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COSMAS: a lightweight toolbox 
for cardiac optical mapping analysis
Jakub Tomek1,2*, Zhinuo Jenny Wang2, Rebecca‑Ann Beatrice Burton3, Neil Herring1 & 
Gil Bub4

Optical mapping is widely used in experimental cardiology, as it allows visualization of cardiac 
membrane potential and calcium transients. However, optical mapping measurements from a 
single heart or cell culture can produce several gigabytes of data, warranting automated computer 
analysis. Here we present COSMAS, a software toolkit for automated analysis of optical mapping 
recordings in cardiac preparations. COSMAS generates activation and conduction velocity maps, as 
well as visualizations of action potential and calcium transient duration, S1‑S2 protocol analysis, and 
alternans mapping. The software is built around our recent ‘comb’ algorithm for segmentation of 
action potentials and calcium transients, offering excellent performance and high resistance to noise. 
A core feature of our software is that it is based on scripting as opposed to relying on a graphical user 
interface for user input. The central role of scripts in the analysis pipeline enables batch processing and 
promotes reproducibility and transparency in the interpretation of large cardiac data sets. Finally, the 
code is designed to be easily extended, allowing researchers to add functionality if needed. COSMAS 
is provided in two languages, Matlab and Python, and is distributed with a user guide and sample 
scripts, so that accessibility to researchers is maximized.

Optical mapping of explanted hearts or cell cultures is an integral part of experimental cardiac research, allow-
ing detailed observation of action potentials (AP) and calcium transients (CaT) in cardiac  preparations1–3. It 
contributed to our understanding of arrhythmogenesis with regards to, e.g. reentrant spiral  activation4, auto-
nomic  modulation5,6, post-infarction conduction  abnormalities7, cardiac  alternans8,9, and reentry following acute 
myocardial  infarction10. While optical mapping offers excellent spatial resolution of the recordings compared to 
electrophysiological techniques such as monophasic AP mapping or electrode arrays, the hundreds to thousands 
of signal traces produced in a single optical mapping recording generally require automated computer-based 
processing.

Despite the widespread use of optical mapping techniques in cardiac research, there are surprisingly few 
standardized tools for their analysis. Both available software packages,  Rhythm11 and the recently published 
 ElectroMap12,13 are relatively complex, generally require a large amount of parameters to be set, and are con-
trolled via sophisticated graphical user interface (GUI). A major advantage of GUI-controlled software is that 
even a person with no programming or data analysis background can use it to analyze data. On the other hand, 
GUI based software greatly limits its use in a wide variety of scenarios, such as headless operation—i.e. running 
remotely on a server, cluster or cloud without a GUI. Indeed, the need for flexible batch processing was one of 
the motivations for rewriting  ImageJ14. In the specific context of cardiac data analysis, the GUI approach presents 
multiple limitations. First, it exposes the user to a wide range of functionality, boxes for setting of a wide array 
of parameters, and method selectors, many of which may be irrelevant for a particular task the user tries to do. 
This may be overwhelming particularly for the users with low data analysis experience, for whom it may be dif-
ficult to identify and select appropriate methods and parameters. Second, the software architecture of GUI tools 
is often dictated by the GUI handling code, which makes it hard to extend or modify them when the pre-built 
functionality is insufficient. Ultimately, Rhythm and ElectroMap require separate processing for each record-
ing analyzed, not supporting batch mode processing. This can work well for analyzing a small number of files 
(especially with ElectroMap’s helpful option to store and load a set of processing parameters) but can quickly 
become a bottleneck for a larger-scale analysis. Optical mapping can easily produce hundreds of recordings 
in a single sequence of experiments, and manually loading, processing, and storing the results using a GUI is 
rather time-consuming. This is particularly true when one realizes, midway in the analysis, that the processing 
parameters need to be changed, and the whole process needs to be started over.
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In this article, we present a new software toolkit COSMAS (COmb-based Software for optical-Mapping 
AnalysiS) for analysis of cardiac optical mapping data, such as from Langendorff hearts or in vitro cardiac cell 
cultures. It is built around the comb algorithm for detection of APs or CaTs in recordings with known activation 
rate (e.g. under external pacing or regular sinus rhythm)15, offering a high quality of processing in a range of 
common tasks arising in optical mapping of membrane potential or calcium. This includes activation mapping, 
conduction velocity extraction, mapping of AP and CaT duration, S1-S2 protocols, and processing of duration 
and amplitude alternans. COSMAS is designed to be used via straightforward scripting, avoiding the complex-
ity of GUI, being simple (633 lines of code versus 9115 of ElectroMap, excluding comments, empty lines, and 
external libraries), and naturally supporting batch processing.

Two functionally identical versions of COSMAS are provided, one implemented in MATLAB, and one in 
Python 3, giving the user choice of  which language to use. This is in contrast with Rhythm and ElectroMap, 
which both require MATLAB (ElectroMap can be run as a stand-alone, but it cannot be adjusted in this form).

Methods
The general structure of analysis using COSMAS is given in Fig. 1A. A concrete sample script computing and 
plotting a map of average activation pattern is shown in Fig. 1B, with the figure produced in Fig. 1C. A com-
mon practice in our lab is to run similar code in a for-loop over all recordings from a sequence of experiments, 
extracting the features of interest, and then having the results conveniently stored in Matlab variables, ready for 
further processing and/or visualization. Below is described the functionality provided by COSMAS for the steps 
involved in processing optical mapping data.

COSMAS makes extensive use of the comb  algorithm15, which is a local-minima-finding algorithm that 
leverages the knowledge of the activation pattern of the recording (the algorithm description is included in 
Supplementary Materials). The high-level intuition of the algorithm, illustrated in Fig. 2A, is that a ‘comb’ is 
constructed with teeth at predefined distances apart (e.g. if pacing stimuli are applied 150 frames apart, the 
comb has teeth 150 frames apart as well), and it is slid over the recording, measuring the average signal under 
the teeth. Subsequently, the position of comb with the lowest average signal is selected, and a small-radius local 
search is carried out around each comb tooth (within ‘refinementWidth’ ms around the initial location), select-
ing the ultimate signal minima locations. This approach avoids a range of artefacts inherent to threshold-based 
approaches and is highly resistant to noise (Fig. 2B, Supplementary Figure 1). In addition, the comb-detected 
minima are guaranteed to be spaced correctly with regards to the known activation rate. Approaches not using 
this (such as variants of thresholding) can spuriously detect action potentials too close or too far from each other.

Data reading and preprocessing. COSMAS has two functions for reading data, reflecting the two most 
common imaging data formats: TIF stack (with slices corresponding to single frames), and an image sequence 
in a folder (TIF, PNG, or JPG images can be read). Both functions return a 3D matrix representing the record-
ing, with the third dimension corresponding to time coordinates. The user can use alternative means of loading 
nonstandard or proprietary formats, as long as the result is in the same form of 3D matrix. This general approach 
makes COSMAS readily useful for any kind of optical mapping data.

In addition to reading the data, the user has the option to carry out spatial binning on each frame of the data 
read, trading reduced spatial resolution for improved signal-to-noise ratio.

Subsequently, a binary mask may be applied to each frame of the stack using COSMAS, which is useful to 
discard irrelevant pixels such as the area around a heart, for Langendorff heart imaging, or the area around a 
dish with a cell culture. COSMAS also contains a function to provide a maximum-contrast averaged image of 
the recording, which may be useful for detecting such areas and drawing the mask.

Given the easy-to-interpret representation of a recording, the user may apply any additional filtering not 
implemented in COSMAS that they implement on their own.

Main analysis. The analysis of a recording is carried out slightly differently for cases when the recording 
contains multiple passes of a wave (at least three) than when it contains only a single wave pass. In both cases, 
the user is provided with spatial and temporal information on activation pattern (and thus conduction velocity), 
signal amplitude, duration, or baseline, as well as a map of signal recovery (e.g. repolarization for AP data). There 
is also a third ‘hybrid’ option, combining both approaches.

Multi‑wave processing. The general approach is that individual wave passes are segmented in the record-
ing and the properties of each wave pass are measured separately. They are then provided to the user in both the 
raw form and as an averaged value over the entire recording. The concrete steps are as follows:

1. A “recording clock” is obtained on the spatial average trace of the whole recording as the set of midpoints 
between peak activations (Fig. 3A,B, dotted lines). Signal peaks in the averaged curve are found using the 
comb algorithm. COSMAS contains a switch allowing the extraction of peak activations either as signal 
maxima (for calcium imaging) or as signal minima (arising in voltage mapping). The recording clock is not 
meant to provide a good segmentation of single APs and CaTs, but merely to provide a global set of “bins” to 
which recorded data are later assigned in a consistent way. In this way, COSMAS keeps track of the specific 
wave pass to which an extracted feature belongs.

2. For each pixel in the recording, its trace over time is extracted from the 3D matrix representing the record-
ing. The following processing and analysis functions is then applied on this trace:
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a. It may be smoothed using the Savitzky-Golay filter, which was chosen for its capability of removing 
noise while preserving genuine sharp changes in signal intensity, such as AP upstrokes.

b. Temporal baseline drift may be subtracted using polynomial smoothing. If this is carried out, the mean 
of the original signal is re-added after the baseline subtraction. In this way, the general offset of the 
recording is maintained, allowing e.g. the monitoring of photobleaching as the reduction in the signal 
baseline over consecutive recordings.

c. Signal diastoles (points of least activation) are extracted via the comb algorithm, which supports both 
upward- and downward-pointing signal, and the diastoles separate the signal into single cardiac activa-
tions (APs/CaTs) (Fig. 3C,D). While the comb algorithm by default supports only regularly activated 
recording, the user may also provide a custom comb with arbitrary distances between ‘comb teeth’, which 
can be used to process even irregularly activated recordings. For every single cardiac activation found 
using the comb, the following features are extracted (illustrated in Fig. 3E):

 i. Signal baseline is extracted as the first value or the average between the first and the last values, as 
determined by the user.

 ii. The amplitude of the activation is computed as the difference between peak of the signal and the 
baseline.

 iii. Cardiac activation duration at the user-defined level of recovery is obtained via thresholding (pro-
viding, e.g., AP duration at a given level of repolarization). Linear interpolation is used at the 
threshold crossing with the signal to obtain a more precise value. The recovery time at the given 
level is also stored (corresponding, e.g., to the time at which 80% recovery was achieved in an AP), 
allowing the study of dispersion of repolarization.

   It may occur that the signal segment between two points of a recording clock crosses a given 
threshold at multiple points in time, leading to multiple objects being segmented, even though 
there is only one which is true cardiac activation. This usually arises from large amount of noise, 
or from motion artefacts. COSMAS offers three options for selecting the segmented object from 
which the features are extracted:

1. ‘first’—the first segmented object in the segment is taken
2. ‘largest’—the segmented object with the longest duration is taken
3. ‘augmented’—in this case, the information on the time of maximum activation rate in each 

AP/CaT is used to augment the decision making about which segmented object to select:

a. The derivative of the whole smoothed trace (i.e. before it is split into segments correspond-
ing to single activations) is approximated as the difference between consecutive values.

b. Subsequently, the comb algorithm is applied to this signal to find the times of peak activa-
tion rate (corresponding to AP or CaT upstrokes). Thanks to the comb algorithm working 
on the whole trace, this is much more robust to noise than selecting the peak activation 
rate in a single AP/CaT only.

c. When the ‘augmented’ object detection is then used for a trace segment corresponding 
to a single activation, the time point of the peak activation rate in this segment (coming 
from the previous step) is extracted (there is exactly one) and the segmented object with 
smallest distance from this point is selected.

 iv. Activation time (used for activation mapping) is estimated as the time when half-maximal am-
plitude of the cardiac activation is achieved (again using linear interpolation to obtain a precise 
estimate).

 v. The activation time is subsequently converted to global time coordinates (i.e. not just within the 
single cardiac activation, but within the whole recording), and the nearest global recording clock 
time that precedes the activation time is subtracted from it (Fig. 3F). In this way, the activation 
times of all single pixels are synchronized using the global recording clock, allowing the extraction 
of meaningful activation maps. The time of recovery of cardiac activations extracted in the previous 
step is normalized to the global clock in the same way.

 vi. The extracted features (baseline, amplitude, duration, recovery time, and activation time) are as-
signed to an appropriate “bin” that is bracketed by two recording clock markers. This is done by 
taking the half-time of the single activation and seeing in which bin in the global recording clock 
it belongs. The activation is ignored if its half-time falls before the first clock boundary, or after the 
last one, to prevent processing of potentially incomplete activations at the start/end of the record-
ing.

3. Spatial maps of all the features are returned to the user, along with their spatial and temporal (over beats) 
averages.

Single‑wave processing. COSMAS also contains functionality to process recordings where only a single pass 
of a wave is recorded. The processing of such data is analogical to the step 2c of the multiple-wave processing. 
No separation into distinct waves is carried out, and all the features are extracted on the whole duration of the 
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Figure 1.  Illustration of COSMAS use. (A) General structure of a processing script, (B) a concrete example of 
a script in Matlab, (C) the figures produced, showing isochronal activation lines (in ms) and local estimation of 
conduction velocity.
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Figure 2.  The comb algorithm and its noise-resistance. (A) Illustration of comb positioning in a recording of 
calcium transients in rat heart paced every 140 ms. Three distinct positions of comb are shown, with the average 
value under comb teeth being given in the legend. The dashed comb has the lowest average value, being the best 
comb position for extraction of signal minima. (B) An example of the trace of 20 calcium transients (generated 
using the computer model ToR-ORd16) with no added noise (top), heavy noise (center), and an extremely high 
amount of noise added (bottom). COSMAS detected calcium transient peak times with a median error of only 
8 ms for heavily noisy signal and only 17 ms in the extremely noisy signal, demonstrating the robustness of the 
algorithm to noise. Further quantitative data on noise-resistance versus the number of beats in a recording are 
given in Supplementary Figure 1.
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Figure 3.  Illustration of stimulus segmentation and feature extraction. (A) Average trace of a voltage mapping 
recording in rat heart at 130 ms basic cycle length (the lower the intensity, the higher the membrane potential), 
showing the recording clock (half-points between peak activations). (B) Average trace of a calcium mapping recording 
in rat heart at 85 ms basic cycle length (the higher the intensity, the higher the calcium concentration), showing 
amplitude alternans. (C) Single-pixel trace from the recording used in (A), also showing the points corresponding 
to the points of smallest activation (“diastoles”, solid black lines), as well as the global clock (dotted black lines). (D) 
Single-pixel trace from the recording in (B), showing pronounced calcium alternans. This recording illustrates, among 
other things, that despite baseline subtraction and signal smoothing, no single threshold can be used to satisfactorily 
segment distinct CaTs, while the comb-based approach of COSMAS correctly identifies CaTs as the intervals between 
diastoles. (E) Illustrations of features extracted on a single rat AP. (F) Illustration of how activation times are treated. 
Within single activation, the local activation time is first extracted (15.79 ms after the preceding diastole). This 
corresponds to the global time (within the whole recording) of 568.79 ms, from which the time of the preceding clock 
boundary is subtracted, and COSMAS records that the activation came 71.79 ms after the preceding clock. In this way, 
even though each pixel’s trace may have diastoles detected at different times, all pixels are synchronized to the same 
global clock, which allows extraction of meaningful activation maps for each pass of a cardiac wave.
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recording (i.e. there is no assumption on the rate of activation in this case). Given that a single wave is present, 
no averaging over multiple passes is performed.

Hybrid processing. A third option for processing the data is to split a regularly-activated multi-wave stack into 
smaller substacks, with each corresponding to a single pass of the cardiac wave, which are subsequently averaged 
and processed using the functionality for single-wave processing (Supplementary Figure 2). The first point of 
splitting is extracted as the first point of the recording clock (as in multi-wave processing, step 1), with further 
splitting points being placed at multiples of basic cycle length after that. In this way, all sub-stacks contain a 
length of signal corresponding to a single basic cycle length, and the signals are naturally aligned, allowing direct 
averaging without the need for further alignment.

The hybrid processing is advantageous for signal with severe noise perturbation, occasional movement artefact 
or instability, which could give artefactual outputs for one or several wave passes in the multi-wave processing 
approach. At the same time, this approach loses the temporal information of multiple wave passes which can be 
analyzed separately and it does not allow analysis of recordings where signal features change substantially over 
time (e.g. alternans).

Postprocessing. COSMAS returns all of its outputs in a form that is easy to interpret straight away, with 
matrices representing spatial maps of features and averaged values of these, but it also has several additional 
functions facilitating the most common post-processing tasks. First, a function to plot activation maps is pro-
vided (utilizing the function ‘contourf ’ in Matlab and ‘matplotlib.pyplot.contour’ in Python, both with default 
parametrization). Second, a function for estimation of conducting velocity (CV) is provided, allowing the meas-
urement of CV between multiple points in an activation map. Third, a function to compute local CV and the 
resulting conduction vector field as per the method by Bayly et al.17 is provided. Fourth, it contains a function to 
generate maps of alternans in any mapped feature, such as duration, amplitude, etc. When alternans is processed, 
the feature maps corresponding to even passes of a wave through the heart/dish are averaged, and the same is 
done for odd wave pass maps. Based on these even/odd maps, alternans behavior in each pixel is defined as 
either ‘large-to-small’ or ‘sMAPE’ (symmetric mean absolute percentage error), which are defined below.

The ‘large-to-small’ alternans is defined, for each pixel (i,j), as max(mapeven(i,j),mapodd(i,j))
min(mapeven(i,j),mapodd(i,j))

 ., i.e. the ratio of larger-
to-smaller feature (e.g. CaT amplitude) value between even and odd wave passes.

The ‘sMAPE’ alternans is defined, for a pixel (i,j), as:

Computational performance. Using a new PC with AMD Threadripper 3970X and a fast SSD, the Mat-
lab version of COSMAS can process a single 1000-frame recording of 32 × 32 pixel images (binned to 16 × 16) 
in under a second, including loading the data and carrying out all analyses (the runtime is ca. 2 s in the Python 
version of COSMAS). On an older computer with Xeon 1650v3 and magnetic drive (7200 rpm), the runtime per 
such recording is ca. 2.4 s in Matlab. The analysis code is encapsulated in a function and it is straightforward to 
analyze multiple recordings in parallel, further reducing the runtime.

Comparison with ElectroMap. When making a comparison of outputs between COSMAS and 
 ElectroMap12, simulation parameters were made as similar as possible. When generating data for Fig.  9 in 
“Results” section, both tools used fourth order polynomial baseline subtraction, Savitzky-Golay filtering with 
window size of 11, and no spatial filtering. The ‘hybrid’ activation detection was used in COSMAS, which best 
corresponded to ElectroMap’s activation detection method where multiple wave propagations were averaged 
before the detection process.

When generating data for Fig. 10 in “Results” section, parameters of signal pre-processing were again fourth 
order polynomial baseline subtraction, Savitzky-Golay filter with window size of 11, and no spatial filtering. 
Multi-wave processing type was used in COSMAS (being the only approach suitable for alternans analysis), and 
a corresponding method of analysis was used in ElectroMap, avoiding averaging of multiple CaTs before their 
processing. The CaT “release” alternans was computed in ElectroMap, which corresponds to what COSMAS 
reports; baselines in both COSMAS and ElectroMap were taken as the first value in each segmented CaT. When 
computing alternans magnitude, ElectroMap uses the following formula: 1− Caamplitudesmaller

Caamplitudelarger
 , and the same was 

computed using COSMAS for the purpose of comparison in Fig. 10.
When testing the effect of noise on processing in both tools, the raw data were perturbed with Gaussian noise 

of a given standard deviation (the same data were then used for both tools).

Data description. Voltage and calcium dye imaging were performed on Langendorff perfused SD rat hearts 
(300–350 g animal weight) at physiological temperature. The Langendorff heart mapping data in Figs. 2A, 4, 5, 
6, 7 are a subset of data used  in9, with the cited article containing details on experimental and imaging condi-
tions. The hearts were perfused with oxygenated Tyrode solution (flow rate of 10 ml/min; in mM: NaCl 120.3, 
KCl 4,  MgSO4 *  7H20 1.3, NaH20P4 1.2,  CaCl2 1.2,  NaHCO3 25.2, glucose 11). Blebbistatin at the concentration 
of 10 μM was used to prevent motion artifacts during imaging and pluronic (10% solution, 100 μl per 200 ml 
of Tyrode solution) was used to aid dye loading. After mechanical uncoupling, a thin plastic tube was inserted 
to the left ventricle via the left atrial appendage and mitral valve to prevent perfusate pressure build-up. Dyes 
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were injected through a gel membrane into the plastic tube above the perfusion cannula. 100 μl of Rhod-2 (1 mg 
in 1 ml solution; delivered over 2 min) and 20 μl of RH-237 (5 mg in 1 ml solution; delivered over 1 min) were 
used . Data in Figs. 1, 3, 9, 10, and Supplementary Figure 2–4 were extracted using the same imaging setup and 
experimental conditions, except that no calcium dye was used.

Data used to demonstrate noise-resistance of COSMAS in Fig. 2A,B and Supplementary Figure 1 were gen-
erated by pacing the ToR-ORd model of human ventricular  myocyte16 at 2 Hz for 1000 beats, copying the last 
recorded calcium transient a given number of times to obtain a sequence of calcium transients. The data were 
subsequently normalized to 0–1 range and additive zero-mean Gaussian noise of the given standard deviation 
was added.

The cardiac monolayer data in Fig. 8 were obtained using the protocols described  in18. In brief, optical map-
ping was performed on Rhod-4-AM (10 µM, AAT Bioquest, Sunnyvale, CA) treated cardiac monolayers (P1-P3 
SD neonatal ventricular rat myocytes). Rhod-4-AM was diluted in tyrodes solution (in mM: NaCl, 135;  MgCl2 1; 
KCl, 5.4;  CaCl2, 1.5;  NaH2PO4, 0.33; glucose, 5; and HEPES 5 adjusted to pH 7.4 with NaOH). Culture imaging 
was conducted at room temperature. The spiral wave in Fig. 8 was extracted using the same culturing protocol 
and solution, but was imaged by measuring contraction artifacts using off-axis illumination as described by 
Burton et al.19.

Results
Here we present a range of applications of COSMAS to optical mapping data.

Activation mapping in Langendorff rat hearts. COSMAS may be used to assess the effect of a given 
treatment on the pattern of activation and conduction velocity. For example, conduction acceleration may be 
observed after isoproterenol administration in rat hearts (Fig. 4A,B). In Fig. 4C,D are shown three traces before 
and after isoproterenol administration from pixels highlighted in Fig. 4A, with the activation times detected by 
COSMAS shown as black lines. Importantly, these are raw traces before any processing (carried out by COSMAS 
internally to find the activation times shown), showing that the extraction of activation times does not introduce 
biases/shifts in timing. They also demonstrate that COSMAS can work with noisy signals of varying amplitude.

Observing heterogeneity in infarcted Langendorff rat hearts. The fact that COSMAS returns maps 
of various features makes it readily applicable to studies on spatial heterogeneity. For example, a map of AP dura-
tion at 75% recovery (APD75) shows that the border zone of a healed infarct in a rat has longer APD75 than 
the surrounding myocardium (Fig. 5A,B). Activation map extracted from the same recording also shows slower 
stimulus propagation in the infarct border zone (Fig. 5C,D), which leads to the wavefront curving around the 
infarct. Reduced conduction velocity in a border zone of a healed infarct is a known hallmark of border zone 
remodeling associated with downregulation of fast sodium current and myocyte  uncoupling20.

Alternans mapping. COSMAS can be used to analyze alternans in cardiac recordings, such as CaT ampli-
tude alternans (Fig. 6). For example, it can reveal nodal lines in the setting of discordant alternans, where the 
tissue zones on either side of the nodal line oscillate in the opposite phase, with one zone showing a diminished 
CaT and another an enlarged  one21 (Fig. 6A,B). It can also visualize heterogeneity in alternans magnitude, such 
as in rat hearts with a healed myocardial infarction, where the border zone is particularly prone to alternans 
 formation9 (Fig. 6C,D).

Custom comb design enables S1S2 protocol analysis. While the simplest form of the comb algo-
rithm serves to process regularly activated recordings (searching for a set of minima in a recording that are a 
constant number of frames apart), COSMAS also enables the user to provide a custom ‘comb’, where the signal 
minima to-be-found have intervals of any length between them. This provides the possibility to process record-
ings with any a priori known activation pattern. For example, for S1-S2 protocol with three S1 = 150 ms stimuli 
and a single S2 = 60 ms stimulus (Fig. 7, bottom left), the user can construct a comb searching for 3 minima 
that are 150 ms apart, and then another minimum that is to be found 60 ms after the last S1. Using a custom 
comb for each distinct S2 coupling interval, features such as signal amplitude or duration may be extracted from 
S1S2 recordings; an example of S1S2 restitution of CaT amplitude is given in Fig. 7, top. We note that in case of 
measurements of tissue-level response to S1-S2 protocol, the diastolic intervals may differ somewhat in different 
regions due to conduction velocity restitution properties. In such a case, the width of local search around the 
initial positioning of the comb teeth is best increased (via the ‘refinementWidth’ parameter) so that the minima 
search covers the range of activation times observed in the sample.

Optical mapping of cell cultures and spiral waves. The applications of COSMAS are not limited to 
macroscopic Langendorff heart imaging, as presented in previous sections, but can just as well be used to pro-
cess recordings from calcium-imaged cardiac monolayers without additional customization. Figure 8 illustrates 
a sample calcium trace in such a culture (Fig. 8A), as well as an activation and an 80% recovery duration map 
extracted from a dish (Fig. 8B).

While COSMAS is aimed primarily at the analysis of non-arrhythmic phenomena and features, it can also 
process periodic arrhythmia, such as a reentrant spiral wave (Fig. 8C,D), imaged using the off-axis illumina-
tion  technique19. The spiral wave shown in Fig. 8D was surrounded by highly chaotic wavelets and seemingly 
random spurious activity, producing fragmented and difficult to interpret activation pattern around the edges 
of the image. COSMAS is intrinsically capable of detecting such sites of irregular activation in the recording 
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processed (and possibly excluding them from further analysis). This is demonstrated in Fig. 8E, which shows the 
temporal standard deviation of the estimated APD75, computed over all the spiral wave passes. In sites where 
the activation is regular, the signal shape is consistent across wave passes, yielding low standard deviation value. 
Conversely in sites of nonperiodic activation, the comb algorithm does not segment the tissue activation cor-
rectly, instead forcing the nonperiodic signal to fit within the periodic comb, producing poor segmentation and 
thus high temporal standard deviation of the APD75 (or other features) extracted.

Comparison of key functionality to ElectroMap. In this section, we compare the COSMAS’ func-
tionality for activation mapping and calcium alternans mapping with that of ElectroMap, a recently published 
comprehensive software for analysis of optical mapping  data12. First, we evaluated the robustness of activation 
mapping to three levels of additional Gaussian noise (Fig. 9A), observing the correlation of recorded activation 
times after noise addition to the activation times recorded in the baseline recording (Fig. 9B). At baseline condi-
tions with no noise, both tools are in excellent agreement with regards to the activation times (Fig. 9A,  R2 > 0.99, 
Supplementary Figure 3). With the addition of light Gaussian noise, standard deviation sd = 100 signal intensity 
units, the activation pattern was essentially unchanged in both tools, with COSMAS showing marginally tighter 
correlation to the noise-free activation times  (R2 = 0.995 vs 0.991 in ElectroMap). With intermediate level noise 

Figure 4.  Activation mapping in a voltage-mapped Langendorff rat heart before and after isoproterenol 
application. (A) Activation map from a wave pass in control condition; isochronal lines are given in 
milliseconds, and the map is visualised with a minimum activation time of 0. Spatial resolution is 16 × 16 
pixels. Red arrows with annotations highlight pixels from which traces are shown in (C,D), with the arrow 
labels corresponding to the row and column indices within the activation map. (B) Analogous activation map 
from a wave pass in the same heart after isoproterenol administration (20 nM). (C) Traces of the three pixels 
highlighted via the red arrows. The black lines show activation times (points of half-maximum activation) as 
determined by COSMAS. The time shown on the x axis is taken relative to the preceding clock, and the traces 
were mean-subtracted on the y axis to facilitate their visualisation in a single plot. (D) Traces of the same three 
pixels in the map extracted from the heart after isoproterenol administration.
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(sd = 250), the resulting maps are less smooth in both tools (Fig. 9A), and the correlation plots show more fre-
quent deviations from the noise-free activation times (Fig. 9B). COSMAS manifests a slightly worse  R2 correla-
tion value than ElectroMap in this scenario  (R2 = 0.93 vs 0.967), but this is driven by a single outlier point (com-
ing from the bottom left corner of the recording which has the poorest signal quality) to which the  R2 statistic is 
notoriously sensitive. When the single outlier is removed, COSMAS’  R2 is slightly better than that of ElectroMap 
(0.981 vs 0.967), suggesting that the average deviation from the original recording is lower (which can be also 
seen in Fig. 9b, 2nd column, where the spread of COSMAS’ points excluding the outlier is smaller than in Elec-
troMap). With a high level of noise added (sd = 500), while both tools show a markedly deteriorated quality of 
activation map detection, the COSMAS’ output shows a better resemblance with the original mapping pattern 
(Fig. 9A). The  R2 statistic is also markedly better in COSMAS compared to ElectroMap (0.884 vs 0.591, Fig. 9B).

Subsequently, we similarly evaluated the robustness of alternans mapping to added Gaussian noise in match-
ing conditions (Fig. 10A). In the recording with no added noise, both tools produce relatively similar outputs, 
showing the pattern of nodal lines (Fig. 10A,  R2 = 0.88; Supplementary Figure 4A). However, ElectroMap reports 
a small degree of alternans even when alternans is not present (Supplementary Figure 4B), leading to a somewhat 
lower contrast in its alternans maps. COSMAS’ alternans mapping appears relatively resistant to increasing levels 
of noise, maintaining a stable visual pattern (Fig. 10A, B,  R2 = 0.957, 0.866, 0.789 for the three levels of added 
noise versus original recording). While ElectroMap was resistant to a small amount of noise added, the alternans 
maps deteriorated when noise with standard deviation of 20 or 30 was added (Fig. 10A, B,  R2 = 0.836, 0.664, 
0.422 for the three levels of added noise).

Figure 5.  Spatial heterogeneity in rat hearts with a healed infarct. (A) A map of AP duration at 80% recovery. 
The zone under the red semi-circle corresponds to the infarct border zone (BZ), with the zone above the 
semi-circle being non-infarcted zone. Red arrows point to pixels from which sample traces in the (B) panel 
are extracted. (B) Sample traces from border and non-infarcted zone verifying the prolongation of the APs 
in the border zone (manifesting both earlier depolarization and later depolarization). The traces were scaled 
to have a similar amplitude and baseline, facilitating visual comparison. (C) Average activation map in the 
same recording. (D) Local conduction velocity visualization for panel (C), estimated by Bayly’s  method17, 
implemented in COSMAS.
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Discussion
This work presents and demonstrates COSMAS, a tool for automated analysis of optical mapping data from 
cardiac preparations, such as explanted hearts or cardiac cell cultures grown in monolayers. Two key aims of 
COSMAS are to provide high-quality processing and to maintain simplicity of methods and code. Unlike previous 
tools for optical mapping data analysis that were implemented in  MATLAB11,12, COSMAS is provided both as a 
MATLAB library and also as a Python library, thus being more accessible to researchers without MATLAB access.

COSMAS offers powerful functionality to extract activation maps, signal duration, amplitude, and baseline, as 
well as analyze alternans in these features. The quality of processing follows from the use of the comb  algorithm15, 
which leverages knowledge of the pattern of activation in the cardiac preparation to reduce the impact of noise, 
while also avoiding a range of segmentation artefacts that arise in common algorithms of segmentation, such as 
thresholding. Our comparison of COSMAS and a recently published high-quality software for optical mapping 
analysis  ElectroMap12 suggests that with regards to activation mapping, and CaT amplitude mapping, COSMAS 
performs as well as or better than ElectroMap in common tasks, and is more resistant to noise in the data (Figs. 8, 
9). On the other hand, ElectroMap is a more comprehensive tool that allows analysis of several features that are 
currently not supported in COSMAS (e.g. mapping of time constant of recovery of CaTs) and its GUI-based 
nature may be helpful for analysis of small datasets.

Figure 6.  Examples of alternans maps and traces. (A) Calcium transient amplitude alternans map 
corresponding to discordant alternans, with warmer colors corresponding to alternans with large amplitude. 
Dark blue zones are nodal lines separating zones of alternans in opposite phases. The pixels marked by red 
arrows with annotations giving the row and column indices are used in the subsequent panel. (B) Sample traces 
from the three marked pixels in the recording in (A), verifying that the alternans is discordant (blue and yellow 
traces have opposite phases) and that there is a lack of alternans in the nodal lines (red trace). (C,D) Similar 
format to (A,B), but showing spatially heterogeneous alternans in an infarcted heart, where alternans arises only 
in the infarct border zone (BZ) but not the non-infarcted zone (NZ).
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The relative simplicity of COSMAS is enabled by its focus on the most common tasks in optical mapping, the 
avoidance of GUI, and the utilization of prior knowledge of the activation rate in the analyzed recordings. The 
simplicity is advantageous in the following ways:

First, the simplicity arising from script-based design, as opposed to GUI, means that it is easy to write fully 
automated analyses that can load a whole batch of experiments, analyze them, and then perform statistics or 
visualization on them to produce publication-ready figures. This not only saves large amounts of time, but it also 
prevents potential user mistakes such as inconsistent parametrization between recordings and mistakes in stor-
ing or loading output, increasing analysis reproducibility. Similar design considerations have driven redesigns 
in other scientific software  platforms14.

Second, it means the methodology is transparent. It is tractable why the software produces its outputs and, 
when compared to more complex methods, potential problems are easier to find and fix. We have a first-hand 
experience of difficulties arising from complex solutions related to our previous data analysis software Ccoffinn 
for comprehensive analysis of high-resolution mapping data recorded in cell  cultures22. In most applications 
of Ccoffinn by other groups that we are aware of, our help was needed for reading and preprocessing data, for 
setting optimal parameters, and for interpreting the outputs. We hope that the simplicity of COSMAS makes it 
a far more approachable tool.

Third, the design and structuring of the codes makes it much easier to extend COSMAS with further func-
tionality compared to software with architecture predetermined by a GUI. Implementing a simple change, such 
as the addition of a parameter or a pre-processing step, is much more challenging in a GUI-based complex tool. 
Given that working with MATLAB’s GUI is a relatively specialized skill, we consider a GUI-based design a major 
limitation with regards to user adaptability of the software.

Figure 7.  An example of CaT amplitude restitution in S1-S2 protocol. In the top image is shown the relative 
CaT amplitude of the S2 stimulus versus S1 stimuli, demonstrating that for short S2 coupling interval, the CaT 
amplitude is reduced. CaT amplitude is defined as the upstroke amplitude (i.e. from the start of the CaT to the 
peak). Below the restitution curve are two examples of traces from which the curve was extracted: for S2 = 60 ms 
and S2 = 130 ms. The S1 coupling interval was 150 ms.



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9147  | https://doi.org/10.1038/s41598-021-87402-9

www.nature.com/scientificreports/

Ultimately, avoiding complex approaches to signal analysis also means that COSMAS offers excellent com-
putational performance, allowing the processing of hundreds to thousands of recordings per hour on a common 
PC (depending on hardware and data resolution). The combination of script-based automation and fast runtime 
makes COSMAS suitable for applications in large-scale drug  screening23,24.

Figure 8.  Application of COSMAS to a dish of calcium-imaged monolayer. (A) Sample pixel trace (1 Hz 
pacing). (B) Activation map extracted from a culture dish showing calcium-based propagation (top) and a map 
of CaT duration (CaTD) measured at 80% recovery (bottom). (C) Sample trace from a recording obtained off-
axis cell culture  imaging19 showing characteristic “double-hump” motion transient morphology corresponding 
to cellular contraction and relaxation. (D) The activation map of a slow-conducting spiral wave imaged using 
off-axis imaging, with chaotic culture activation around the spiral. (E) The map of temporal standard deviation 
of duration of cellular activation, computed over multiple wave passes.
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Figure 9.  Robustness of COSMAS’ and ElectroMap’s activation mapping to noise. (A) The four rows of images correspond to a 
baseline recording, and then the same recording with three levels of added noise (Gaussian noise with standard deviation of 100, 250, 
and 500). The first column shows a sample pixel trace from the center of the field of view, the second column gives the activation maps 
produced by COSMAS, with the third column displaying activation maps produced by ElectroMap. (B) A measure of how the extracted 
activation pattern changes with added noise. In the three columns is shown, for both tools, the correlation of activation times in the 
noisy recordings (x-axis) versus the activation times in control recording (y-axis). Tight correlation means that there is little change 
in activation detection with the added noise. Above the correlation plots is given the  R2 statistic, corresponding to goodness-of-fit. 
In COSMAS, noise sd = 250, the  R2 value in parentheses gives the statistic value after removal of one outlier point which perturbs the 
statistic markedly. Parameters of COSMAS and ElectroMap were matched whenever possible (see Methods for details). The original data 
with no added noise come from Langendorff-perfused rat hearts paced at 150 ms basic cycle length.
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Figure 10.  Robustness of COSMAS’ and ElectroMap’s alternans mapping to noise. The structure of the figure is 
identical to Figure 9. Sample traces in (A) come from pixel row = 13, column = 7 in the recording. Given different 
amplitude of the calcium signal, lower amount of Gaussian noise was applied. Parameters of COSMAS and 
ElectroMap were matched whenever possible, including the alternans metric (see “Methods” section for details). 
The original data with no added noise come from Langendorff-perfused rat hearts paced at 85 ms basic cycle 
length.
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Limitations
The most obvious limitation of COSMAS is tightly linked to its reliance on the comb algorithm for segmentation 
of stimuli: it requires the user to have a prior knowledge of the activation pattern of the recording. At the same 
time, it can be argued that fixed-rate pacing or other known-pattern protocol (such as S1S2) should be used 
for most domains of COSMAS’ application, making the limitation relatively theoretical. One obvious example 
is alternans, which is typically evoked by fixed-rate rapid pacing, but even experiments measuring conduction 
velocity do benefit from fixed-rate activation. For example, when a drug is suspected to change conduction 
velocity, but it also changes heart rate, using fixed-rate pacing makes it possible to tease apart the effect of the 
drug on conduction properties from the effect of conduction velocity restitution.

Ultimately, even for recordings where the pattern of excitation is not controlled by the user (e.g. spontaneously 
beating cultures in multi-well plates used in high-throughput studies), it may be often very easy to automatically 
extract the times of activation. This may be achieved, e.g. using thresholding on the spatial average of the whole 
recording (which tends to be very low-noise in general, allowing simple thresholding to work adequately), and 
taking the signal maximum in each segment above the threshold as an activation time. A custom comb may be 
then automatically constructed based on intervals between thus detected activation times (substituting the need 
of prior knowledge of activation rate). This may then be provided to COSMAS, allowing high-quality segmenta-
tion of APs and CaTs for each pixel’s trace in such recordings (for which thresholding would not have worked 
adequately due to much lower signal-to-noise ratio).

Data availability
Imaging datasets analysed in the study are available at https:// github. com/ jtmff/ cosmas. 

Code availability
The codes, data, sample scripts illustrating common use cases, and a user guide are available at https:// github. 
com/ jtmff/ cosmas.
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