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The three-dimensional (3D) structures of Ribonucleic acid (RNA) molecules are essential to
understanding their various and important biological functions. However, experimental
determination of the atomic structures is laborious and technically difficult. The large gap
between the number of sequences and the experimentally determined structures enables
the thriving development of computational approaches to modeling RNAs. However,
computational methods based on all-atom simulations are intractable for large RNA
systems, which demand long time simulations. Facing such a challenge, many coarse-
grained (CG) models have been developed. Here, we provide a review of CG models for
modeling RNA 3D structures, compare the performance of the different models, and offer
insights into potential future developments.
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1 INTRODUCTION

Ribonucleic acid (RNA) is an unbranched polymeric macromolecule undertaking crucial and various
biological functions, such as carrying genetic information, directing protein synthesis, regulating
gene expression, catalyzing biological reactions (Gesteland et al., 2005; Cech and Steitz, 2014; Morris
and Mattick, 2014; Mortimer et al., 2014). Exogenous RNAs can also exert deleterious effects on
human health. For example, SARS-CoV-2, an RNA virus, caused the serious respiratory disease
COVID-19 in the current pandemic (Tu et al., 2020; Oran and Topol, 2020). Moreover, recently
developed mRNA vaccines suggest that RNAs can be used as an antiviral therapeutic agents against
COVID-19 by making antibodies through human immune response (Amanat and Krammer, 2020;
Krammer, 2020; Moore and Offit, 2021). RNA functions are tied to their 3D structures. For example,
the formation of pseudoknot structure in SARS-CoV-2 frameshift stimulating element is required for
ribosomal frameshifting which can lead to the production of alternative proteins from the same
genomic region (Kelly et al., 2020). Therefore, detailed RNA 3D structures are important for
understanding their functions and for drug design. To determine high-resolution 3D structures,
X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy experiments are
conventionally performed, but it is laborious and tough to solve structures by these methods.
Meanwhile, numerous RNA sequences have been obtained but their 3D structures remain unknown.
Consequently, the huge gap between the number of sequences and the known structures stimulates
the development of computational 3D structure prediction methods over the past decades (Miao and
Westhof, 2017). In terms of the resolution of the RNA structural model, these methods can be
classified into two categories, namely all-atom (AA) and coarse-grained (CG) approaches. For AA
approaches, 20–23 heavy atoms and 10–11 hydrogen atoms are considered for each nucleotide, while
for some CG approaches, several atoms are grouped together into a bead and only several beads are
used to model a nucleotide, and for some other CG approaches, even more coarse-grained
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representations are used by treating helix and loop structures as
vertices and edges. For de novo modeling methods without using
solved homologous structures, sampling in the energy landscape
is often required and the lowest free energy structure is searched
for (Anfinsen, 1973). Compared with AA methods, the energy
landscape in CGmodels is smoother, enabling faster arrival at the
global energy minima, and the computation should be more rapid
due to fewer atoms. Next we will introduce a dozen of CG
approaches to modeling RNA 3D structures.

2 COARSE-GRAINED MODELS FOR
RIBONUCLEIC ACID 3D STRUCTURE
MODELING
The general workflow for predicting RNA 3D structures using CG
models is shown in Figure 1. There are four parts in the
workflow, namely input, sampling, output and all-atom
structure reconstruction. We will go through them next.

Input For the input part, an RNA sequence is usually required,
and a secondary structure is essential for some models and is
optional for others. Additional constraints are applicable for
some models, such as experimental information, distance
between specified atom pairs, initial 3D structures, and
templates for motifs.

Sampling For the sampling part, a conformational generator
for producing candidate structures and a conformational

discriminator for assessing structures are essential. A
generator is commonly implemented in a Monte Carlo
(MC) or molecular dynamics (MD) simulation framework,
and many variants of MC and MD engines are utilized to
accelerate conformational sampling. Generally, a
discriminator is called scoring function, (potential) energy
function, or force field in structure prediction field. There
are three main forms of energy functions used in the CG
models. The first type of CG energy function mimics the all-
atom force field including the bonded terms of bond lengths,
angles and torsions, and the non-bonded terms of Van der
Waals and electrostatic energies, as shown in Eq. 1 for the
AMBER force field (Wang et al., 2004) where harmonic
potentials are used for bonds and angles, a cosine form
potential is used for torsions, the Lennard-Jones potential is
used for Van der Waals interactions, and the Coulomb
interaction energy is used for electrostatic interactions.

EAMBER � ∑
bonds

Kr(r − req)2 + ∑
angles

Kθ(θ − θeq)2 + ∑
torsions

Vn

2
[1 + cos(nϕ − c)]

+ ∑
i< j

Van derWaals

⎛⎝Aij

R12
ij

− Bij

R6
ij

⎞⎠ + ∑
i< j

electrostatic

(qiqjϵRij
)

(1)

The second type of CG energy function is the potential of
mean force (PMF) (Sippl, 1990) using the inverse Boltzmann
formula as shown in Eq. 2, where E(x) is the PMF for a structural
variable x, kB is the Boltzmann constant, T is the temperature,
pobs(x) is the probability distribution for x observed in the
experimental structures, and pref(x) is the probability
distribution for x in the reference state. The common
structural variable x is the nucleotide- or atom-dependent
interatomic distance, angle, torsion or the combination of
them. We also call this potential statistical potential or
knowledge-based potential (Capriotti et al., 2011; Wang et al.,
2015; Tan et al., 2019).

E(x) � −kBTln [pobs(x)/pref(x)] (2)

The third type of CG energy function is the hybrid of the
former two energies. For example, for the bonded energies, the
harmonic, Gaussian or other energy functions are used
mimicking the all-atom force field, while for the non-bonded
energies, the PMF energy is used to account for base pairing and
base stacking interactions. The parameters in the bonded energy
functions are usually fitted to the statistical potentials derived
from the experimental structures (Tan et al., 2006; Jonikas et al.,
2009b; Xia et al., 2013). In addition to the above three main forms
of energy functions, some models use the sum and product of
several harmonic potentials, Gaussian energy functions or other
functions as a combined complex energy function (Šulc et al.,
2014; Zhang et al., 2021). Some CG models can integrate
additional experimental information into the energy functions
by transforming the information into distance, angle, torsion and
other constraints (Tan et al., 2006; Jonikas et al., 2009b; Xia et al.,

FIGURE 1 | The general workflow for predicting RNA 3D structures
using CG models.
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2013; Krokhotin et al., 2015). Generally the conformational
generator and discriminator are not independent. Ideally the
discriminator would lead the generator towards the low-energy
conformational space. However, the generator may be trapped in
the local minima in the energy landscape, and advanced sampling
algorithms may help the generator traverse these local minima
efficiently.

Output For the output part, some models select the structure
with the lowest energy as the predicted native structure, while
other models first group the low-energy structures into several
clusters, and choose the centroid structures in the clusters as the
predicted structures. The predicted best centroid structure is from
the largest cluster, which accounts implicitly for the entropy
effect.

All-atom structure reconstruction All-atom structures are
essential for studying ligand binding and drug design and for
structure-based understanding of RNA functions. For the all-
atom structure reconstruction part, the fragment matching
algorithm (Jonikas et al., 2009a) is often used, followed by
structure refinement to remove steric clashes and chain breaks.

2.1 Models
Twelve CG models are described next and summarized in
Table 1. The models are sorted first by the CG level and then
by the published time.

Graph-based model (Kim et al., 2014) The model maps a 2D
structure to a graph, where a helix is represented by two
connected vertices bridging the helix ends, a hairpin loop by a

vertex attached to the stem, internal loops by a vertex connecting
two helices, and N-way junction loops by a vertex connecting N
helices. Like the all-atom force field, the connected vertices form
bonds, angles, and torsions. For internal loops, a knowledge-
based statistical potential is constructed in terms of the bond
angles and torsions. For 3-way and 4-way junctions, RNAJAG
program (Laing et al., 2013) predicts topologies and determines
the coordinates of the junction vertices. In addition, a radius of
gyration-related term is added to determine the global
compactness. Monte Carlo/simulated annealing (MC/SA) (Van
Laarhoven and Aarts, 1987; Robert and Casella, 2013) methods
are used for the 3D graph sampling. The model can predict global
helical arrangements compatible with a given secondary structure
and give all-atom structures.

Ernwin (Kerpedjiev et al., 2015) Ernwin is also a helix-based
coarse-grained model which maps helices to reduced cylinders
and maps loops to edges attached to a helix or connecting two
helices. The relative orientations and positions of two helices are
determined by the loops connecting them. The model uses
Markov chain Monte Carlo (MCMC) simulation to sample the
3D arrangements of the helices in a force field with five energy
terms, including steric clash energy, junction closure energy,
radius of gyration-related energy, A-minor energy favoring the
long-range interaction in A-minor motif, and loop-loop
interaction energy. The last three energy terms are knowledge-
based potential of mean force. The model can efficiently predict
plausible global shapes of large RNAs. The program is available at
http://github.com/pkerpedjiev/ernwin. A server of this program

TABLE 1 | Summary of CG models for RNA 3D structure modeling.

Model Representation Energy Applicable constraintsa Sampling Output Availability

Graph Helix-based KB2 No MC7 + SA8 AA No
Ernwin Helix-based KB No MCMC9 CG15 Standalone + server
YUP 1 bead/nt1 KB Footprinting, cross-link, etc. MC + SA CG No
NAST 1 bead/nt KB Tertiary contact MD10 CG/AA16 Standalone
iFoldRNA 3 beads/nt KB + TD3 HRP4, NMR5 REDMD11 AA Server
TOPRNA 3 beads/nt KB No REMD12 CG Standalone
IsRNA1 4–5 beads/nt KB No REMD AA Standalone + sever
Ren’s 5 beads/nt KB NMR, SAXS6 MD/SA AA No
oxRNA 5 beads/nt TD No MC + US13 + MD CG Standalone + server
SimRNA 5 beads/nt KB Distance REMC14 AA Standalone + server
SPQR 5 beads/nt KB No MC + SA AA Standalone
HiRE-RNA 6–7 beads/nt KB No REMD AA No

aApplicable constraints include 2D structure constraints for all models.
1nt: nucleotide.
2KB: knowledge-based.
3TD: thermodynamics.
4HRP: hydroxyl radical probing.
5NMR: nuclear magnetic resonance.
6SAXS: small-angle X-ray scattering.
7MC: Monte Carlo.
8SA: simulated annealing.
9MCMC: Markov chain Monte Carlo.
10MD: molecular dynamics.
11REDMD: replica exchange discrete molecular dynamics.
12REMD: replica exchange molecular dynamics.
13US: umbrella sampling.
14REMC: replica exchange Monte Carlo.
15CG: coarse grained.
16AA: all atom.
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can be found at http://rna.tbi.univie.ac.at/ernwin. RNA sequence
and secondary structure are essential inputs to the server and only
coarse-grained structures can be retrieved at the present time.

YUP (Malhotra et al., 1994; Tan et al., 2006) The model uses
one bead to represent a nucleotide located at atom P, and uses
harmonic potential functions to describe bond stretching, bond
angle bending, and torsion angle twisting. The bond equilibrium
values are determined from experiment structures and the force
constants are fitted to reflect the uncertainties of the bond lengths,
angles, and torsions. The model is used to refine low-resolution
structures with additional experimental constraints.

NAST (Jonikas et al., 2009b) The NAST model simplifies a
nucleotide by using only the C3’ atom. Harmonic potentials are
applied to the bond lengths and angles, and a three-term cosine
function is used for torsions, and the energy parameters are
fitted to the statistical potentials derived from three large
ribosomal RNAs. Moreover, the repulsive term of the
Lennard-Jones potential is applied to avoid steric overlap.
Secondary structure and tertiary interaction constraints are
included in the energy function. MD simulations are used for
conformational sampling. It is computationally efficient to
sample the conformational space for large RNAs with the
given 2D and 3D constraints. This model, however, cannot
de novo fold RNAs solely based on sequence information since
the base information is missing in the model. All-atom
structures can be reconstructed by the supporting software
C2A (Jonikas et al., 2009a). The software can be downloaded
from https://simtk.org/projects/nast.

iFoldRNA (Ding et al., 2008; Sharma et al., 2008; Krokhotin
et al., 2015) The iFoldRNA model uses three beads to represent a
nucleotide. Two beads are positioned at the center of mass of the
phosphate group and the five-atom ring sugar. And the third bead
is located at the center of the six-atom ring in the nucleobase. The
energy functions include the bonded terms and the non-bonded
terms. The bonded terms impose constraints on the bond lengths,
angles, and torsions derived from experimental structures. For
the non-bonded terms, base pairing interactions,
phosphate–phosphate repulsion interactions, hydrophobic
interactions (a general attraction between all bases) and
nucleotide type-based base stacking interactions are considered
in the energy function. The energy parameters for base pairing,
stacking and hydrophobic interactions are computed by
decomposing the sequence-dependent free energy parameters
for individual nearest-neighbor hydrogen-bond model (INN-
HB) (Mathews et al., 1999) and thus it can be used to study
RNA thermodynamic properties. Moreover, loop entropy is
explicitly considered in the model. Replica exchange discrete
molecular dynamics (REDMD) simulations starting from a
linear structure are utilized for conformational sampling. The
model can de novo fold small RNAs without secondary structure
information including pseudoknots and can fold large RNAs
given secondary structure constraints. All-atom 3D structures can
be generated. The iFoldRNA v2 server is available at https://
dokhlab.med.psu.edu/ifoldrna.

TOPRNA (Mustoe et al., 2014) The TOPRNA model uses
three beads to describe the phosphate, sugar, and base moieties of
a nucleotide. The energy functions follow the form of the

standard CHARMM potential (Brooks et al., 2009), including
three harmonic potentials for the bond lengths, angles and
improper torsions, a cosine form potential for proper torsions,
and a Lennard-Jones potential for the Van derWaals interactions.
However, electrostatic interactions are ignored in the model. The
parameters in the energy functions are fitted to the statistical
potentials calculated according to a database of native structures.
Replica exchange molecular dynamics (REMD) (Sugita and
Okamoto, 1999) simulations are performed for conformational
sampling. The link to the force field and the related software is as
follows: https://brooks.chem.lsa.umich.edu/index.php?
page�toprna&subdir�articles/resources/software.

IsRNA1 (Zhang and Chen, 2018; Zhang et al., 2021) For the
IsRNA1 model, four or five beads are used to represent a
nucleotide, including atoms P and C4’ for the backbone, two
beads for the pyrimidine bases, and three beads for the purine
bases. A sum of a harmonic potential and a Gaussian potential is
used for the bond length, and angle energy. A cosine form
potential is used for the torsional angle energy. A combined
function of two bond lengths, two angles, and two torsions is used
to characterize the canonical base pairing interactions. A sum of
two Morse potentials and two Gaussian potentials is used to
account for non-canonical base pairing, base-stacking, base-
backbone, and backbone-backbone interactions. Moreover, a
repulsive Lennard-Jones potential is used to describe the
excluded volume effects.

The parameters in the CG force field are optimized by using
the statistical potential in Eq. 2. It is noteworthy that an iterative
simulated reference state approach is implemented to
parameterize the energy functions, which can account for the
correlations between different structural variables in the energy
functions. Specifically, energy terms are added to the force field
sequentially and the probability distribution in the reference state
is updated accordingly. In each step, an energy term E(x) is
computed from Eq. 2 and added to the existing CG force field U.
A key point in the theory is that pref(x) for x in Eq. 2 is computed
from MD simulations with force field U. Such a reference state
accounts for the chain connectivity, the excluded volume effects,
and all the other interactions considered in U. Physically, E(x)
represents the interaction potential for x in excess of U. With the
updated energy function U + E(x), the simulated distribution
psim(x) of x would be equal to the observed result pobs(x)(Hurst
et al., 2021).

In the IsRNA1 approach, REMD simulations are utilized to
accelerate conformational sampling. Moreover, the model uses
template-based Vfold3D (Zhao et al., 2017) and VfoldLA (Xu
et al., 2019) programs to generate the initial structures. Users can
also provide the initial structures generated by other models such
as RNAcomposer (Popenda et al., 2012) and RNA-MoIP (Yao
et al., 2017; Reinharz et al., 2021). Secondary structure is an input
for IsRNA1 and energy-minimized all-atom 3D structures can be
obtained. The standalone software and the server of the IsRNA1
model for RNA 3D structure prediction can be found at http://
rna.physics.missouri.edu/IsRNA/index.html. The input to the
server includes RNA sequence, secondary structure and
optional initial structures, and the output is the energy-
minimized all-atom 3D structures.
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Ren’s model (Xia et al., 2010, 2013) In this model, a nucleotide
is reduced to five beads. Specifically, atoms P and C4’ are used to
represent the backbone, and three bonded pseudo atoms are used
to represent the nucleobase. Three harmonic potentials are
implemented to characterize the bond lengths, angles, and
torsions. And a Buckingham potential is used to describe the
non-bonded interactions. The Debye-Huckel potential is utilized
for electrostatic interactions. And a distance- and angle-based
energy function is used to describe the hydrogen bonding
interaction. The parameters in the potential energies are fitted
to the statistical potentials derived from a database of native
structures. SA simulations are performed to fold RNAs. Small
RNAs of different topologies can be folded into near native
structures and large RNAs can be folded with experimental
constraints. Atomic 3D structures are obtained in the output.
The program of this model is not released.

oxRNA (Šulc et al., 2014) In the oxRNAmodel, a nucleotide is
treated as a rigid body with five interaction sites including
backbone, hydrogen-bonding, cross-stacking and 3′- and 5′-
stacking interactions. The energy functions adopt relatively
complex forms and the energy parameters are fitted to
reproduce the thermodynamics properties of the nearest-
neighbor model (Tinoco et al., 1973) for short duplex and
hairpin structures. The virtual move Monte Carlo (VCMC)
algorithm combined with umbrella sampling (US) method or
MD simulations are used for conformational sampling. It not
only can fold small RNAs including pseudoknot and kissing
hairpin structures, but also can characterize the thermodynamic
and mechanical properties of RNAs. The model can be
downloaded from https://dna.physics.ox.ac.uk/index.php/
Main_Page. The web server (Poppleton et al., 2021) was
recently released at https://oxdna.org/.

SimRNA (Boniecki et al., 2016; Magnus et al., 2016) The
SimRNAmodel reduces 20–23 heavy atoms down to five, namely
atoms P, C4’, C2, N1 and C4 for pyrimidines, N9 and C6 for
purines. The energy function in SimRNA model consists of
sequence-independent local bonded terms and sequence-
dependent non-bonded terms. The non-bonded terms include
base-base, base-backbone, and backbone-backbone interactions,
and discrete statistical potentials are constructed for these
interactions based on a database of native structures. Replica
exchange Monte Carlo (REMC) simulations are used to sample
the conformational space. The model can fold small RNAs
without secondary structure constraint and can fold large
RNAs with secondary structure and other interatomic distance
constraints. The standalone software can be found at http://
genesilico.pl/software/stand-alone/simrna. The server of the
model can be accessed from https://genesilico.pl/SimRNAweb.
Users feed RNA sequence and 2D structure (optional) to the
server, and can fetch the predicted all-atom 3D structures after
the jobs are done.

SPQR (Poblete et al., 2018) The SPQR model uses a bead as
the phosphate group, three beads for the nucleobase forming a
rigid triplet, and a virtual bead for the sugar attached to the base.
The non-bonded energy functions account for excluded volume
effects, base pairing, base stacking, base-phosphate, and
backbone-backbone interactions. The potentials of mean force

are applied to the non-bonded interactions and the relative
strengths of different interactions are trained by distinguishing
native structures from decoys for dozens of internal and hairpin
loop structures. SA/MC protocol is adopted for sampling. All-
atom structures are reconstructed finally. This model can provide
accurate predictions for the secondary and tertiary structures of
small RNA motifs. The program can be downloaded at http://
github.com/srnas/spqr.

HiRE-RNA (Pasquali and Derreumaux, 2010; Cragnolini
et al., 2013; Sterpone et al., 2014; Cragnolini et al., 2015) In
the HiRE-RNA model, the coarse-grained representation of a
nucleotide consists of six or seven beads: five beads for the
backbone (atoms P, O5’, C5’, C4’, C1’), one bead (for
pyrimidine) or two beads (for purine) placed at the centers of
mass of heavy atoms in the all-atom rings in the base. The energy
functions include the local bonded terms and the long-range non-
bonded terms. For the local energy terms, harmonic potentials are
employed to constrain bond lengths and angles, and the cosine
form potential is applied to torsions. For the non-local energy
terms, excluded volume potential, electrostatic potential, base
stacking potential, and base-pairing potential including non-
canonical base pairs are considered. The key parameters in the
non-bonded energies are the relative strengths between different
energy terms. The parameters are trained using the genetic
algorithm to distinguish native structures from decoys. REMD
simulations are performed for conformational sampling. The
model can de novo fold small RNAs of different topologies
from fully extended structures without using secondary
structure constraints, and can fold large RNAs with secondary
structure and additional experimental constraints.

Besides 2D structure constraints, some of the models above
can integrate additional constraints into energy functions tomake
conformational sampling more efficient and effective for
structure prediction. The YUP model (Malhotra et al., 1994;
Tan et al., 2006) can use footprinting data (Tijerina et al., 2007;
Sclavi et al., 1998) and cross-linking (Harris and Christian, 2009)
experimental information to refine structures. The iFoldRNA
model (Ding et al., 2008; Sharma et al., 2008; Krokhotin et al.,
2015) can utilize the hydroxyl radical probing (HRP) (Ding et al.,
2012) and NMR experimental data. Ren’s model (Xia et al., 2013)
can transform NMR and small-angle X-ray scattering (SAXS)
(Lipfert and Doniach, 2007) experimental data to constrain the
sampling space. The NAST (Jonikas et al., 2009b) and SimRNA
(Boniecki et al., 2016; Magnus et al., 2016) models can implement
interatomic distance constraints when performing simulations.

The CG models reviewed above can be classified into two
categories, namely the helix-based and the nucleotide-based
models. The helix-based models can predict the global
structures efficiently especially for large RNAs, but sequence
information and structure details are missing in the sampling
process and secondary structures are essential as input. The
Graph-based model performs junction prediction first with
RNAJAG program (Laing et al., 2013), which can reduce the
conformational sampling space for RNAs with junction
structures but may incur the risk of using an nonnative
junction topology. The helix-based model Ernwin implements
new potentials favoring A-minor motif and loop-loop
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interactions but the atomic 3D structures are not available at the
present time.

The nucleotide-based models can capture structural details at
the expense of computational cost. The low-resolution models
YUP and NAST using one bead per nucleotide have the
advantage over high resolution models in terms of
computational speed but they cannot accurately model the
different (non-)canonical base pairing interactions which are
important in stabilizing RNA tertiary structures. Like the
helix-based models, YUP and NAST models cannot fold an
RNA solely based on sequence information and additional 2D
and 3D restraints are required. The high resolution models using
3-7 beads per nucleotide introduce a force field consisting of the
bonded and non-bonded energy terms and the differences
between models lie in the energy components and energy
function forms.

For the bonded energy terms, harmonic potentials or Gaussian
potentials or combination of both are often used to restrain the
bonds and angles, and a cosine form function is used for the
torsions in the MD-based models TOPRNA, IsRNA1, Ren’s
model, and HiRE-RNA, while discrete statistical potentials are
used for the bonds, angles, and torsions in the MC-based models
SimRNA and SPQR.

For the non-bonded energy terms, excluded volume potential,
electrostatic repulsive energy between phosphate-phosphate
groups, and backbone-backbone, base-backbone, and base-base
interactions are the main energy components. Although different
models may consider different interactions, the base-base
energies are included in all models because base pairing and
base stacking interactions are the most important forces
stabilizing RNA structures. The different models adopt
different strategies to account for base-base energies. For the
canonical base pairing interactions, all the models use explicit
terms of various energy functions to favor the canonical base
pairs, and in these energy terms, distances, angles and torsions are
introduced to characterize the co-planarity and the relative
positions and orientations of two paired bases. For the non-
canonical base pairing and base stacking interactions, several
models use explicit terms to describe the interaction potential
energy. For example, the iFoldRNA model uses a general base
attraction energy to mimic the non-canonical base pairing
interactions and uses distance-based energy functions to favor
base stacking interactions. The oxRNA model does not consider
non-canonical base pairing interactions, but uses complex
distance- and angle-dependent energy functions to describe
the stacking interactions, and the energy parameters are fitted
by reproducing the melting temperatures. The SPQR model uses
the distance-, angle-, and torsion-based statistical potentials to
describe the different non-canonical base pairing and base
stacking interactions. The SimRNA model implements
statistical potentials to extract the energy functions using six
discrete distances as the variables. The HiRE-RNA model uses
functions of distances and angles to achieve base pairing and
stacking interactions and the energy parameters are determined
by using the genetic algorithm to distinguish native structures
from decoys. In contrast, other models use implicit energy terms
to describe non-canonical base pairing and base stacking

interactions. For example, the IsRNA1 model and the Ren’s
model integrate the non-canonical base pairing, base stacking,
base-backbone and backbone-backbone interactions into an
effective potential as a function of the distances between non-
bonded atom pairs such as the Van der Waals energy in the all-
atom force field. The IsRNA1 model uses a sum of a Morse
potential and two Gaussian potentials while Ren’s model uses a
Buckingham potential, and the corresponding energy parameters
are fitted to the interatomic distance statistical potentials. The
non-canonical base pairing interactions are of great importance
but the current models either ignore them or describe them with
low accuracy. The statistical potential-based energy for the non-
canonical base pairs could underestimate the interaction strength
of relatively rare base pairs in the native structures. The implicit
and CG potentials for non-canonical base pairs have the difficulty
in accurate description of the geometries and the interaction
strength.

It is important to note that other excellent CG RNA modeling
methods have been reported elsewhere but cannot be covered
with great detail in this short mini-review. For example, NARES-
2P (He et al., 2013), a physics-based 2-bead model, can fold DNA
and RNA double helical structures, featuring the mean-field
dipole-dipole interactions between bases. Combined with
global optimization conformational space annealing algorithm
and limited distance restraints, NARES-2P model can also deal
with complex RNA folds (Sieradzan et al., 2018). RECER, a 5-
bead CG model, can accurately predict the native structures and
capture the folding free energy of RNA hairpins and duplexes
(Bell et al., 2017). Fyta et al. has developed a four-bead CG model
for double-stranded RNA which uses density functional theory to
determine the parameters in energy functions and can reproduce
the structural and mechanical properties (Cruz-León et al., 2018).
Tan et al. managed to predict the 3D structures and stability of
RNA kissing complexes in monovalent/divalent ion solutions by
using a 3-bead CG model (Jin et al., 2019). Even for the large
ribosome system, a 1-bead CG model for RNAs and proteins has
been applied to study its dynamics (Trylska et al., 2005). Recently
a three-bead CG model has been used to study the folding of the
ribosomal subunit where the Mg2+ effect can be explicitly
considered (Hori et al., 2021).

2.2 Performance Comparison Between the
iFoldRNA, SimRNA and IsRNA1 Models
Three CG methods, namely iFoldRNA, SimRNA, and IsRNA1
models, are compared in terms of performance for RNA 3D
structure prediction in the reference paper (Zhang et al., 2021).
The other methods are not chosen here because the programs are
not open to the public, or generate only CG structures, or are
designed mainly for studying the folding thermodynamics of
small RNAs instead of structure prediction of large RNAs. A large
dataset of 130 RNAs are used for benchmark test. The dataset
includes 44 stem-loops, 43 multi-way junctions, and 43 structures
of long-range tertiary interactions, and the shortest and longest
RNAs contain 40 and 161 nucleotides, respectively. RNA
sequences and native secondary structures are used as inputs
to the three models. The IsRNA1 model uses template-based
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Vfold3D (Cao and Chen, 2011; Xu and Chen, 2015; Zhao et al.,
2017) and loop-based VfoldLA (Xu and Chen, 2017; Xu et al.,
2019) algorithms to generate initial 3D structures. As an objective
test, the native 3D structures in the benchmark dataset and their
homologous entries are excluded from the template/loop
database when generating initial structures. For the 130 RNAs,
the average/median RMSDs for the predicted top-ranked
structure by IsRNA1, SimRNA, and iFoldRNA models are
9.51/8.12, 11.26/10.95, and 11.87/11.37 Å, respectively.
Considering the top-three predicted structures, the average
RMSDs for the best model predicted by IsRNA1, SimRNA,
and iFoldRNA models are 8.34, 9.73, and 10.88 Å, respectively.
For all the three models, however, the average RMSDs for multi-
way junction structures are always larger than those for structures
of other topologies, which indicates that the relative positions of
the helices in the junction structures are more difficult to predict.
For RNAs larger than 100 nucleotides, the RMSDs for the three
models are almost larger than 20 Å and the average clash score
(the number of serious all-atom steric overlaps per 1,000 atoms)
(Word et al., 1999) for the IsRNA1 model (4.0) is lower than that
for the SimRNA model (139.7) and the iFoldRNA model (170.4)
as energy minimization is performed for the predicted structures
in IsRNA1 model. Detailed results can be found in the reference
paper (Zhang et al., 2021).

The runtime for 3D structure prediction is dependent on RNA
size. For an RNA of about 100 nucleotides, the runtimes for
IsRNA1 (50 million steps), SimRNA (16 million steps), and
iFoldRNA (2 million steps) models are about 1 day, 1 day, and
15 h, respectively. For an RNA of about 150 nucleotides, the
runtimes increase to about 2 days, 3.5 days, and 20 h. All the
three models provide server services to users, and users can
adjust and test the simulation time or step based on the
previous runtime estimation.

The performance improvement for the IsRNA1model may result
from the following aspects: 1) a set of more detailed energy functions
are used for the bonds, angles, and torsions instead of the simple
harmonic potentials in the previous models, enabling broader and
more accurate conformational coverage for RNA backbone; 2) the
iterative simulated reference state approach takes into consideration
the correlation between different energy terms to avoid over-
constraint; 3) the iteratively constructed energy functions learn
knowledge not only from the native structures but also from the
non-native ones in the simulated reference state; 4) using the
structures generated by the template-based methods Vfold3D and
VfoldLA as the initial structuresmay help folding from an initial state
not too far away from the native structures. Meanwhile, the relatively
poor performance for the junction structures of the CG models
including the IsRNA1 model necessitates a more detailed energy
function, especially for non-canonical base pairing and stacking
interactions, for this structural topology.

3 FUTURE DEVELOPMENTS IN MODELING
RIBONUCLEIC ACID 3D STRUCTURES

Compared with all-atom models, CG models have a smoother
energy landscape and far fewer atoms (pseudo-atoms), and thus

the conformational space can be explored more efficiently. To
further speed up the computation, GPU-driven CG models
could be a promising option justified by the GPU version of all-
atom MD simulation software AMBER. General MD
simulation engines LAMMPS (Plimpton, 1995) and
OpenMM (Eastman et al., 2017) have already supported
GPU computation, enabling new CG models on these
platforms.

Even with native secondary structures, the accuracy of
structure prediction for large RNAs ( > 100nt) is low. Large
RNAs often contain multi-way junctions, and an incorrect
arrangement of the helices in the junction structures could
result in large deviation from native structures. The problem
can be caused by inaccurate energy functions or insufficient
sampling or both. Insufficient sampling problem could be
alleviated by extending simulation time or adopting
advanced accelerating algorithms. However, inaccurate
energy problem is more serious because energy functions
are used not only to assess structures but also to bias the
sampling direction in the conformational space. Inaccuracy in
energy functions may come from the inaccurate
characterization of both the intra-RNA interactions and
RNA-environment interactions. The RNA-environment
interactions, including RNA-solvent, RNA-ion, RNA-ligand
and RNA-protein interactions, are missing or not accurate in
the CG models. Instead of de novo folding, the combination of
CG models and homology modeling of whole structures or
motifs has the potential to improve the performance as in the
IsRNA1 model.

Solving structures by traditional X-ray crystallography and
NMR spectroscopy experiments is laborious and technically
challenging. However, low-resolution information (overall
shape, tertiary contact, local properties, etc.) may be readily
available from experiments such as SAXS (Small-angle X-ray
scattering) (Lipfert and Doniach, 2007), cryo-EM (Electron
microscopy) (Bai et al., 2015), FRET (Förster resonance energy
transfer) (Jares-Erijman and Jovin, 2003; Stephenson et al.,
2016), chemical cross-linking (Harris and Christian, 2009),
footprinting (Tijerina et al., 2007; Sclavi et al., 1998). CG
models combined with the low-resolution information can
significantly improve the structure prediction results (Ponce-
Salvatierra et al., 2019; Li et al., 2020). Efficient and accurate
integration of experimental data and CG models is a highly
promising approach for the prediction of large RNA
structures.
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