast relax-
ation time (T10) and the time course of the longitudinal 
relaxation time (T1(t)) in Equation  (1); the CA concentra-
tion is calculated.

Impulse response function. Using systems theory and 
assuming that biological tissues are linear, time-invariant sys-
tems, tracer kinetics can be described by the impulse response 
function (IRF),19 which incorporates the physiological param-
eters at each voxel. This way, the tissue concentration is given 
by Equation (4):

	   
C t F IRF t C tt ( ) = ⋅ ( )



 ( )⊗ α

	 (4)

where IRF(t)  =  IRFv(t)  +  IRFp(t), with IRFv the vascular 
impulse response function and IRFp the parenchymal impulse 
response function, F is the flow, Ct is the concentration in the 
tissue, Cα is the concentration in the arterial blood (AIF), and 
⊗  represents convolution.
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Tofts and extended Tofts model. The most commonly 
used model in literature is the Tofts model (TM),20 which 
is a single-compartment model in which CA diffuses from 
an external vascular space into a well-mixed tissue com-
partment. Tofts et  al assumed that when CA is injected 
to the bloodstream, it will pass the disrupted blood vessel 
endothelium and move to the extravascular extracellular 
space (EES) with a rate proportional to the difference of 
CA concentration between the plasma (Ca(t)) and the EES 
space (Ct(t)):
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Using the convolution theorem, the solution of  Equation (5)  
is given by the following formula:

	     C t k e C tt
trans k tep( ) = ⋅  ⊗ ( )− .

α 	 (6)

with IRFv(t) = 0 and IRFp(t) = ktrans ⋅ e-kep.t/F . In the above equa-
tions, ktrans represents the volume transfer constant from the 
plasma space to EES, ve is the volume of EES, and kep=ktrans/ve  
is the transfer constant from EES to the plasma space. The 
negligible plasma volume assumption of TM is invalid for  

several tissue types, especially for brain tumors, which might 
lead to significant errors.

Tofts et  al extended the original model by introduc-
ing the vascular term as an external compartment. The 
result was to separate the enhancement caused by contrast 
leakage from that caused by intravascular contrast. The 
extended Tofts model (ETM)21 is described by the follow-
ing equation:

	     C t k e v C tt
trans k t

p
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where IRFv(t) = vp⋅
 δ(t)/F  and IRFp(t) = ktrans⋅ e-kep.t/F , and vp 

is the volume of vascular space. Given that Ct(t) and Ca(t) are 
known by converting the tissue and the artery SIs, respec-
tively, and using Equation (7), the vector [ktrans, kep, vp] is 
estimated per voxel. The weak point of these models is that 
ktrans can be interpreted either as plasma flow in flow-limited 
cases or as tissue permeability in permeability-limited cases, 
but does not allow separate estimation of these two inde-
pendent parameters. Moreover, TM can provide accurate 
PK parameters if and only if tissue is weakly vascularized, 
while ETM is also accurate in highly perfused tissues.22

Gamma capillary transit time. The gamma capillary 
transit time (GCTT) model23 unifies four models: TM,20 
ETM,21 the two-compartment exchange (2CX) model,24 and 
the adiabatic tissue homogeneity (ATH) model.25 A major 
drawback of the aforementioned models is that every voxel 
is treated as a single capillary tissue unit with a single capil-
lary transit time. The distributed capillary adiabatic tissue 
homogeneity (DCATH) model26 overcame this drawback by 
assuming a statistical distribution (normal, corrected normal, 
and skewed) of the transit times in the parenchyma and vas-
cular IRFs. However, the DCATH model failed in the sense 
that certain results did not correspond to realistic values (eg, 
negative transit times) and the model could not provide closed- 
form solutions.23

The GCTT model overcame the limitations of the 
DCATH model by assuming that capillary transit times are 
governed by the gamma distribution. This way, each voxel is 
assumed to have different characteristics that are described by 
the parameter α−1, which is defined as the width of the dis-
tribution of the capillary transit times within a tissue voxel, 
and actually expresses the heterogeneity of tissue micro
circulation and microvasculature.19,23 Depending on this 
parameter, IRF is adapted to the specific properties of the tis-
sue voxel. Mathematically, the parameter α−1 is expressed by 
the following equation:

	   
α τ− =1

tc

	 (8)

where τ is the scale parameter of the gamma distribution, and 
tc is the capillary transit time.

Figure 1. Schematic diagram for converting signal intensity into 
concentrations. The rectangle shows the start point, the trapeziums show 
the parameters, and the circle includes the equations to be solved.
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The vascular and parenchymal components of the IRF in 
the GCTT model are given by the following equations:
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where D(u) is the gamma distribution of capillary transit 
times, E is the extraction fraction, which indicates the frac-
tion of CA that is extracted from vp into vt in a single capillary 
time, γ  is the upper incomplete gamma function, and kep is the 
CA transfer rate from EES to the vascular space. Replacing 
Equations (9) and (10) in Equation (4), the formula for the 
GCTT model can be derived as:

	 C t F IRF t IRF t C tt v
GCTT

p
GCTT( ) = ⋅ + ⊗ ( )[ ( ) ( )] α

	
(11)

As in ETM, Ct(t) and Ca(t) are computed by converting 
the tissue and the artery SIs, respectively, and then estimat-
ing using Equation (11) the vector [F, E, kep, τ, α–1] per voxel. 
As was mentioned earlier, the GCTT model converges to 
preexisting models in certain limits of its parameters, as shown 
in Table 1.

Heterogeneity tumor region segmentation based on α−1. In 
order to enhance the application of the GCTT model in real 
clinical data, a preprocessing step is proposed by exploiting the 
α–1 parameter. For this purpose, the MR image of the tumor 
was segmented based on each voxel’s α–1 value, in order to sep-
arate tumor into subregions of similar vascular heterogeneity 
characteristics. After extensive experimentation and observa-
tion of the α–1 histogram characteristics in the tumor ROIs, a 
four-subregion segmentation scheme was proposed, as shown 
in Figure 2. It was observed that, in most of the cases, the his-
togram distributions of the α–1 parameter include three char-
acteristic peaks and a plateau in the same value intervals. The 
α–1 boundary values were determined empirically based on the 
average histogram profile. The first subregion consists of the 
first peak, the second subregion consists of the linear histo-
gram part, the third subregion consists of the second peak, 

and the fourth subregion consists of the third peak. Provided 
that the average profile is similar in future studies, it is pos-
sible to use the same values and test by other researchers.

The different subregions are defined as follows:

1.	 “Full Homogeneous” subregion: when α–1 ∈ (0,0.2] – in 
tables of results referred to as 1;

2.	 “Homogeneous” subregion: when α–1 ∈ (0.2,0.5] – in tables 
of results referred to as 2;

3.	 “Heterogeneous” subregion: when α–1 ∈ (0.5,0.85] – in 
tables of results referred to as 3;

4.	 “Full Heterogeneous” subregion: when α–1 ∈ (0.85,1) – in 
tables of results referred to as 4.

This segmentation comprises a new framework which 
in essence divides each tumor image region into four subre-
gions of differing homogeneity as given by the GCTT model. 
For each subregion, the PK parameters were collected, and 
the classification results for the two groups of patients were 
reported. For completeness, in the comparative study the 
results in the entire tumor region (“All regions” – in tables of 
results referred to as 0) were also computed in order to test 
whether the proposed heterogeneity segmentation framework 
can add value to the strength of the PK GCTT candidate 
imaging biomarkers.

Implementation of the models. Figure  3 presents the 
workflow for the conversion of concentrations to PK para
meters. The PK parameters were calculated per voxel via 

Table 1. GCTT convergence to other models.

Condition Convergence

a−1→0 IRFATH → IRFGCTT

a−1→1 IRF2cx → IRFGCTT

a−1→1, τ→ε IRFETK → IRFGCTT

a−1→1, τ→0 IRFTK → IRFGCTT
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Figure 2. Proposed methodology for separating the tumor image area 
into four subregions based on the vascular heterogeneity characteristics 
(α–1). This way, in each subregion as well as in the whole tumor region, 
the value of all PK GCTT parameters can be assessed separately.
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nonlinear least squares problems†, by solving Equation (7) for 
ETM and Equation (11) for the GCTT model.

In ETM, all parameters were assumed positive, and the 
initial values of ktrans, kep, and vp were 0.001 (min–1), 0.009 
(min–1), and 0.01 (none), respectively.

In GCTT, all parameters were assumed positive and the 
initial values of F, E, kep, τ, and α–1 were 0.002 (min–1), 0.5 
(none), 0.009 (min–1), 1.5 (s), and 0.5 (none), respectively. In 
the last step, the additional parameters (ktrans, PS, tc, and vp) 
were calculated by the following equations:

	     k F Etrans = ⋅ 	 (12)

	     PS F E= − ⋅ −( )ln 1 	 (13)

	   
tc =

−

τ
α 1

	 (14)

	     v F t Hctp c= ⋅ ⋅ −( )1 	 (15)

where PS is the permeability surface area product per unit mass 
of tissue and Hct is the hematocrit (reference value 0.45).

Clinical question for assessing and comparing the PK 
models. We retrospectively analyzed data from 11 patients 
(anonymized) diagnosed with GBM from University Hos-
pital of Leuven at a time point before definite diagnosis 
regarding the therapy outcome. As shown in Table 2, each 
patient belonged in one of the following three categories: 
response, immune reaction, and progression, depending on 
the actual final outcome. Regarding treatment outcome, 
patients in the first two categories exhibited similar charac-

teristics; thus for testing the discriminatory power of the PK 
models in this work, we divided patients into two groups: 
“Response” and “Non-Response”, as shown in Table 2. This 
decision mainly reflects the most important aspect of this 
work, ie, to use PK imaging biomarkers for assisting the 
clinician to early assess the treatment outcome and better 
manage the therapeutic alternatives.

The data in this study are part of a larger longitudi-
nal imaging study in which patients with GBM treated with 
immune therapy receive monthly an extensive MRI exam. 
The institutional review board of the University Hospitals 
Leuven approved this study and informed consent of every 
patient was obtained before participation. This was done in 
order to characterize the temporal pattern on imaging in 
patients treated with a novel therapy and, secondly, in case 
an immune reaction was expected, to be able to characterize 
this with advanced MRI. Clinical outcome of the therapy 
is thus based on imaging follow-up and clinical examina-
tion. The standard imaging guidelines were used to define 
progression, response, and immune reaction, as defined in 
the Response Assessment in Neuro-Oncology (RANO) cri-
teria.27 These criteria are currently defined as the standard 
clinical guidelines and count as good clinical practice. Per-
forming histopathological examination obtained by biopsy 
or craniotomy at every time point in every patient is unethi-
cal. For this reason, no histological information was avail-
able in our study.

For each subject, an expert radiologist annotated the 
ROI of the tumor. The PK parameters were calculated per 
voxel, and regions with parameters out of bounds or with 
insufficient goodness of fitness (R2) were excluded. The focus 
of our work was to define which imaging biomarkers could 
better predict outcome before definite diagnosis in the two 
groups of patients with only one imaging study available.†LSQNONLIN algorithm by Matlab.

Figure 3. Workflow for calculation of PK parameters. The rectangles show the start and end points, the trapeziums show the extracted PK parameters, 
and the ellipsoids include the equations to be solved.
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Statistical analysis. An exploratory histogram analysis, 
using the derived PK parameter maps from the ROIs, was 
performed, yielding several metrics including the minimum,  
maximum, mean, standard deviation, median, skewness, 
kurtosis, variance, as well as the 5%, 30%, 70%, and 95% 
percentiles for each parameter. A Kruskal–Wallis test28 was 
applied to a total of 588 parameters (49 PK parameters multi
plied by 12 histogram metrics) to investigate the differences 
between responders and nonresponders in terms of the histo-
gram metrics. The estimated P-values were declared statisti-
cally significant only at the 1% significance level. Because of 
the small sample size, the estimation of the predictive power 
of each parameter relied on the leave-one-out cross valida-
tion (LOO-CV). For every single parameter in the dataset, 
a LOO-CV took place in which each sample acted as a 
validation set and the remaining samples were used for train-
ing. The aggregated predictive probabilities of each parameter 
over the entire dataset composed a new set for further analysis. 
The receiver operator characteristic (ROC) curves were then 
computed and the corresponding areas under the receiving 
operating curves (AUCs) were calculated to assess the perfor-
mance of each parameter in predicting the responsiveness of 
the treatment accurately. Sensitivity, specificity, negative and 
positive predictive values, accuracy, the confusion matrix, and 
the optimal cutoff value of all ROC curves were calculated. 
The confusion matrix reports the number of true positive 
(TP), true negative (TN), false positive (FP), and false nega-
tive (FN).

All possible linear regression model combinations were 
generated from the parameters having a P-value 1%, and a 
model selection framework was intended to select the “best” 
model that differentiated the two groups. This framework 
relied on a wrapper approach equipped with parameter(s) 
selection criteria based on the small-sample corrected Akaike 
information criterion (AICc).29 AICc was selected instead of 
the basic AIC30 because the former is strongly recommended 
in case of having a small cohort for analysis.31 Using wrap-
per techniques, all possible univariate and multivariate models 

were first generated, fitted by a regression analysis function, 
and, based on their AICc value, the optimal model (ie, yield-
ing the lowest AICc) was finally selected.

For the purposes of the analysis, in-house software 
was written in R32 to fit a linear model of the form “y ∼ 
x1 + x2,…, + xn”, where y is the dependent variable (ie, respond-
ers vs nonresponders), and x1, x2,…,xn are the explanatory 
variables or the parameters derived from the histogram analy-
sis otherwise. The packages “pROC”33 and “glmulti”34 were 
used for computing the ROC curves, their relative statistical 
measurements, and the optimal model, respectively. For illus-
trative purposes, a graphical summary of the analysis was also 
obtained, containing information about the AICc profile of 
each model and the estimated importance of each parameter 
computed as the sum of the relative evidence weights of all 
models in which the specific parameter appears.

Alternatively, a Lasso regularized generalized linear 
model, using R package “glmnet”,35 was applied to the entire 
dataset comprised of 588 parameters. A LOO-CV was per-
formed first to calculate the optimum tuning parameter lambda 
(λ) referring to the lowest CV error. The optimum lambda was 
used for fitting the model to the data and the resulting fitted 
model was then added to R function “predict”, to return the 
coefficients of the best model (nonzero coefficients).

Results
Parameters with P-values 1% are summarized in Table  3. 
The name of each parameter is composed by four parts: 1) the 
applied PK model (ie, GCTT or ETM as described previously), 
2) the computed PK parameter (ie, ktrans), 3) the examined tumor 
image subregion according to our method presented earlier (ie, 
0, 1, 2, 3, and 4 for “All region”, “Full Homogeneous”, “Homoge-
neous”, “Heterogeneous”, and “Full Heterogeneous”, respectively), 
and 4) the estimated histogram metric (ie, 30 for the 30th 
percentile, Std for the standard deviation, etc). Table 4 shows 
the ROC analysis performed in the most statistically signifi-
cant (by the Kruskal–Wallis test) parameters. All parameters 
achieved complete separation of the two groups in Table 2.

Following an extensive screening of all possible model 
combinations in the identification of the optimal model for 
predicting the therapeutic outcome, the information crite-
rion profile of all models is graphically depicted in Figure 4. 
According to this profile, the model with the lowest AICc 
is composed of the parameters “GCTT_tc_0_95”, “GCTT_
PS_4_5”, and “GCTT_Vp_1_30” with AICc  =  7.4395. To 
facilitate comparison among the different parameters through 
the wrapper model selection, Figure  5 highlights the esti-
mated importance of each parameter. The nonzero coefficients 
from the Lasso model, related to the parameters from the 
best fitted model, resulted in parameters “GCTT_tc_0_95”, 
“GCTT_PS_4_5”, “GCTT_Vp_1_30” (same parameters 
from the selected model using AICc), “GCTT_Vp_1_70” 
(fourth top-ranked parameter as depicted in Fig. 5), “GCTT_
Ktrans_3_Std”, and “GCTT_Ktrans_4_5”. The parameters 

Table 2. Clinical cases.

Patient Outcome Group

P1 Immune reaction Response

P2 Immune reaction Response

P3 Response Response

P4 Response Response

P5 Progression Non-Response

P6 Progression Non-Response

P7 Progression Non-Response

P8 Progression Non-Response

P9 Progression Non-Response

P10 Progression Non-Response

P11 Progression Non-Response
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Table 3. Statistically significant parameters at the 1% significance level of the Kruskal–Wallis test.

Parameters P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P-Value

GCTT_E_3_70 0.3511 0.3987 0.3739 0.3240 0.4140 0.5045 0.4023 0.4319 0.4172 0.4508 0.4507 ,0.001

ETM_Ktrans_0_70 0.0694 0.1080 0.0842 0.0897 0.1226 0.1557 0.1232 0.1198 0.1146 0.1157 0.1169 ,0.001

GCTT_Kep_4_95 0.5459 0.5284 0.5194 0.5068 0.6092 1.083 0.5582 0.8082 0.7289 0.8537 0.8836 ,0.001

GCTT_PS_0_Variance 0.0008 0.0027 0.0022 0.0013 0.0033 0.0079 0.0030 0.0041 0.0028 0.0065 0.0035 ,0.001

GCTT_PS_0_Std 0.0280 0.0523 0.0469 0.0356 0.0578 0.0890 0.0549 0.0643 0.0530 0.0803 0.0594 ,0.001

GCTT_PS_4_5 0.0100 0.0086 0.0085 0.0102 0.0125 0.0113 0.0103 0.0122 0.0102 0.0124 0.0139 ,0.001

GCTT_tc_0_95 20.47 21.11 21.18 19.73 22.21 25.93 26.44 25.84 25.90 21.56 26.86 ,0.001

GCTT_Vp_1_30 0.0199 0.0243 0.0216 0.0249 0.0312 0.0381 0.0347 0.0255 0.0346 0.0416 0.0285 ,0.001

GCTT_Vp_1_70 0.0297 0.0431 0.0468 0.0426 0.0501 0.0544 0.0621 0.0493 0.0535 0.0593 0.0510 ,0.001
 

Table 4. ROC curve analysis.

Parameters Accuracy Sensitivity Specificity PPV NPV TN TP FN FP ROC curve cutoff

GCTT_E_3_70 90.9% 100% 85.7% 80% 100% 6 4 0 1 0.4005

ETM_Ktrans_0_70 90.9% 100% 85.7% 80% 100% 6 4 0 1 0.1113

GCTT_Kep_4_95 90.9% 100% 85.7% 80% 100% 6 4 0 1 0.5520

GCTT_PS_0_Variance 90.9% 100% 85.7% 80% 100% 6 4 0 1 0.0028

GCTT_PS_0_Std 90.9% 100% 85.7% 80% 100% 6 4 0 1 0.0527

GCTT_PS_4_5 100% 100% 100% 100% 100% 7 4 0 0 0.0102

GCTT_tc_0_95 100% 100% 100% 100% 100% 7 4 0 0 21.37

GCTT_Vp_1_30 90.9% 100% 85.7% 80% 100% 6 4 0 1 0.0252

GCTT_Vp_1_70 100% 100% 100% 100% 100% 7 4 0 0 0.0480

Abbreviations: PPV, positive predictive value; NPV, negative predictive value; TN, true negative; TP, true positive; FP, false positive; FN, false negative.
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Figure 4. Information criterion profile of all possible model combinations 
through the wrapper evaluation.

“GCTT_Ktrans_3_Std” and “GCTT_Ktrans_4_5” were 
rejected at the preprocessing phase of the analysis using AICc 
because the corresponding P-values were higher than 1%.

According to Figure 5, the three top-ranked parameters 
are the 95th percentile of the transit times in the whole region 
of tumor, the 5th percentile of the permeability surface area 
product in the “Full Heterogeneous” subregion, and 30th percen-
tile of the plasma volume in the “Full Homogeneous” subregion,  

which are also the same three explanatory variables of the 
optimal multivariate linear regression model. Capillary tran-
sit times are indicative of hypoxia and provide important 
information about tumor pathophysiology. Therefore, this 
biomarker can be potentially related with oxygenation and 
patient outcome. Permeability surface area product in the 
“Full Heterogeneous” subregion is also a potentially meaning-
ful biomarker since increased permeability can be attributed 
to a highly heterogeneous vascular bed, one of the hallmarks 
of malignant tumors that results in contrast leakage within 
the tumor tissue. It is also important to mention that ETM 
provided only one statistically significant parameter, the 70th 
percentile of ktrans, in the whole tumor area and is related to 
the wash-in rate of the CA in the tissue which is the most 
indicative characteristic of a disrupted BBB. As can be noted 
in Figure  5, highly ranked parameters are also the 30th 
and 70th percentile of the blood plasma volume in the “Full 
Homogeneous” subregion. The high accuracy of this parameter 
in the classification might be due to the expected alteration in 
the vasculature of a responder, but there is no published data 
yet to support this. Concerning the rest of the parameters 
shown in Figure 5, they were found to be less significant in 
our study.
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The statistical analysis was extended in the context of  
identifying any potential discrimination between subpopula-
tions “Immune Reaction” and “Response” within the “Response” 
group. To this end, the statistical analysis framework using 
AICc as the criterion for selecting the parameters with the 
optimum discriminatory power was applied to a cohort of four 
samples/patients (two patients in each group). Despite the fact 
that more than 50 from the 588 parameters achieved accuracy 
of 100%, their estimated P-values were declared as statisti-
cally insignificant (P-value .0.12). Consequently, all param-
eters failing to meet the criterion of the P-value threshold at 
the preprocessing phase (1%) were excluded from the linear 
model combination process. Also, a Lasso regression model 
was applied to the same cohort of 588 parameters, using 

LOO-CV for tuning the model and calculating its nonzero 
coefficients. All the returned coefficients had a zero value; 
thus the analysis failed to define a model for predicting accu-
rately the treatment response outcome of the examined cohort. 
In conclusion, the analysis showed that both models have no 
predictive power in classifying correctly the subpopulations 
“response” and “immune reaction” for the specific dataset that 
was used in the analysis.

Discussion
Biomarkers extracted from DCE-MRI have been used in 
several studies for the prediction of therapeutic outcome to 
chemoradiation36,37 and therapies that target vasculature1,6,38–40 
in several tumor types,1,41–43 as well as for the grading of 
gliomas through histogram analysis.44 All these studies indi-
cate that the relative changes of the DCE biomarkers have 
the potential to predict or assess patient outcome. However, 
pertinent studies are needed to define the actual meaning of 
these parameters and to confirm their robustness in describing 
tumor vascular heterogeneity.

In our work, statistical analysis was performed on the 
results derived from two PK models, the well-established 
ETM and the more recent GCTT; the latter has shown initial 
promising results in the literature.45,46 The statistical analy
sis was able to differentiate responders from nonresponders, 
although the cohort of patients was relatively small (N = 11) 
and all subjects were diagnosed with GBM. The statistical 
analysis indicates that the GCCT model outperforms ETM. 
This is in line with results from previous research,23 where 
authors argue that GCTT biomarkers are expected to be 
more robust. The previous assumption is reliable, given that 
the IRF of the model is able to be adapted to the specific tissue 
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Figure 5. Model-averaged importance of the statistically significant parameters.
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(per voxel) based on the heterogeneity of the transit times by 
adjusting the α–1 parameter. Moreover, results derived from 
three different types of brain tumors23 (GBM, pleomorphic 
xanthoastrocytoma, and anaplastic meningioma) have shown 
remarkable discrepancies in DCE biomarker values when 
different PK models were used. This inconsistency could be 
attributed, according to previous work,22 to the fact that TM 
is accurate only in weakly vascularized tissues while ETM is 
also accurate in highly perfused tissues, but considering that 
tumor vasculature is highly heterogeneous, a model such as 
TM or ETM that assumes a single capillary transit time is 
expected to diverge from reality in certain cases.

In essence, the GCCT model generalizes well-established 
models that have been extensively used so far and offers a 
new variable (α–1) that describes vascular heterogeneity. In 
this work we proposed an additional preprocessing step by 
exploiting the α–1 parameter. The tumor region of interest 
was segmented into four sub-regions based on the afore-
mentioned parameter. Although these bounds were deter-
mined empirically, after several experiments we found that 
the classification outcome was not affected by small pertur-
bations in the proposed boundary values for each subregion. 
However, when only three subregions were used instead 
of four, the classification failed to give satisfactory results. 
Finally, considering the limited number of patients and the 
restriction to only GBM tumor, the proposed classification 
based on α−1 boundaries should be verified in a more exten-
sive patient group. A thorough sensitivity analysis should 
be performed as well in order to define consistent subregion 
boundaries that could be used prospectively in clinical deci-
sion support.

In our study, the GCTT model’s PK parameters per-
formed better than Tofts’, while the segmentation of the 
tumor ROIs based on vascular heterogeneity further enhanced 
the discriminatory power of the GCTT model. The results 
indicate that the GCTT model may be more efficient in 
characterizing the chaotic vascular structure of tumor and sub-
sequent pathophysiological characteristics such as the delayed 
extraction of the CA in the EES. Also, in search for the best 

model according to the optimal multivariate linear regression 
presented, the GCCT PK parameters outperformed the 
Tofts ones. ktrans computed from ETM performed well in our 
study, and in particular the 70% percentile. Figure 6  shows 
the histogram profiles for ktrans for all the patients. The ROC 
results showed, however, that the overall best PK parameter 
is the extraction fraction E (70% percentile) of the GCCT 
model but only when computed in the “Heterogeneous” subre-
gion (in tables of results referred to as region 3). This is fur-
ther highlighted in Figure  7, where it can be observed that 
the histograms of this parameter between responders and 
nonresponders become morphologically more separable in the 
“Heterogeneous” subregion than in the whole tumor ROI as 
annotated in the MRI data. If this result is confirmed in future 
studies, it has the potential to enhance the robustness of PK 
imaging biomarkers from DCE-MRI and widen their clinical 
adoption for aiding the therapy monitoring process. However, 
being aware of the limited cohort group of this study and the 
restriction to only GBM tumor, we suggest more extensive 
studies in a broader range of patients and tumor types in order 
to establish which model is better for the early prediction of 
response in cancer patients.
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Appendix
Abbreviation and symbols are presented in Table A1 while 
Table A2 summarizes the PK parameters derived from DCE-
MRI data.

Table A1. Abbreviation and symbols.

ADC Apparent diffusion coefficient

AIF Arterial input function

AIC Akaike information criterion

AICc Small-sample corrected akaike information criterion

ATH Adiabatic tissue homogeneity

AUCs Areas under the roc-curve

BBB Blood brain barrier

CA Contrast agent

DCE-MRI Dynamic contrast-enhanced magnetic resonance  
imaging

EES Extracellular extravascular space

ETM Extended tofts model

FN False negative

FP False positive

GBM Glioblastoma multiforme

GCTT Gamma capillary transit time

Gd Gadolinium

IRF Impulse response function

MRI Magnetic resonance imaging

MTT Mean transit time

PK Pharmacokinetic

rCBF Regional cerebral blood flow

rCBV Regional cerebral blood volume

ROC Receiver operator characteristics

ROI Region of interest

SNR Signal to noise ratio

SPGR Spoiled gradient echo

TM Tofts model

TN True negative

TP True positive 

VOI Volume of interest

2CX Two compartment exchange
 

Table A2. PK parameters derived from DCE-MRI data.6

Parameter Definition Unit

Models parameters

F Blood flow (normalized by  
tissue volume)

mL/mL/min−1

E Extraction fraction none

ktrans Volume transfer constant  
between plasma and EES

min−1

kep Rate constant between EES  
and plasma

min−1

τ Scale parameter of gamma  
distribution

sec

α–1 Distribution of capillary transit  
times

none

vp Blood plasma volume per unit  
volume of tissue

none

ve EES volume per unit volume  
of tissue

none

Additional parameters

PS Permeability surface area  
product per unit mass of tissue

mL/mL/min−1

tc Capillary transit time sec

Biophysical parameters

T10 Pre-contrast longitudinal  
relaxation time

sec

T1(t) Post-contrast longitudinal  
relaxation time

sec

S0 Equilibrium magnetization none

Ct(t) Concentration in tissue mM

Ca(t) Concentration in artery  
blood (AIF)

mM

IRFv(t) Vascular impulse response  
function

none

IRFp(t) Parenchyma impulse  
response function

none

Hct Hematocrit none

Imaging parameters

TS Temporal sampling interval sec

TR Repetition time sec

S1 Signal intensity none

α Flip Angle (FA) degrees

αf Variable Flip Angle (VFA) degrees

r1 Relaxation constant of the  
contrast agent

sec–1⋅mM–1
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