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Abstract

The light-sensitive photoreceptors in the retina are extremely
metabolically demanding and have the highest density of mito-
chondria of any cell in the body. Both physiological and pathologi-
cal retinal vascular growth and regression are controlled by
photoreceptor energy demands. It is critical to understand the
energy demands of photoreceptors and fuel sources supplying
them to understand neurovascular diseases. Retinas are very rich
in lipids, which are continuously recycled as lipid-rich photorecep-
tor outer segments are shed and reformed and dietary intake of
lipids modulates retinal lipid composition. Lipids (as well as
glucose) are fuel substrates for photoreceptor mitochondria.
Dyslipidemia contributes to the development and progression of
retinal dysfunction in many eye diseases. Here, we review photore-
ceptor energy demands with a focus on lipid metabolism in retinal
neurovascular disorders.
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Photoreceptor biology and retinal lipid use

Energy demands of the retina
Vertebrate retinas are light-sensitive neural tissues. Rod and cone

photoreceptors of the retina utilize photosensitive pigments to

convert photons into electrical impulses (phototransduction;

Arshavsky et al, 2002). The retina uses more energy in the dark than

in light to maintain the “dark current”. In the light, there is an

ongoing outward potassium (K+) current through non-gated K+-

selective channels, which induces sodium (Na+) ion channel closure

and hyperpolarization of photoreceptors. In the light, glutamate

release is suppressed and neurons are excited, leading to phototrans-

duction.

By contrast, in the dark, perpetually open (Na+) channels allow

a steady flow of ions into the cell, thereby resulting in cellular depo-

larization (dark current) and glutamate release, which inhibits

photoreceptor excitation (Stryer, 1991). More than half of photore-

ceptor energy (adenosine triphosphate, ATP) is used by Na+/K+

ATPase ion pumps to maintain intracellular ion levels (Hagins et al,

1970; Okawa et al, 2008).

The replacement of shed photoreceptor outer segments is also

energy intensive (Du et al, 2015; Ng et al, 2015). Photoreceptors

maintain a consistent outer segment length by balancing disk

shedding and assembly (Young, 1967; Young & Bok, 1969;

LaVail, 1976). Continuous shedding of “used” outer segments

containing lipids damaged by light and oxidation is critical for

the maintenance of normal retinal function (Fliesler & Anderson,

1983) perhaps as a fuel source scavenged by retinal pigment

epithelium (RPE). Other lipid fuel sources may be serum lipids

processed by Müller glial cells, and lipids synthesized at a high

rate in the inner segments (Wang et al, 2005; Kevany & Palc-

zewski, 2010; Casson et al, 2013). The details of lipid processing

in the retina are not fully defined; however, some lipids are used

as fuel/energy sources while the others, which cannot be synthe-

sized, are recycled (Chen & Anderson, 1993; Mukherjee et al,

2007).

Fuel sources for the retina to make ATP
ATP, used to transfer energy, is generated via two metabolic path-

ways: glycolysis in the cytoplasm and oxidative phosphorylation

(OXPHOS) in mitochondria. Glycolysis converts one glucose to two

pyruvates (yielding 2 ATP). In the presence of oxygen, pyruvate is

further converted to acetyl-CoA, which enters the Krebs cycle
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(yielding 2 ATP) and forms electron donors for OXPHOS (yielding

34 ATP). However, when there is an oxygen shortage, pyruvate is

converted into lactate. In the retina, even without oxygen deficits

glucose is mostly metabolized though glycolysis rather than

OXPHOS (called aerobic glycolysis or the Warburg effect). It has

been shown that in pig retinal explants, only 20% of glucose is

oxidized (Wang et al, 1997); despite access to oxygen, 80% is used

for glycolysis, which provides intermediates for outer segment

synthesis.

The remaining oxidation is of carbons derived from non-

glucose sources such as lipids (Joyal et al, 2016). In rat and

rabbit retinas, there is no difference in lactate production in dark-

ness and in light, indicating that aerobic glycolysis is not

required for the energy needed to maintain the dark current

(Cohen & Noell, 1960; Winkler, 1981). The dark current is main-

tained with OXPHOS, using over 40% of retinal oxygen (Ames

et al, 1992). The fuel source for OXPHOS was unknown for

almost 60 years, as most glucose clearly is not metabolized

through OXPHOS (Cohen & Noell, 1960). Recently, lipid oxidation

(palmitic acid C16:0) was found to be used for energy production

in photoreceptor mitochondria (Joyal et al, 2016). The major

fatty acids of physiological importance in energy metabolism are

those with a chain length ≥ 16 carbons. Fatty acid b-oxidation
(OXPHOS) of one 16-carbon fatty acid produces 129 ATP, while

full oxidation of glucose produces 38 ATP. Knowledge of the

potential impact of other fatty acids on retinal metabolism is still

limited.

Cones versus rods in energy consumption and production
Cones are more metabolically active than rods (Nikonov et al, 2006;

Okawa et al, 2008). In darkness, cones and rods have comparable

ATP expenditures, and similar dark currents. However, in the light,

rod responses are suppressed, thereby reducing total retinal energy

consumption by > 75%. But cones do not saturate in bright light so

the energy demand remains high. Even when cones are maximally

bleached, they still have a baseline need that is more than 50% of

the dark current (Nikonov et al, 2006).

It is essential to coordinately control the synaptic terminal ATP

production and Ca2+ concentration to regulate transient exocytosis

and ensure recovery for the next action potential (Johnson et al,

2007). Cones increase ATP production by increasing the number

of mitochondria (about twofold more than rods) and mitochon-

drial cristae surface membrane area (about threefold more than

rods; Perkins et al, 2003). Cones lower Ca2+ levels during light

adaption and increase their response kinetics by utilizing a low

affinity/high turnover Na+-Ca2+ exchanger, while rods use high

affinity/low turnover plasma membrane Ca2+ ATPase (Johnson

et al, 2007). The knowledge of fuel use in cones and rods is still

limited. Loss of hexokinase 2 (a key aerobic glycolysis enzyme) in

rods inhibits rod function but not rod survival, while cone hexoki-

nase 2 loss does not affect photoreceptor function (Petit et al,

2018), suggesting that aerobic glycolysis is not necessary for

photoreceptor survival, but is a metabolic choice to maintain

neuronal function.

Peroxisome fatty acid b-oxidation
Fatty acid degradation, through b-oxidation, takes place in

both mitochondria and peroxisomes in mammals. Peroxisomal

degradation breaks down long-chain fatty acids (producing no

ATP), into shorter chain fatty acids that can be used by mitochon-

dria for further oxidation to acetyl-CoA, which enters the Krebs

cycle to produce ATP (Fig 1; Poirier et al, 2006; Schrader et al,

2015).

Very long-chain monocarboxylic (≥22 carbons) and long-chain

dicarboxylic fatty acids are oxidized only in peroxisomes (Poirier

et al, 2006). In addition, polyunsaturated fatty acids are also

oxidized faster in peroxisomes than in mitochondria (Hiltunen

et al, 1986). Long-chain fatty acids (13–21 carbons) must first be

conjugated to either coenzyme A (peroxisomes) or carnitine

(mitochondria) outside the organelle and then imported into

organelles by ABC class D transporters (peroxisomes) or carni-

tine-acylcarnitine translocases (mitochondria). Fatty acids are

subsequently degraded by b-oxidation, which involves four

enzymes and leads to the release of acetyl-CoA, FADH2, and

NADH (Fig 1). Acetyl-CoA enters the Krebs cycle where it is

oxidized into CO2 and H2O, and generates additional FADH2 and

NADH. FADH2 and NADH from b-oxidation and the Krebs cycle

are then used for ATP production by the mitochondrial electron

transport chain.

Retinal lipid composition
A rod photoreceptor has three functional domains: (i) synaptic

terminal, (ii) inner segment, and (iii) outer segment (Fig 2A). One

retinal lipid source comes from shed photoreceptor outer

segments. Rod outer segments consist of stacks of photosensitive

disks, which contain proteins (predominantly photosensitive

Glossary

Autophagy
A process induced under stress to process cellular wastes to reduce
toxicity and provide fuel for mitochondria.

Fatty acid b-oxidation
The catabolic process that breaks down fatty acid molecules to
generate acetyl-CoA, which in mitochondria enters the citric
acid cycle for energy (ATP) production. b-oxidation occurs in
the peroxisomes and mitochondria but in peroxisomes no ATP
is produced.

Glycolysis
The process of breaking down glucose into pyruvic acid for
energy production.

Neovascularization
Uncontrolled blood vessel growth in the eye. New vessels are
often fragile and leaky, causing blindness in the late stage of
neovascular retinal diseases.

Oxidative phosphorylation
The process to form ATP through the transfer of electrons from
NADH or FADH2 to oxygen by a series of electron carriers in
the mitochondrial membrane.

Photoreceptors
A retinal neuronal cell that is capable of visual phototransduction,
converting light signals to electric signals. They possess the highest
density of mitochondria in the body.

Retinal pigment epithelium
The pigmented cell layer provides nutrients and clears wastes
for photoreceptors.
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pigments) and lipids (Fliesler & Anderson, 1983), predominantly

phospholipids (90–95% of total lipids) and cholesterols (4–6%)

(Daemen, 1973).

Phospholipids consist of a phosphate “head” with fatty acid

“tails”, which can be cleaved to provide fatty acids. Retinal phospho-

lipids contain an abundance of long-chain polyunsaturated fatty acid

(LCPUFA, ~45% of total phospholipids), saturated fatty acid (SFA,

~37% of total phospholipids), and monounsaturated fatty acid

(MUFA, ~10% of total phospholipids; Schnebelen et al, 2009). While

fatty acid composition analysis in the human retina is limited, the

retina of a healthy senior is composed of 16.7% x-6 LCPUFA, 16.6%

x-3 LCPUFA, 42.4% SFA, and 19.2% MUFA (Acar et al, 2012).

During postnatal development, rod lipid composition transitions

from rich in saturated fatty acids to rich in unsaturated fatty acids

(Scott et al, 1988). The increasing unsaturated lipid portion of the

maturing retina is biased for selective accretion of docosahexaenoic

acid (DHA) while arachidonic acid (AA) levels are reduced

(Alessandri & Goustard-Langelier, 2001). Docosahexaenoic acid

accounts for approximately 35% of total phospholipid FA in the

retina and 50% in rod outer segments (Stinson et al, 1991), while

AA accounts for approximately 8–10% of total phospholipid fatty

acid in rod outer segments.

Transcriptional control of retinal cell functions
The retina contains more than 10 different cell types that contribute

uniquely to phototransduction (Fig 2B), requiring a highly individu-

alized gene expression pattern. The emergence of single-cell tran-

scriptomics (scRNAseq) provides insight into the metabolism of

individual cells within the retina, which is likely to lead to a greater

understanding of the cellular metabolic influences on neovascular-

ization. scRNAseq examines the combinatorial expression of genes,

which leads to the clustering of retinal cells according to their gene

expression patterns (Fig 3A; Macosko et al, 2015). The scRNAseq

approach is very efficient in discovering new retinal cell subtypes

(Shekhar et al, 2016; Rheaume et al, 2018). Beside identity markers

associated with specialized functions (like phototransduction in

photoreceptors; Fig 3B), different retinal cells regulate specific meta-

bolic genes at the transcriptional level to perform certain functions.

However, caution is required when analyzing transcriptomic data

from rod photoreceptors, as this cell type has low basal gene expres-

sion (Macosko et al, 2015), which is correlated with a uniquely

closed chromatin architecture compared to cones (Hughes et al,

2017). Moreover, rods are very sensitive to single-cell dissociation

since the end part of rod outer segments is buried in the RPE and

may be separated from the main cell body during retinal digestion.

Single-nucleus RNAseq may therefore be more suitable to assess the

rod transcriptome in situ (Habib et al, 2017).

Dyslipidemia in neurovascular retinopathies

Metabolic dysfunction and dyslipidemia produce deleterious effects

on the eye (Folz & Trobe, 1991; Chang & Wu, 2013; Yonekawa et al,

2015). Dyslipidemia is characterized by an abnormal circulating

lipid profile including triglycerides, cholesterol, low-density lipopro-

teins (LDL), high-density lipoproteins (HDL), or polyunsaturated

fatty acids. In premature infants, high triglycerides are associated

with increased severity of retinopathy of prematurity (ROP; Sinclair
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Figure 1. b-oxidation pathway in peroxisome and mitochondria.

▸Figure 2. Schematics of photoreceptor and retinal structure.

(A) Schematics of rod and cone structure. (B) Schematics of retinal neuronal and vascular arrangement. RPE, retinal pigment epithelium; OS/IS, outer segments/inner
segments; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.
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et al, 2018). The x-6 LCPUFA, arachidonic acid, level is also signifi-

cantly lower in severe ROP in premature infants at postmenstrual

age of 32 weeks (Lofqvist et al, 2018). Although the results from

many studies exploring the associations between diabetic retinopa-

thy (DR) and lipid abnormality are inconsistent, one study found

that high circulating LDL cholesterol levels are a significant risk

factor for diabetic macular edema and retinal hard exudates (Chang

& Wu, 2013). In advanced age-related macular degeneration (AMD),

high HDL cholesterol levels are implicated in the disease pathogene-

sis in European and Asian populations (Cougnard-Gregoire et al,

2014; Fan et al, 2017). A recent European Eye Epidemiology

consortium study found that HDL is associated with an increased

risk of AMD and drusen development, while triglycerides are associ-

ated with a decreased risk of AMD and drusen development. Vari-

ants in lipid genes and their association with cholesterol levels are

unclear. The cholesteryl ester transfer protein risk variant

(rs17231506) for AMD was associated with increased HDL choles-

terol levels, but lipase C risk variants (rs2043085, rs2070895) were

negatively linked with HDL cholesterol levels (Colijn et al, 2019). In

retinitis pigmentosa (RP) versus control patients, decreased plasma

x-3 and x-6 LCPUFA are found (Converse et al, 1983; Holman et al,

1994).
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Figure 3. Cell-specific transcriptional regulation of retinal functions.

Adapted fromMacosko et al, Cell 2015. (A) Retinal cell types can be identified using single-cell RNAseq based on cell-specific expression of genes markers. OPN1MW, Opsin 1,
medium wave sensitive; RHO, rhodopsin; GABRA1, gamma-aminobutyric acid type A receptor alpha1 subunit; OTOR, otoraplin; VSX2, visual system homeobox 2; OTX2,
orthodenticle homeobox 2; SLC6A9, solute carrier family 6 member 9; SLC6A1, solute carrier family 6 member 1; NEFL, neurofilament light; SLC5A7, solute carrier family
5member 7; NHLH2, nescient helix-loop-helix 2; PAX6, paired box 6; SLC4A3, solute carrier family 4member 3; CX3CR1, C-X3-C motif chemokine receptor 1; RGS5, regulator Of
G protein signaling 5; CLDN5, claudin 5; GFAP, glial fibrillary acidic protein; RLBP1, retinaldehyde binding protein 1. (B) Transcriptomic enrichment for specific pathway
such as the phototransduction pathways can be scored using gene set variation analysis based on highly variable genes between retinal cell types.
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Dietary modulation of the lipid supply can positively influence

diseases with pathological neovascularization such as ROP, AMD,

and DR in patients and in animal models of retinopathy (Gong et al,

2017). Photoreceptor energy demands drive vessel growth (Sapieha,

2012; Joyal et al, 2016, 2018; Fu et al, 2018), while photoreceptor-

derived oxidative stress and inflammation lead to retinal vascular

damage or regression (Kern & Berkowitz, 2015; Sun et al, 2017).

Retinal disorders such as ROP, DR, AMD, RP, and Zellweger spec-

trum disorder (ZSSD) are associated with disturbances in photore-

ceptor activity, which may further affect the blood supply and

induce pathological vascular remodeling during disease progression.

Retinopathy of prematurity
Retinopathy of prematurity is a leading cause of blindness in chil-

dren worldwide (Hellstrom et al, 2013). After preterm birth, the

immature retinal vasculature growth is suppressed, secondary to

oxygen supplementation, loss of growth factors provided in utero,

and metabolic dysregulation. As the neural retina slowly matures,

metabolic demand increases, particularly in photoreceptors. The

relatively avascular retina becomes hypoxic and deprived of nutri-

ents, driving vascular growth factor expression and subsequent

neovascularization. The onset of neovascular ROP at ~32 weeks

postmenstrual age coincides with the rapid development and

increased metabolic demand of rods (Fulton et al, 1999; Hansen

et al, 2017). This observation is supported by rodent studies. In

mice, hyperglycemia (a key risk factor for ROP) triggers photorecep-

tor metabolic alterations and delays retinal vascular development

(Fu et al, 2018). In rats, early photoreceptor dysfunction also

predicts subsequent neovascularization (Akula et al, 2010).

In premature infants, there is a ~44% decrease in DHA after

preterm birth, and serum DHA levels remain low for at least

4 weeks (Lapillonne & Jensen, 2009; Martin et al, 2011). Severe

ROP is reduced in premature infants (GA < 32 weeks) receiving x-3
LCPUFA versus parenteral soybean and olive oil supplementation

(Pawlik et al, 2014). There is also an association between low

serum levels of x-6 LCPUFA (AA) and later development of ROP

(Lofqvist et al, 2018). In mice, dietary x-3 versus x-6 LCPUFA

suppresses retinal neovascularization (Connor et al, 2007; Fu et al,

2017b). Further studies on the impact of DHA and AA and other

lipids on photoreceptor function and metabolism are needed.

Diabetic retinopathy
In addition to ROP, DR is also associated with abnormal energy

metabolism. DR, a significant complication of diabetes, starts with

vascular loss (non-proliferative DR), followed by neovascularization

(proliferative DR). In DR, abnormalities in retinal neural responses

occur early before vascular abnormalities are seen, suggesting that

neuronal metabolic demands drive vessel growth (De Benedetto

et al, 2014; Pescosolido et al, 2015). Mitochondrial dysfunction is

accompanied by oxidative stress (Barot et al, 2011), which induces

a wide range of microvascular abnormalities throughout the course

of DR (Kowluru & Mishra, 2015). In diabetic mice, photoreceptors

with their high density of mitochondria contribute to the majority of

induced retinal oxidative stress and inflammation, which is associ-

ated with retinal vessel loss in DR (Du et al, 2013; Liu et al, 2016;

Tonade et al, 2016).

There is clear evidence of neurovascular cross talk in DR. In

patients with both proliferative DR and progressive photoreceptor

degeneration (RP), spontaneous neovascular regression occurs

when photoreceptor loss from RP becomes clinically evident

(Lahdenranta et al, 2001). As there is higher retinal energy

consumption in darkness versus light, illuminating the retina with

507-nm light during sleep might reduce the risk of DR progression

(Sivaprasad & Arden, 2016). In fact, exposure to a 505-nm light

during sleep leads to the regression of macular edema and improved

visual function in early DR patients (Arden et al, 2011). However, a

recent multi-year phase 3 clinical trial (CLEOPATRA) of wearing a

light mask at night in DR patients failed to support the hypothesis

that decreasing energy needs for photoreceptor “dark current”

would inhibit diabetic macular edema (Sivaprasad et al, 2018).

Dyslipidemia is associated with more retinal abnormalities and

faster progression of DR (Sacks et al, 2014; Hammer & Busik,

2017). Increasing dietary PUFA versus saturated FA is associated

with a reduced incidence and severity of DR (Sasaki et al, 2015).

A Mediterranean diet with olive oil or nut supplements showed

an additional 48% decrease in incidence of DR in type 2 diabetes

when the diet also included ≥ 500 mg/day DHA plus eicosapen-

taenoic acids, or at least 2 weekly servings of oily fish (Sala-Vila

et al, 2016). In murine models of early DR, fish oil and a x-3
LCPUFA-enriched diet preserve retinal neuronal function (Yee

et al, 2010; Sapieha et al, 2012). Linoleic acid- versus saturated-

fat-rich diets inhibit progression of diabetic microangiopathy

(Houtsmuller et al, 1980). Not all lipids appear to affect DR. The

absence of acid sphingomyelinase (ASM) in ASM�/� mice or inhi-

bition of ASM activity by DHA inhibited the diabetes-induced

degeneration of retinal capillaries (Opreanu et al, 2011). Studies

show no association between total cholesterol or high-density

lipoprotein and incidence of DR or macular edema in long-term

type 1 diabetes (Klein et al, 2015). Taken together, these findings

suggest a link between some aspects of dyslipidemia and DR

progression. As such, dietary modulation of specific lipids may

help prevent or treat DR.

Age-related macular degeneration
The human macula, critical for central vision, consists of a small

cone-dominated fovea surrounded by a rod-dominated parafovea.

AMD particularly affects the macula and is the leading cause of legal

blindness in the elderly. Clinically, AMD is classified as either dry or

wet (neovascular) based on the absence or presence of pathologic

blood vessels invading into the photoreceptor layer (Ambati &

Fowler, 2012). Current treatments mainly target neovascular AMD;

no drugs are approved by the U.S. Food and Drug Administration

for dry AMD.

Mitochondrial morphological changes and dysfunction occur in

degenerating macular cones and likely contribute to AMD progres-

sion (Barron et al, 2001; Litts et al, 2015). Mitochondrial abnor-

malities can cause overproduction of superoxide radicals, primarily

in the electron transport chain (Fig 4; Selivanov et al, 2011).

Oxidative stress causes damage to cell structures, lipids, proteins,

and DNA, and particularly affects metabolically active neuronal

cells, like photoreceptors. Photoreceptor loss is seen in AMD donor

eyes (Curcio et al, 1996). In aging and in early AMD, there is a

prominent decline in rod-mediated ERG sensitivity (Jackson et al,

2002). Additionally, cone dysfunction can predict early AMD and

is a reliable measure of AMD progression (Hogg & Chakravarthy,

2006).
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As well as mitochondrial dysfunction, dyslipidemia is also impli-

cated in dry AMD pathogenesis (Gong et al, 2017). The most estab-

lished clinical hallmark of dry AMD is the formation of subretinal

drusen, extracellular deposits rich in lipid and protein (Hageman

et al, 2001). Although the exact mechanism of drusen formation is

unclear, Bruch’s membrane, found between the choriocapillaris and

RPE, thickens due to accumulation of oxidized lipids, lipid-related

molecules, and inflammatory debris preceding drusen formation.

This slows down nutrient and waste transportation between RPE

cells and choroidal vessels, leading to malfunction of RPE cells

(Sarks et al, 2007; Curcio, 2018a,b).

Epidemiologic studies link increased HDL levels with AMD

across different populations (Fan et al, 2017; Colijn et al, 2019).

Genome-wide association studies also identify several HDL choles-

terol genes associated with AMD susceptibility, including genes

encoding ATP-binding cassette transporter A1 (ABCA1), cholesteryl

ester transfer protein (CETP), apolipoprotein E (APOE), hepatic

lipase C (LIPC), and lipoprotein lipase precursor (LPL) (Chen et al,

2010; Neale et al, 2010; Fritsche et al, 2013, 2016). Impaired

ABCA1-mediated cholesterol efflux in mouse RPE cells or subretinal

macrophages induces lipid accumulation and retinal degeneration

(Lyssenko et al, 2018; Storti et al, 2019). ApoE is important for the

transport of lipids across cell membranes and is highly expressed by

RPE cells. ApoE-null mice exhibit raised serum triglycerides and

cholesterol. Thickened Bruch’s membrane, and accumulation of

lipid deposits in the basal RPE and Bruch’s membrane are seen in

ApoE-null and genetically engineered ApoE-mutated mice (Malek

et al, 2005; Edwards & Malek, 2007). However, how CETP, LIPC,

and LPL link to AMD pathogenesis is still unclear.

High plasma levels of high-density lipoprotein cholesterol are

associated with an increased risk for advanced AMD (Fan et al,

2017). A 42% decreased incidence of AMD is associated with high

plasma x-3 LCPUFA levels in a large cohort study of US female

health professionals (Christen et al, 2011). A 30% decrease in

central geographic atrophy development and a 50% decrease in

neovascular AMD development are found in participants with high

versus low x-3 LCPUFA intake in the Age-Related Eye Disease

Study (AREDS) (Sangiovanni et al, 2009). There was no further

reduced risk of progression to advanced AMD in participants with

x-3 LCPUFA supplementation in the AREDS2 study; however, the

participants had a much higher baseline level of circulating x-3
LCPUFA in comparison with those in the first AREDS (Souied et al,

2015). It also may be that other fats in fish (alone or in combina-

tion with DHA) are required to suppress AMD progression. In a

Japanese population with a high baseline intake of fish oil, there

was no significant association between serum x-3 LCPUFA levels

and AMD progression (Kabasawa et al, 2011). Dietary x-3 LCPUFA

inhibits neovascularization in a laser-induced wet AMD mouse

model and in mice lacking the very low-density lipoprotein recep-

tor (VLDLR) (Fu et al, 2017b). The lack of VLDLR promotes the

development of neovascularization originating from the superficial

retinal vasculature similar to some neovascularization seen in

AMD. The lack of VLDLR leads to intracellular lipid and glucose

insufficiency which drives neovascularization, including retinal

angiomatous proliferation and choroidal neovascularization (Joyal

et al, 2016). Therefore, both clinical and experimental investiga-

tions support the concept that dyslipidemia may be associated with

AMD progression.

Retinitis pigmentosa
Retinitis pigmentosa is also associated with abnormal energy

metabolism. There are ~60 genes (to date), mostly expressed in

rods, which are involved in RP retinal degenerations (Ali et al,

2017). In RP, the initial loss of rods results in night blindness and
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Figure 4. Schematics of electron transport chain (ETC).

The ETC passes electrons from NADH and FADH2 to protein complexes (I to V) and mobile electron carriers coenzyme Q (CoQ) and cytochrome c (Cyt c). Oxygen (O2) is
the final electron recipient. The transfer of electrons generates energy to pump protons (H+) from the mitochondrial matrix into the intermembrane space. An
electrochemical proton gradient is created across the inner mitochondrial membrane, allowing the protons to pass through complex V (ATP synthase) to generate adenosine
triphosphate (ATP) from adenosine diphosphate (ADP). Complex I, NADH coenzyme Q reductase, complex II, succinate dehydrogenase, complex III, cytochrome bc1
complex, complex IV, cytochrome c oxidase. Complex I and complex III are the main sites for superoxide (ROS) formation.
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loss of peripheral vision; central (cone) vision is initially

preserved but eventually central vision is also lost, secondary to a

bystander effect (Punzo et al, 2009; Ait-Ali et al, 2015). In mouse

models of RP, 34.9% of gene expression changes following cone

loss are associated with cellular metabolism (Punzo et al, 2009),

suggesting that improving fuel sources (perhaps such as lipids for

FA b-oxidation) may improve cone metabolism. Mathematical

models predict that preventing a 1–2% decrease in nutrients can

permanently halt cone death even when 90% have already died

(Camacho et al, 2016). Therefore, improving nutrient availability

is a reasonable general approach to increase cone survival in RP.

In RP patients, reduced ocular blood flow is also described as

possibly associated with a decreased neuronal demand for nutri-

ent supply (Falsini et al, 2011). Further studies are needed to

establish the link between retinal vascular changes at different

stages of RP.

Zellweger syndrome spectrum disorders
Zellweger syndrome spectrum disorders (ZSSD), including Zell-

weger syndrome, neonatal adrenoleukodystrophy, and infantile

Refsum disease (Smith et al, 2016), are caused by defects in any

of the peroxisomal PEX genes (Crane, 2014), resulting in peroxi-

somal lipid metabolic dysfunction. As peroxisomes break down

long-chain fatty acids to shorter length chains that can be used in

mitochondria, deficits in PEX genes often also result in mitochon-

drial dysfunction. In ZSSD, the central nervous system is severely

affected (Vamecq et al, 2014), producing unique ocular deficits

including pigmentary retinopathy and optic atrophy, corneal

opacification, cataract, and glaucoma (Folz & Trobe, 1991). In

addition, attenuated retinal vasculature and macular edema are

reported in infantile Refsum disease (Pakzad-Vaezi & Maberley,

2014).

Mitochondrial perturbation rapidly occurs following the loss

of functional peroxisomes (Salpietro et al, 2015; Schrader et al,

2015). Very long-chain fatty acids (VLCFAs) accumulate in ZSSD;

however, DHA (22:6x3) is reduced in the plasma and brain

(Poulos et al, 1986; Harding et al, 1999). Docosahexaenoic acid

treatment maintains visual acuity and retinal function in patients

with peroxisome biogenesis disorders (Noguer & Martinez,

2010). Over-accumulation of VLCFAs is also found in mouse

models of peroxisomal biogenesis defects (Baes, 2000; Baes &

Van Veldhoven, 2012). VLCFAs may affect membrane properties

(Sassa & Kihara, 2014), and defects in the breakdown of VLCFAs

may also cause substrate shortage for mitochondrial fatty acid b-
oxidation.

Pathways modifying metabolic lipid use
Peroxisome proliferator-activated receptor-alpha (PPARa) and

PPARc are nuclear receptors involved in modulating lipid metabolic

homeostasis. PPARa controls lipoprotein lipase expression and

triglyceride metabolism, while PPARc upregulates enzymes

involved in steps of fatty acid metabolism like fatty acid entry into

mitochondria and peroxisome (Gervois et al, 2000). Genetic defi-

ciency of PPARa in mice leads to a decrease in lipid transporters

and retinal degeneration (Pearsall et al, 2017). PPARc is required

for x-3 LCPUFA-induced attenuation of mouse retinal neovascular-

ization (Stahl et al, 2010). PPARc coactivator-a (PGC-1a) regulates

mitochondrial biogenesis and respiration (Alaynick, 2008). High-fat

diet-exposed mice are more likely to develop AMD-like phenotypes

with lack of PGC-1a (Zhang et al, 2018). PGC-1a activation

increases RPE metabolism and protects against oxidative damage

(Satish et al, 2018). Therefore, PPARa, PPARc, and PGC-1a may

modulate retinal lipid metabolism and therefore be pathways to

manipulate in disease treatment.

Cyclooxygenases (COX), lipoxygenases (LOX), and cytochromes

P450 (CYP)-mediated LCPUFA metabolism is important in regulat-

ing ocular inflammation, particularly through the LOX and CYP

pathways (Gong et al, 2017). Inhibiting COX does not affect prolif-

erative retinopathy (Sapieha et al, 2011). LOX x-3 LCPUFA

metabolites show anti-inflammatory and anti-angiogenic effects,

while LOX x-6 LCPUFA metabolites are pro-inflammatory and pro-

angiogenic (Sapieha et al, 2011). However, both CYP2C8 x-3 and

x-6 LCPUFA metabolites are pro-angiogenic and inhibition of

CYP2C8 decreases ocular neovascularization (Shao et al, 2014;

Gong et al, 2016a,b).

Genetic association with retinopathies
Understanding genetic susceptibility to ocular disorders may help

understand disease mechanisms. In premature infants, gene

mutations in vascular endothelial growth factor (VEGF) and

insulin growth factor 1 (IGF1) are associated with advanced ROP

(Holmstrom et al, 2007). The association of VEGF and IGF1 with

ROP is further identified clinically and in animal models (Hell-

strom et al, 2013). Genetics in DR has been widely explored.

Mutations in metabolic genes such as aldose reductase, endothe-

lial nitric oxide synthase (eNOS), receptor for advanced glycosy-

lation end product (RAGE), adiponectin, peroxisome proliferator-

activated receptor a and c, and superoxide dismutase 2

(MnSOD), growth factors like VEGF, and erythropoietin (EPO), as

well as inflammatory factors like complement factor H (CFH) and

CFB, interleukin 6 and interleukin 10, have a positive association

with DR (Hampton et al, 2015). Genome-wide association studies

for diabetic macular edema identify a new associate single

nucleotide polymorphism in rs1990145 on chromosome 2 (within

the second intron of the mitochondrial ribosomal protein L19,

MRPL19; Graham et al, 2018). The function of MRPL19 is unclear

but other MRP genes including MRPL9 and MRPL23 are associ-

ated with retinitis pigmentosa (Kenmochi et al, 2001). Increasing

evidence suggests a potential role of noncoding RNAs in regulat-

ing retinal inflammation during DR development (Gong & Su,

2017).

Delayed rod-mediated dark adaption, the first functional

biomarker for early AMD, is observed for both the age-related

maculopathy susceptibility 2 (ARMS2) A69S variant and the CFH

Y402H variant in AMD patients. In healthy participants with

normal macular function, the ARMS2 A69S variant also was asso-

ciated with delayed rod-mediated dark adaption (Mullins et al,

2019). In three population-based studies, the Rotterdam Study, the

Beaver Dam Eye Study, and the Blue Mountains Eye Study, single

nucleotide polymorphisms in the genes ARMS2, CFH, and comple-

ment factor H-related 5 (CFHR5) significantly increase the risk of

late AMD (Buitendijk et al, 2013). In AMD patients with CFH and

ARMS2 risk alleles, the treatment response to antioxidants is

compromised (Awh et al, 2015). The CFH Y402H variant also

seems to limit the effect of dietary DHA supplementation on CNV

(Merle et al, 2015).
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Potential therapeutic targets

Anti-vascular endothelial growth factor (VEGF) agents are the

primary treatment for pathological retinal vessel growth in eye

diseases (Klufas & Chan, 2015; Bakri et al, 2019). However, anti-

VEGF treatment is not always effective (Lux et al, 2007; Nigam

et al, 2008) and may remain in systemic circulation up to a few

months after a single intravitreal injection (Moorthy & Cheung,

2009; Ueta et al, 2009; Hapani et al, 2010; Bressler et al, 2012; Jalali

et al, 2013; Avery et al, 2014). VEGF is an important growth factor

to neurons and blood vessels. Therefore, inhibition of VEGF may

affect normal neurovascular function.

Since photoreceptor metabolic needs drive neovascularization,

improved retinal lipid metabolism might be another strategy to

prevent or treat neurovascular retinal diseases. Increasing lipid b-
oxidation by hormonal and transcriptional factor regulation, as

well as dietary intervention, may protect retinal function and decrease

the demand for neovessels. Targeting dysmetabolism-induced

inflammatory responses may also suppress neovascularization.

Fibroblast growth factor (FGF21), lipid metabolism, and autophagy
Since modulation of retinal metabolism may help restore energy

homeostasis to prevent signaling for blood vessel recruitment and

therefore prevent neovascularization, the end cause of neurovascu-

lar diseases, it is important to assess potential interventions that

increase glucose uptake or increase fatty acid oxidation to improve

energy homeostasis. A novel candidate for improved lipid metabo-

lism is FGF21. FGF21 is a key metabolic regulator of lipid and

glucose use (Kharitonenkov & Larsen, 2011; Lin et al, 2012; Markan

et al, 2014). In type 2 diabetes, FGF21 decreases body weight and

improves the lipid profile (Gaich et al, 2013; Talukdar et al, 2016).

In obese type 2 diabetic mice, FGF21 lowers plasma triglycerides by

lipoprotein catabolism in adipose tissue and maintains adipocyte

phospholipid homeostasis (Foltz et al, 2012; Schlein et al, 2016; Ye

et al, 2016; Stanislaus et al, 2017). FGF21 also increases lipid use in

response to amino acid starvation (De Sousa-Coelho et al, 2013).

FGF21 functions through modulating the activities of PPAR and

PGC-1a. FGF21 is crucial for PPARa agonists to ameliorate meta-

bolic disorders in obese mice (Goto et al, 2017). FGF21 regulates

PPARc activity and controls body fat (Dutchak et al, 2012). FGF21

also induces PGC-1a to modulate glucose and fatty acid metabolism

during starvation (Potthoff et al, 2009).

In diabetic mice with insulin deficiency, FGF21 enhances retinal

antioxidant defense systems, reduces pro-inflammatory cytokines,

restores disorganized cone photoreceptor segments, and improves

retinal function (Fu et al, 2018). FGF21 also regulates adiponectin

(APN) production and secretion, and APN is key in mediating FGF21

modulation of glucose and lipid metabolism in mice (Holland et al,

2013; Lin et al, 2013). FGF21, mediated by APN which is associated

with a number of metabolic retinal disorders (Fu et al, 2016), inhibits

ocular neovascularization in mice (Fu et al, 2017a). FGF21 also

increases APN secretion to diminish accumulation of ceramides in

obese animals (Holland et al, 2013). Ceramide contributes to the

development of DR and thus, modulating ceramide pathway may

protect against DR progression (Fox et al, 2006; Opreanu et al, 2011).

Autophagy is induced in under stress (nutrient starvation, infec-

tion, or excess reactive oxygen species and recycles cytosolic

components to remove damaged and dysfunctional cellular

material to maintain cellular homeostasis, provide fuel, and recycle

building blocks. In the retina, autophagy-related proteins are

mostly located in cellular layers that are rich in mitochondria and

have high energy needs (Mitter et al, 2012). In addition, autophagy

also plays an important role in phototransduction and rod integrity

(Rodriguez-Muela et al, 2012; Zhou et al, 2015). Aged mice with

mutated autophagy genes have AMD-like RPE defects (Zhang et al,

2017). Autophagy defects are also reported in human cells from

AMD patients (Golestaneh et al, 2017). Some of the defects associ-

ated with autophagy deficiency are lipofuscin accumulation, reduced

mitochondrial activity, and higher levels of reactive oxygen species—

all of which affect angiogenesis. FGF21 influences autophagy. In mice,

FGF21 is induced in neurons with mitochondrial dysfunction (Restelli

et al, 2018). FGF21, induced with fasting, dephosphorylates transcrip-

tion factor EB to induce genes involved in autophagy and lipid meta-

bolism (Chen et al, 2017). In monosodium L-glutamate-induced obese

mice, modeling nonalcoholic fatty liver disease, FGF21 induces autop-

hagy to correct metabolic parameters (decreases triglycerides,

improves insulin sensitivity) (Zhu et al, 2016). Further exploration of

FGF21 in retinal lipid metabolism and autophagy is of great interest to

evaluate its impact on retinal neurovascular stability.

Fenofibrate (PPARa agonist and CYP2C antagonist)
Fenofibrate, a PPARa agonist, increases fatty acid b-oxidation and

improves mitochondrial function. Deficiency of PPARa leads to

shortage of retinal energy production and neurodegeneration

(Pearsall et al, 2017). In two large-scale clinical trials, fenofibrate

prevents the progression of DR. In the FIELD study, fenofibrate was

found to reduce the need for laser-treatment of DR in type 2 diabetes

patients by ~30% (Keech et al, 2007). In the ACCORD Eye study,

fenofibrate was found to reduce DR progression by ~40% (ACCORD

Study Group et al, 2010). Fenofibrate prevents pathological neovas-

cularization in the rat OIR model by suppressing hypoxia-inducible

factor and VEGF (Chen et al, 2013). Fenofibrate also reduces retinal

vascular leakage in a murine diabetic model (Chen et al, 2013).

Fenofibrate administration reduces retinal vascular leakage and

downregulates VEGF production in the mouse model of type 1

diabetes (Chen et al, 2013). Fenofibrate is also a CYP2C antagonist

(Schoonjans et al, 1996; Walsky et al, 2005). CYP2C metabolites

from x-3 and x-6 LCPUFA show pro-angiogenic effects in mouse

models of ROP and AMD (Shao et al, 2014; Gong et al, 2016a). Inhi-

bition of CYP2C with fenofibrate decreases retinal neovascularization

(Gong et al, 2016b). Therefore, fenofibrate is a potential candidate to

treat neurovascular defects in retinal metabolic disorders.

Dietary x-3 LCPUFA intervention
The essential x-3 LCPUFA, DHA, influences neovascularization in

retinopathy both in human patients and animal models. In AMD,

increasing fish intake or x-3 LCPUFA supplementation (DHA,

EPA) is associated with a decreased risk of AMD progression (Tan

et al, 2009; Christen et al, 2011; Pinazo-Duran et al, 2014). In

premature infants and diabetic patients, plasma x-3 LCPUFA levels

correlate with circulating APN and dietary intake of x-3 LCPUFA

modulates circulating APN levels (Ito et al, 2014; Fu et al, 2015).

In type 2 diabetic patients on a “healthy” Mediterranean diet, addi-

tional dietary intake of fish is associated with a 48% decreased

incidence of proliferative DR (Sala-Vila et al, 2016). In mouse

models of proliferative ROP, DR, and AMD, dietary x-3 LCPUFA,
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mediated by APN, inhibits ocular neovascularization (Fu et al,

2015, 2017b).

Free fatty acid receptor 1 (FFAR1)
FFAR1, which is activated by medium- and long-chain fatty acids

(Briscoe et al, 2003), governs glucose transport by regulating the

expression of retinal GLUT1 (Joyal et al, 2016). In mice lacking

VLDLR, a genetic deficiency in FFAR1 decreases retinal neovascular-

ization, while FFAR agonist increases retinal neovascularization

(Joyal et al, 2016). FFAR1 also mediates actions of nonenzymati-

cally generated nitro-oxidative products, transarachidonic acids, and

induces cerebral microvascular degeneration in rats (Honore et al,

2013). Targeting FFAR1 may prevent pathologic endothelial cell

proliferation and degeneration.

Conclusions and perspectives

Generally, photoreceptor metabolism controls retinal neuronal and

vascular development. Therefore, maintaining normal photorecep-

tor function will likely improve retinal vascular abnormalities in

disease. As dyslipidemia contributes to disease progression in many

retinal metabolic disorders, we may improve photoreceptor energy

production by regulating lipid use and increasing lipid fuel sources,

including those generated from autophagy. Targeting lipid metabolic

modulation may improve neurovascular retinal function and

decrease neovascularization.
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