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Abstract
In this paper, a telecommunication network situation is studied. Particularly, the problem considers an upper-level decision 
maker that enables different types of hubs in the network and another one that connects the users to the enabled hubs. The 
objective of the upper-level decision maker is to balance the number of users connected to the enabled hubs. However, the 
connection of users is performed by another decision maker with lower hierarchy, the one associated to the lower-level 
problem. Hence, decisions at the upper level are given as parameters to the lower level. So that, the lower level is solved 
to obtain feasible bi-level solutions. In this case, the rational reaction of the decision-maker assigned to the lower level is 
obtained. Due to the complexity of this problem, an evolutionary algorithm is proposed to obtain a good approximation. 
Numerical experimentation shows the efficiency and robustness of the proposed solution scheme. Based on the results, it can 
be concluded that the proposed algorithm provides good alternatives for the bi-level decision-making process. Also, some 
managerial insights are given regarding the different types of enabled hubs and the connection of the users.
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1  Introduction

Telecommunication networks have taken an important role 
in the recent years. Nowadays, it is impossible to imagine 
the world in which computers, cell phones, automobiles, and 
electrical appliances are not connected in some way to those 
networks. Due to telecommunication networks development 
the creation of new technologies, such as 5G connectivity 
has greatly contributed to the manner in which the world is 
perceived at the moment [1, 2].

As a consequence of the lockdown caused by the COVID-
19 pandemic, people have the necessity to be uninterrupt-
edly connected to telecommunication networks. This led 
to remarkable increase in the connectivity requirements 

necessary to carry out daily activities. Also, new opportu-
nities for telecommunications services have arisen.

The development of 5G technology has facilitated com-
munication like never before. That is why telecommunica-
tion companies placed more emphasis on adapting existing 
networks to fulfill the new necessities. Obviously, companies 
that provide a service need to meet the necessities of their 
customers. For example, in an office context, connections 
between computers are essential to perform daily tasks. To 
achieve it, the use of hubs plays an important role as they 
help to improve the distribution of the information through 
the network. Hubs are specialized hardware that are respon-
sible for receiving telecommunications signals and redistrib-
uting them to their destination within the network.

Therefore, the location and installation of different hubs 
is important for user connectivity. Hub location theory deals 
with the situation described above. The seminal research 
is attributed to [3], where the problem for locating hubs 
and assigning the demand nodes to them is proposed. The 
objective is to minimize the cost associated to the shipment 
of commodities through origin-destination pairs. The main 
advances appeared in the 80’s and 90’s, [4–7], and [8] laid 
the foundations of the main features in terms of modeling 
and solution methods.
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Hub Location Problems (HLPs) have been studied in 
diverse contexts, such as, airports [9], airlines [10], transpor-
tation [11, 12], and telecommunication systems. Addition-
ally, these problems are classified as NP-hard [13]. The latter 
implies that for large-size problems, the use of heuristics 
and metaheuristics is a convenient alternative to solve them.

Particularly, in the context of telecommunication systems, 
related research is discussed next. In [14], a comparison 
between Iterated Local Seach and Tabu Search is conducted. 
The main differences and their impact on the problem under 
study is discussed. Also, in [15], a HLP in which a network 
with a star topology is proposed. That problem is applied to 
an optical fiber context. The main objective of that problem 
is to locate central offices and the demand nodes to splitters, 
while minimizing the installation costs of optical fiber and 
hubs. To solve the problem, a Differential Evolution method 
and a Genetic Algorithm are implemented to compare their 
results. A hybrid algorithm to solve a case-study devoted 
to an optical fiber network for a hub network design is pre-
sented in [16].

New and novel applications using HLPs have arisen in 
many areas. In [17], a variant of HLP applied in freight 
transport is studied. On the other hand, a model for a multi-
objective HLP under a context of a transportation case-study 
in Iran is proposed in [18]. In [19], a multimodal competitive 
HLP with loyalty and elastic demand using a postal service 
in Iran is analyzed. A novel consideration of transportation 
systems under a humanitarian logistics context is studied in 
[20], in which a hierarchical HLP that aims to integrate the 
urban and rural transport systems is formulated. Also, in 
[21] a multiperiod HLP is used to distribute humanitarian 
aids in Lebanon. As it can be seen, innovative and ingenious 
applications of HLPs have been addressed to study situations 
in different contexts. Recently, there are some references 
devoted to hub location in a context of COVID-19. Most of 
these papers are related to the location of medical centers, 
but in the new normality, 5G telecommunication networks 
play a key role. Therefore, this research contributes in a sig-
nificant manner to the hub location field.

In this research, a problem that considers two hier-
archized decision-making levels is considered. At the upper 
level, potential sites for enabling hubs of different types 
are considered. Some of these hubs are enabled to provide 
service to a set of users aiming to balance their workload. 
Under this approach, it is intended that some hubs do not 
operate at their maximum capacity and others are being 
underutilized. In the first case, a technical failure in the 
hub affects many network users; while in the second case, 
an available resource that may help to distribute the flow 
within the network is wasted. In addition, the entire network 
must be balanced disregarding the different types of hubs. In 
other words, a small-size hub with few users connected can 
be saturated, while a large-size hub with few users may be 

highly underutilized. It is important to emphasize that the 
connection of the users is not decided at the upper level, but 
it is done at the lower level. Then, once the hubs are enabled, 
users are connected based on their connection cost.

Obviously, in this network of hubs there are some 
characteristics that must be taken into account when 
enabling the hubs and connecting users. For example, 
an enabled hub can only be of a specific type and a pre-
defined budget is considered to establish the network of 
hubs. Also, each specific type of hubs has a set capac-
ity regarding the number of users connected to it. Addi-
tionally, users must be connected only to one hub, and 
there is a minimum number of users that must be con-
nected to enabled hubs in order to have a functional -in 
practice- network.

It is evident that the connection made at the lower level 
determines the balance of users, which is the aim of the 
upper level. Due to these characteristics, the situation 
under study can be modeled using a bi-level programming 
approach. The characteristics of the problem (a non-con-
vex lower level) prevent the reformulation of the bi-level 
problem into a single-level one. Therefore, we propose an 
evolutionary metaheuristic algorithm to find good-quality 
solutions of the bi-level problem in an acceptable compu-
tational time.

The contributions of this research can be summarized 
as: (a) proposing a new bi-level programming model for a 
problem of enabling different type of hubs considering the 
workload balance between them, but connecting the users 
based on a rental cost; (b) designing an evolutionary algo-
rithm to solve the bi-level problem in an efficient way; (c) 
performing a sensitivity analysis on some parameters of the 
problem to provide some interesting managerial insights.

The remainder of this research is as follows: Section 1 
presents an introduction of the problem, its importance and 
current context; Section 2 defines the sets, parameters and 
decision variables of the problem and presents its appro-
priate mathematical formulation; the proposed algorithm is 
described in detail in Section 3; the computational experi-
mentation is shown in Section 4, this includes the valida-
tion of the proposed algorithm as a solution methodology 
and a sensitivity analysis. Finally, Section 5 completes the 
article with the conclusions obtained from this research and 
some future research directions derived from our study are 
included.

2 � Mathematical formulation

Based on the situation under study described in the previous 
section, the sets, parameters and decision variables involved 
in the problem are going to be defined to formulate a math-
ematical model. Let I be the set of potential sites to enable 
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a hub, let J be the set of different types of hubs and let K be 
the set of users that intend to connect to the enabled hubs.

Consider a fixed installation cost fij to enable a hub of 
type j ∈ J in the site i ∈ I . Also, a rental cost rijk for user 
k ∈ K  for using the type of hub j ∈ J in the site i ∈ I  is 
associated. A limited budget b for the network design and 
its implementation is considered, and a capacity qj that lim-
its the users connectivity allowed in the hub of type j ∈ J 
is placed. Moreover, a minimum number of hubs of type 

j ∈ J must be enabled, which is denoted by pj . In order to 
implement a functional network of hubs, a minimum num-
ber of users must be connected, which is denoted by �min.

The upper-level decision variables are:

On the other hand, the decision variables associated to the 
lower level are:

yij =

{

1 if the hub of type j ∈ J is enabled at sitei ∈ I.

0 otherwise

xijk =

{

1 if user k ∈ K is connected to the hub of typej ∈ J enabled at potential site i ∈ I.

0 otherwise

Additionally, auxiliary continuous variables lj and uj denote 
the minimum and maximum number of users connected to 
hubs of type j ∈ J , respectively.

The resulting bi-level programming model is as follows:

where for a fixed y, variable x must be the optimal solution 
of the following problem:

(1)min
y,x

max
j∈J

{uj − lj}

(2)s.t.
∑

i∈I

∑

j∈J

fijyij ≤ b

(3)
∑

i∈I

yij ≥ pj, ∀j ∈ J

(4)
∑

j∈J

yij ≤ 1, ∀i ∈ I

(5)lj ≤
∑

i∈I

∑

k∈K

xijk + |K|(1 −
∑

i∈I

yij), ∀j ∈ J

(6)uj ≥
∑

i∈I

∑

k∈K

xijk, ∀j ∈ J

(7)yij ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K

(8)min
x

∑

i∈I

∑

j∈J

∑

k∈K

rijkxijk

(9)s.t.
∑

k∈K

xijk ≤ qjyij ∀i ∈ I,∀j ∈ J

(10)
∑

i∈I

∑

j∈J

∑

k∈K

xijk ≥ |K|�min

The upper-level problem is defined by Eqs. 1-7 and aims 
to balance the number of users connected to the enabled 
hubs. Particularly, the balance is expected for each type 
of hubs, and consequently, a balanced network of hubs is 
obtained. That is indicated in Eq. 1, in which the minimum 
of the maximum unbalanced hubs is aimed. Constraint (2) 
imposes the available budget to design the network of hubs. 
Constraint (3) ensures that a minimum number of each type 
of hubs must be enabled and constraint (4) indicates that a 
single hub of any type may be enabled at each potential site.
The minimum and maximum number of users connected to 
a hub is computed in Eqs. 5 and 6, respectively. The binary 
nature of upper-level decision variables is indicated in Eq. 7.

The lower level problem defined by Eqs. 8-12 is parameter-
ized in a upper-level decision. Its objective function aims to 
minimize the rental cost for connecting users to the different 
enable hubs, and it is given by Eq. 8. Constraint (9) indicates 
the capacity of specific hubs, in terms of the users connected 
to them. A minimum number of connected users to guarantee 
the functionality of the network of hubs is ensured by Eq. 10. 
Additionally, users must be connected to a single enabled hub 
of any type, this is ensured by 11. Finally, the binary nature of 
lower-level decision variables is indicated in Eq. 12.

In order to have well-defined a bi-level programming 
problem, the lower level must have a unique optimal solution 
for an upper-level decision. In the other case, that is, when 
there are multiple lower-level optimal solutions, the opti-
mistic or pessimistic approach could be assumed [22]. The 
former consists of assuming a cooperative approach. In other 
words, from all the multiple optimal solutions of the lower 
level, the one that suits better for the upper-level objective 
function is chosen. The reasoning behind this approach is 
that all the optimal solutions of the lower level yield to the 

(11)
∑

i∈I

∑

j∈J

xijk ≤ 1 ∀k ∈ K

(12)xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K
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minimum rental cost, but the solution that results in the more 
balanced network is selected. The latter assumes the oppo-
site behavior, that is, the upper-level decision maker prepares 
for the worst scenario due to the reaction of the lower-level 
one. In this paper, the optimistic approach is assumed.

3 � A nested evolutionary algorithm

Bi-level problems are classified as NP-hard, even in their simplest 
form, that is, the linear-linear case. Additionally, in the problem 
herein proposed, the lower level is non-convex. Hence, a solution 
scheme based on the single-level reformulation is not possible. 
Based on these two main drawbacks, an evolutionary algorithm 
is proposed to solve the 5G hubs location bi-level problem.

Evolutionary algorithms (EAs) have been considered through 
the years as an efficient method for approximating solutions to 
hard-to-solve problems [23–25]. EAs are inspired in the biologi-
cal evolution of species. Initial population of individuals (solu-
tions) is considered, and their corresponding fitness (objective 
function value) is measured. Then, evolution operators, such as 
selection, crossover, and mutation are applied in order to accom-
plish an evolution in the individuals. Individuals with better fit-
ness survive and continue the evolutionary process through a 
predefined number of generations (iterations).

Particularly, EAs have demonstrated to be effective for 
solving complex problems in different location contexts. 
For instance, EAs to solve facility location problems can be 
found in [26–28]. Also, EAs have been developed to solve 
bi-level problems [29–31]. Recall that in bi-level problems, 
the lower level must be optimally solved for a given upper-
level decision. That is the so-called nested approach and it 
is used for obtaining bi-level feasible solutions. A general 
scheme of an EA is presented.

Next, a detailed explanation of each one of the compo-
nents involved in the proposed Nested Evolutionary Algo-
rithm (NEA) is presented. As it can be noticed from the 
pseudocode shown in Algorithm 1, the algorithm creates 
an initial population of individuals, and a repairing phase is 
applied to ensure that the upper level constraints are met. In 
order to achieve bi-level feasible solutions, the lower level is 
optimally solved for each individual. Then, the fitness evalu-
ation of individuals is performed. A subset of the individu-
als with better fitness is selected to apply the evolutionary 
operators, such as, crossover and mutation. The latter opera-
tors create new individuals and the process is repeated. The 
aim is of this evolutionary scheme is to improve individuals 
over the generations.

3.1 � Initial population

As mentioned above, the initial population of individuals is 
created in a random manner. To achieve this, vectors of size 
|I|, which components are elements of the set J ∪ {0} , are 
considered. Therefore, a vector contains integer numbers 
indicating the type of hub enable in the i− th potential site. In 
case that a zero appears, it implies that no hubs are enabled 
in that potential site.

An example of the encoding herein utilized is presented 
in Fig. 1, in which 8 potential sites and 3 different types 
of hubs are considered. The illustrated individual indicates 
that two hubs of type 1 are enabled in the second and eighth 
potential sites. Similarly, hubs of types 2 and 3 are ena-
bled in the third and sixth potential sites, respectively. Also, 
note that there are four potential sites, in which no hubs are 
enabled.

Despite the fact that the considered encoding guarantees 
that a potential site may be used to enable only one type of 

Algorithm 1: Nested Evolutionary Algorithm
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hubs, the other constraints may not be met. The enabled 
hubs of each type may not surpass their minimum required 
number or the budget may be exceeded. Therefore, a repair-
ing phase is needed.

3.2 � Repairing phase

Once an individual is created, its feasibility must be guar-
anteed. If the individual is feasible, then it is included in 
the population. In other case, the individual suffers some 
structured changes aiming to achieve feasibility. As men-
tioned above, the infeasibility may be caused by either the 
minimum number of enabled hubs is not met or the budget 
is exceeded.

Let us illustrate the proposed repairing phase with an 
example. Consider the individual depicted in Fig. 1, and 
assume that the minimum number of enable hubs of type 
2 and 3 are two ( p2 = p3 = 2 ). It is evident that the indi-
vidual does not meet with that specific constraint. Hence, a 
potential site without a hub is randomly selected to enable 
the specific type of hub. Selection of the type of hubs is 
performed lexicographically, that is, firstly the hub of type 
2 is enabled, and secondly, the hub of type 3. An illustration 
is shown in Fig. 2

It is important to mention that during the process of ena-
bling missing hubs is done, budget is checked. If the budget 
is exceeded and the minimum required hubs have not been 
enabled, the individual is discarded.

3.3 � Optimal solution of the lower level

In order to evaluate the fitness of an individual, the connec-
tion of the users to the enabled hubs is needed. Recall that 
the connection is decided at the lower level, in which the 
connection costs are minimized.

In this case, once the different types of enabled hubs are 
known, the resulting problem at the lower level must be opti-
mally solved. Particularly, it corresponds to a binary pro-
gramming problem, which can be solved by a commercial 
optimization software.

If the resulting lower level problem is infeasible, the 
associated individual is discarded. The latter may be caused 
by the lack of capacity to satisfy the network functionality 
constraint.

3.4 � Fitness evaluation

The fitness associated to an individual is given by the objec-
tive function of the upper level. In other words, the balance 
of the users connected to the enabled hubs.

It is evident that the fitness evaluation can be done after 
the lower level is solved.

3.5 � Selection

Selection of individuals that enter to the crossover phase is 
performed in an elitist manner. A subset of individuals with 
better fitness is selected.

3.6 � Crossover

To generate new individuals the crossover phase is applied. 
Individuals in the elite subset are randomly paired with 
another individual of the population. For each pair of indi-
viduals (parents), a single-point crossover is performed to 
generate two offspring. The first offspring has the charac-
teristics of the first parent before the crossover point and the 
characteristics of the second parent after the crossover point. 
Conversely, the second offspring is created. An example is 
illustrated in Fig. 3.

The implemented crossover may create infeasible indi-
viduals. Hence, the repairing phase previously described is 
applied. If offspring are feasible, then they are stored; oth-
erwise, they are discarded.

3.7 � Mutation

The new created individuals in the crossover phase may 
suffer a mutation. This phase adds diversity to the EA 
and promotes a wide exploration of the search space. The 
proposed mutation consists of random selection of two 
components of an individual, and interchange between 
them. An example is depicted in Fig. 4, in which the sec-
ond component of the individual is interchanged with the 
penultimate one.

Note that the mutation implemented maintains feasibility 
regarding the minimum number enabled hubs of each type. But 
the budget may be exceeded. In this case, another interchange 
between components is explored to perform the mutation. The 
process stops when a successful mutation is achieved. In the 
case when all the possible interchanges have been explored and 
no feasible individual is obtained, the mutation is not applied 
and the individual is included in the new population.

Fig. 1   Illustration of the individual’s encoding

Fig. 2   Illustration of a repaired individual
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3.8 � Update the population

At this point, we have the original population of individu-
als and the population of new created ones. Both popula-
tions are merged in an elitist manner. That is, the individuals 
with better fitness value are included in the population that 
replaces the previous one.

By doing the latter, we maintain the best individuals that 
have been already created, and include the recently created 
ones to improve the fitness of the population. Despite this 
elitist scheme, the evolution process is not biased to local 
optima, since diversity is given by the mutation phase.

The evolutionary process is repeated until a predefined 
number of generations is reached, that is the stopping crite-
rion considered in the proposed NEA.

4 � Computational experimentation

Since there are no previous studies regarding the herein con-
sidered problem, no benchmark instances exist. Therefore, 
to evaluate the performance of the proposed NEA, a random 
but controlled instance generator is developed to create two 
main sets of different test instances. Sizes of the instances 
are shown in Table 1 that is, 50 potential sites and 50 users, 
and 75 potential sites and 100 users. Each set can be divided 
into two subsets, in which the minimum connectivity of the 
network is varied and different number of different hubs 
must be enabled. A total of 60 instances is created to carry 
out the computational experimentation.

4.1 � Parameters of the NEA

In order to deal with the stochastic nature of the proposed 
algorithm, many executions of the NEA for the same 
instance are performed. Moreover, different parameters are 
involved in the NEA, such as, size of the population, num-
ber of tournaments in the crossover, probability of entering 
into crossover, and probability of entering into mutation. 
Additionally, the stopping criteria involve two parameters, 
that is, the total number of generations and the number of 
consecutive generations without improving the incumbent 
individual.

Although there are studies that indicate that evolutionary 
algorithms converge despite the calibration of the parameters 
[32], we decided to investigate the NEA performance under 
different parameters configurations.

Extensive preliminary tests are performed to identify the 
most-suitable parameters of the NEA when solving the prob-
lem herein studied. Hence, we fix the size of the population 
to 100 individuals. The selection of the individuals is per-
formed after 5 tournaments have been completed. The half 
of the best-ranked individuals enter into the crossover with 
a probability of 0.65. Then, offspring enter into the mutation 
phase with a probability of 0.2. The maximum number of 
generations is set to 100. But, if the incumbent fitness does 
not improve in 10 consecutive generations, the NEA stops.

Fig. 4   Illustration of the mutation

Table 1   Characteristics of the created instances

Potential sites Users Types of hubs pmin pj

50 50 3 0.5 [5, 3, 2]
[2, 3, 5]
[2, 6, 2]

0.75 [5, 3, 2]
[2, 3, 5]
[2, 6, 2]

75 100 3 0.5 [5, 5, 5]
[7, 5, 3]
[4, 4, 7]

0.75 [5, 5, 5]
[7, 5, 3]
[4, 4, 7]

Fig. 3   Illustration of the single-
point crossover
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Preliminary results indicated that the value of the param-
eters involved in the NEA play a key role in the efficiency 
of the proposed algorithm. It is worthy to mention that the 
selected parameters are in the range indicated in the con-
clusions found in [32], which indicates that they may work 
adequately.

4.2 � Numerical results

NEA is implemented in the programming language of FICO 
Xpress Mosel. Also, the lower-level problem is solved by 
using the FICO Xpress Solver 8.9. All the computational 
experimentation is carried out on a workstation using an 
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz with 16 GB 
of RAM under Windows 11 Professional operating system. 
As mentioned before, due to the stochasticity involved in the 
NEA, 10 executions are performed for each instance.

The obtained results from the computational experi-
mentation are shown in Tables  2 and 3. The label 

ww × xxx.yy.zz of each instance indicates the number of 
potential sites (ww), the number of users (xxx), the set 
of hubs of each type that must be enabled (yy), and the 
number of instance with these specific characteristics (zz). 
In the column labeled FBest , the best value obtained for 
the upper-level objective function is reported. To measure 
the dispersion of the obtained values, the following are 
measured: the average ( FAvg ) and the worst ( FWorst ) objec-
tive function. The number of runs that the NEA reached 
the best objective value is included in # Best. Then, the 
required average time (in seconds) is included in Timeavg 
column. Moreover, the number of additionally enabled 
hubs than the minimum required is shown in the next 
three columns. For example, in Extra_min is indicated 
the greater number of extra hubs enabled in that particu-
lar instance. Correspondingly, Extra_avg and Extra_max 
contain the average and minimum number of extra hubs 
enabled. Finally, the total number of users connected is 
shown in column Connected.

Table 2   Results for the 
instances of size 50×50

Instance Fbest Favg Fworst # Best Timeavg Extramin Extraavg Extramax Connected

50×50.B1.01 0 0.2 1 8 41.989 0 0.1 1 25
50×50.B1.02 0 0.1 1 9 41.904 0 0.2 1 25
50×50.B1.03 0 0.3 1 7 48.398 0 0.5 1 25
50×50.B1.04 0 0 0 10 43.643 0 0 0 25
50×50.B1.05 0 0.2 1 8 32.085 0 0 0 25
50×50.B1.06 0 0.3 1 7 41.264 0 0.3 1 38
50×50.B1.07 0 0.1 1 9 45.195 0 0.1 1 38
50×50.B1.08 0 0.2 2 9 52.362 0 0.3 1 38
50×50.B1.09 1 1 1 10 44.962 0 0.2 1 38
50×50.B1.10 1 1.2 2 8 55.133 0 0 0 38
50×50.B2.01 1 1.1 2 9 46.855 0 0.4 1 25
50×50.B2.02 1 1.3 2 7 70.895 0 0.1 1 25
50×50.B2.03 1 1.1 2 9 58.995 0 0.5 1 25
50×50.B2.04 1 1.2 2 8 45.21 0 0.1 1 25
50×50.B2.05 1 1.4 2 6 48.117 0 0 0 25
50×50.B2.06 1 1.6 2 4 43.755 0 0.1 1 38
50×50.B2.07 0 0.3 2 8 64.05 0 0.2 1 38
50×50.B2.08 1 1.3 3 8 64.119 0 0.4 1 38
50×50.B2.09 1 1.4 3 7 52.125 0 0 0 38
50×50.B2.10 1 1.3 3 8 43.506 0 0.1 1 38
50×50.B3.01 1 1 1 10 50.11 0 0.5 1 25
50×50.B3.02 1 1 1 10 40.364 0 0 0 25
50×50.B3.03 0 0.3 2 8 47.084 0 0.6 1 25
50×50.B3.04 1 1.2 2 8 41.369 0 0.1 1 25
50×50.B3.05 0 0 0 10 47.321 0 0.1 1 25
50×50.B3.06 1 1.4 2 6 52.724 0 0.2 1 38
50×50.B3.07 0 0.4 2 7 49.168 0 0 0 38
50×50.B3.08 1 1.1 2 9 51.313 0 0.2 1 38
50×50.B3.09 1 1.3 3 8 44.56 0 0.1 1 38
50×50.B3.10 1 1.5 3 7 64.153 0 0 0 38
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In Table  2 are shown the results for the first set of 
instances, that is, the set containing 50 potential hubs and 
50 users. It can be noticed that only in 12 instances a per-
fect users balance is achieved. However, in the rest of the 
instances, a value of 1 is obtained, which indicates that the 
largest difference of users connected to hubs corresponds 
to one user. The worst balancing is 3, and it is obtained 
in instances 08, 09 and 10 of type B2, and 09 and 10 of 
type B3. Coincidentally, all these instances consider a pmin
=0.75, which implies that at least 38 of the 50 users must 
be connected.

For the instances in which the perfect balancing is 
obtained, the number of runs that achieved that value 
is above 5. For example, in instances 07 of type B1 
and instances 05 and 07 of type B3, the highest num-
ber of perfect balance is reported (with 9, 6 and 6, 
respectively).

Another convenient aspect of the numerical experimen-
tation is that for instances 09 of type B1, and instances 01 

and 02 of type B3, the best balancing is obtained in all the 
ten runs.

Regarding the required computational time for each 
instance, it is less than 1 minute for almost all of them. Only 
instances 02, 07 and 08 of type B2, and instance 10 of type 
B3 presented average execution times greater than one min-
ute, that is, they reported times between 64.05 and 70.895 
seconds.

It is important to emphasize that for all the 30 instances, 
the minimum number of hubs are enabled. However, in the 
worst case for 22 out of the 30 instances, an additional hub 
is enabled besides the one indicated in vector pj . Similarly, 
the number of connected users is the minimum required, 
that is, 25 and 38 for pmin=0.5 and pmin=0.75, respectively. 
Therefore, it would be interesting to perform an analysis to 
evaluate the convenience of enabling more hubs or connect-
ing more users.

The obtained results for large-size instances are displayed 
in Table 3. In general, the perfect balancing is achieved in 

Table 3   Results for the 
instances of size 75×100

Instance Fbest Favg Fworst # Best Timeavg Extramin Extraavg Extramax Connected

75×100.B1.01 2 2.2 3 8 121.443 0 0.7 1 50
75×100.B1.02 1 1.3 3 8 97.68 0 0.4 1 50
75×100.B1.03 1 1.2 3 9 93.981 0 0.6 2 50
75×100.B1.04 2 2.3 3 7 106.294 0 0.6 1 50
75×100.B1.05 2 2.1 3 9 101.687 0 0.3 1 50
75×100.B1.06 2 2.2 3 8 93.785 0 0.6 2 75
75×100.B1.07 0 0.6 3 7 84.878 0 0.1 1 75
75×100.B1.08 2 2.1 3 9 98.925 0 0.3 1 75
75×100.B1.09 2 2.4 4 7 98.58 0 0.4 2 75
75×100.B1.10 2 2.2 3 8 127.042 0 0.7 2 75
75×100.B2.01 2 2.1 3 9 106.787 0 0.6 2 50
75×100.B2.02 1 1.4 3 7 87.581 0 0 0 50
75×100.B2.03 2 2 2 10 88.137 0 0.4 1 50
75×100.B2.04 1 1.3 3 8 103.928 0 1.2 2 50
75×100.B2.05 2 2.1 3 9 114.68 0 0.6 1 50
75×100.B2.06 1 1.3 3 8 96.151 0 0.3 1 75
75×100.B2.07 1 1.2 3 9 71.526 0 0 0 75
75×100.B2.08 2 2.3 3 7 86.256 0 0.3 1 75
75×100.B2.09 2 2 2 10 97.411 0 0.5 1 75
75×100.B2.10 1 1.4 3 8 88.809 0 0.4 1 75
75×100.B3.01 2 2.2 3 8 105.271 0 0.3 1 50
75×100.B3.02 2 2.1 3 9 89.339 0 0.4 1 50
75×100.B3.03 2 2 2 10 106.922 0 0.1 1 50
75×100.B3.04 2 2.2 3 8 96.9 0 0.5 2 50
75×100.B3.05 2 2.1 3 9 98.896 0 0.2 1 50
75×100.B3.06 2 2.4 3 6 109.415 0 0.5 1 75
75×100.B3.07 2 2.3 3 7 83.265 0 0.2 1 75
75×100.B3.08 2 2.2 3 8 87.392 0 0.4 1 75
75×100.B3.09 2 2.7 5 7 122.905 0 1 2 75
75×100.B3.10 2 2.1 4 9 100.25 0 0.4 1 75
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more than half of the 30 instances. However, since the size 
of the instance increased, the unbalance also increased up to 
two. As expected, the required computational time increased. 
Now, it take between 1 and 2 minutes, in average, for solv-
ing each instance. In this case, instances 75×100.B2.07 and 
75×100.B1.10 are the ones with minimum and maximum 
time, that is, 71.5 and 127.0 seconds, respectively. Similarly 
than for the medium-size instances, in most of the runs the 
minimum number of hubs are enabled. In average, only in 
20 out of the 30 instances an extra hub is needed. Also, the 
minimum number of users is always connected, that is, no 
benefit for the upper-level decision maker is obtained for 
connecting an additional user. This is an interesting finding 
that may be analyzed in the upper-level problem.

4.3 � Analyzing the performance of the NEA

To show the performance of the proposed algorithm, three 
random instances are selected and the best upper-level objec-
tive function is recorded at each iteration. Therefore, they 
are plotted in Fig. 5. The aim is to show the convergence of 
the NEA.

An important issue that arises from that figure is the 
small range of values for the upper-level objective function. 
It seems that from the beginning, the balance is relatively 
small. Recall that 0 represents the perfect balance among 
users and hubs of different types. Also, in two out of the 
three selected instances, the perfect balance is not achieved. 
However, the graph shows that the algorithm tends to per-
form well, even at large-size instances. In other words, it 
converges to a good solution.

4.4 � Managerial insights

During the computational experimentation different values 
of pj are considered. In other words, the impact of having 
more small-type hubs than large-type hubs is explored. This 
can be observed from Table 1, which three different configu-
rations for each size of the instances are displayed.

For instance, enabling more small-type hubs does not 
guarantee that the perfect balance is obtained. It can be 
observed from Tables 2 and 3 that enabling medium and 
large-type hubs yield to offer more connection options to 
the users; resulting in a more balanced network. The latter 
prevails despite the fact that medium and large-type hubs 
are more expensive than small-type hubs. Particularly, see 
instances 50×50.B1.07 and 50×50.B3.07, both of them 
achieved perfect users balance, even though different sizes 
of hubs are enabled. Another remarkable case corresponds 
to instances that achieved an almost perfect balance. For 
example, instances 75×100.B1.02 and 75×100.B2.02. That 
is the reason to state that the use of different types of hubs 
leads not only to perfect or almost perfect balance, but also 
it takes consideration in the final user connections.

Moreover, in many instances, the perfect balance is 
achieved when additional hubs are enabled, that is, more 
than the minimum required hubs are used in the network. 
This may be caused by the number of alternatives offered to 
the users, who choose the best option for them.

In other words, if additionally to a perfect balance, the 
minimization of the network cost, or the maximization of the 
profit obtained from the connected users is pursued; then, 
a different structure of the solutions is obtained. The lat-
ter objective seeks an increase in the number of connected 
users.

5 � Conclusions

In this paper, a bi-level problem of hub location in the con-
text of a 5G network is presented. Nowadays, the use of 
5G technology in the new normality that we are experienc-
ing has become a pillar of the manner that the world needs 
to be connected. It is hard to conceive the idea of having 
electronic devices that are not connected to the Internet or 
work performance without the necessity of being connected 
to a telecommunication network. To accomplish the latter, 
companies that provide telephone and internet services must 

Fig. 5   Convergence of the NEA
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satisfy the needs of the users. Also, users select the service 
provider according to their needs. Given this situation in 
which there is an evident hierarchy among decision makers, 
a bi-level programming approach is applied. As a result of 
this, a novel bi-level model is proposed to study this interest-
ing situation.

Based on the characteristics of the problem and due to the 
lack of specialized bi-level programming software, a nested 
evolutionary algorithm is proposed to solve the problem. 
This algorithm maintains a balance between diversification 
and intensification, since it involves elitist and stochastic 
components during the evolution. To evaluate the efficiency 
of the proposed algorithm, a large set of different instances 
is created.

Obtained results show the convenience for using the 
proposed algorithm to approximate good quality solutions. 
The algorithm solves the problem in a relatively short time, 
even for large instances. The deviations obtained are small, 
which implies that the proposed evolutionary algorithm is 
steady and robust.Interesting managerial insights are given 
to emphasize the impact of having different types of hubs 
in the instance. There is no evidence to indicate that ena-
bling smaller-type of hubs is better than having large-type 
of hubs. Additionally, other objectives must be considered 
simultaneously in the problem for promoting the increase 
in the number of connected users in the network. Currently, 
the structure of the problem promotes that only the mini-
mum number of required users are connected.

Nowadays, hub location problems in a telecommunica-
tions context are in vogue due to the social distancing forced 
by the pandemic of COVID-19. The problem herein pro-
posed is the first effort to model 5G networks. Consequently, 
classic variants or the consideration of additional aspects can 
be studied to handle situations under this context.
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