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Several neuronal mechanisms have been proposed to account for the formation of
cognitive abilities through postnatal interactions with the physical and sociocultural
environment. Here, we introduce a three-level computational model of information
processing and acquisition of cognitive abilities. We propose minimal architectural
requirements to build these levels, and how the parameters affect their performance and
relationships. The first sensorimotor level handles local nonconscious processing, here
during a visual classification task. The second level or cognitive level globally integrates
the information from multiple local processors via long-ranged connections and synthe-
sizes it in a global, but still nonconscious, manner. The third and cognitively highest
level handles the information globally and consciously. It is based on the global neuro-
nal workspace (GNW) theory and is referred to as the conscious level. We use the trace
and delay conditioning tasks to, respectively, challenge the second and third levels.
Results first highlight the necessity of epigenesis through the selection and stabilization
of synapses at both local and global scales to allow the network to solve the first two
tasks. At the global scale, dopamine appears necessary to properly provide credit assign-
ment despite the temporal delay between perception and reward. At the third level, the
presence of interneurons becomes necessary to maintain a self-sustained representation
within the GNW in the absence of sensory input. Finally, while balanced spontaneous
intrinsic activity facilitates epigenesis at both local and global scales, the balanced excit-
atory/inhibitory ratio increases performance. We discuss the plausibility of the model in
both neurodevelopmental and artificial intelligence terms.
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Understanding the human brain remains the major challenge of biological sciences and
has become the focus of considerable attention from both neurobiology and computa-
tional sciences (1–3). As a consequence of the recent success of neuro-inspired algorithms,
including artificial neural networks and reinforcement learning, the fast-developing field
of machine learning continues to look to neuroscience for inspiration. For instance,
recent reflections on the connectomic implications of brain hominization in the course of
evolution and brain development have underlined the importance of a still undereval-
uated notion of multilevel processing in the brain from sensory processing—and its ele-
mentary “local” neuronal circuits—to higher brain functions (4). Several recent theories
emphasize the hierarchical relationship between local and global processes in the making
of higher-level cognition. Among these, the global neuronal workspace (GNW) (5) is
exemplary. A hierarchical relationship between local and global processes is also outlined
in Kahneman’s (6) functional distinction of “system 1” handling fast and nonconscious
cognitive processes and “system 2” handling cognitive tasks requiring slower and more
concerted conscious effort. While current algorithms in machine learning are now tack-
ling system 1 tasks at the human performance level, a major milestone for modern
artificial intelligence would be to provide models capable of approximating system 2
cognition (7).
To a large degree, the strides made in artificial intelligence research during recent

decades can be explained by the overwhelming success of error backpropagation. Nev-
ertheless, its biological plausibility remains a matter of considerable debate (8–10).
Unlike artificial deep networks, and due to their discontinuous nature, spiking neurons
are thought to learn by other means. Concretely, electrophysiological methods have
indicated two principal mechanisms of learning in the human brain: Hebbian learning
(11) and reinforcement learning (12). The mechanism of epigenesis by synapse selec-
tion (or synaptic pruning) is also known to play a significant role in both learning and
biological development (13). Moreover, it has been demonstrated that neurogenesis
can occur in adults (14) and that astrocytes may be implicated in synaptic modulation
during learning (15). Despite solid evidence from joint anatomical, physiological, and
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molecular investigations in the course of nervous system devel-
opment, such mechanisms have been underexploited in brain
modeling and computer sciences (13, 16). Recent work in neu-
roscience continues to uncover novel mechanisms at play dur-
ing learning, which are far from being integrated into computer
science. These and other mechanisms may provide important
links, both within and between levels of organization, in diverse
contexts—ranging from gene networks to long-range neuronal
connectivity of the brain (17). Recent neuromorphic approaches
and biologically plausible architectures, even including various
brain regions such as the prefrontal cortex, basal ganglia, or thala-
mus, can perform a wide set of different computational tasks
with energy efficiency (18, 19).
If detailed key mechanisms of learning in the brain have

already been investigated, there is, as yet, no theoretical consen-
sus on how these varied learning mechanisms interact in the
brain (20–23). Yet it is known that the brain operates con-
stantly through variation–selection mechanisms at multiple
timescales (17) and thus supports the development of a multi-
scale and dynamical perspective on cognition and learning
(24, 25). In artificial intelligence, new approaches have adopted
such dynamical and multiscale aspects using attention (26) or
social interaction between multiple agents (27). Basic develop-
ments inspired by neuroscience have also highlighted the impor-
tance of better capturing hierarchical relationships (7, 28, 29).
Finally, the idea of biological learning without any inductive
bias, typical of artificial neural networks (ANNs), has been criti-
cized. On the contrary, biological investigations point dramati-
cally to the embodied quality of cognition, perception, and
action, as well as the important role of embeddedness in natural
and social milieus (30, 31).
In this paper, we present a framework that pursues this

biologically grounded inquiry of the mechanisms underlying
cognitive ability in humans. We introduce a model of synaptic
epigenesis that combines multiscale architecture with spike tim-
ing dependent plasticity (STDP) and dopamine signaling. We
outline the most elementary structural biological requirements
for conscious processing (32) that are possibly accessible in sim-
ple organisms such as Drosophila (33). We hypothesize that
synaptic epigenesis unfolds differently at local and global scales
and that the requisite conditions for solving complex tasks asso-
ciated with the GNW include not only local but global epigen-
esis. We first identify necessary and sufficient conditions for
proper learning of perceptual, cognitive, and conscious tasks.
Next, we analyze how the identified factors influence perfor-
mance in these tasks. After introducing the neurocomputational
model, results are presented, and the key role of dopamine and
inhibitory neurons in the learning of higher cognitive tasks is
discussed. Finally, we delineate future perspectives for the field
of computational cognitive neuroscience and neuroAI.

Model

Overview of the Model and Its Neuronal Components. We
propose a computational model of an elaborate multilevel neu-
ral network able to pass cognitive tasks of increasing difficulty
(Fig. 1). The task solving develops at three nested levels of hier-
archical organization, where synaptic epigenesis may proceed at
both local and global scales. The three different levels of structural
organization show the increasing complexity of connectomic
architecture with each nested level through a continuous progres-
sion. The first level, which we refer to as the “sensorimotor level,”
deals with local sensory processing and classification of visual
information: It requires local synaptic epigenesis. At the second

level, or “cognitive level” (34), the network successfully passes a
delay conditioning task: It mobilizes multiple cortical areas, and
their integration requires long-range axonal connections. The
third level, referred to as the “conscious level,” is able to carry a
trace conditioning task using an architecture similar to the cogni-
tive level, yet with the addition of the necessary contribution of
inhibitory interneurons. And, even though inhibitory neurons are
present not only at the highest level of brain organization, we are
showing that they are a necessary requirement at this particular
step. The conscious level can be further linked to constant
interactions with the social and cultural environment and form
a so-called metacognitive level; however, we do not study these
connections in this work, and this hypothesis is a subject of
future studies.

Fig. 1 illustrates the overall neuronal organization of the
model network. The three structural levels are all made up of
neuronal layers organized hierarchically and nested within each
other in a bottom-up and top-down manner (11). Each level
may include several differentiated territories, or subnetworks,
such as, for instance, the visual cortex or the motor cortex in
the lower sensorimotor level. Every part of the network is mod-
eled using neuronal assemblies, except for the first two layers of
the local network of the visual cortex. The state of each neuron
is determined by the leaky integrate-and-fire model (35), and
each assembly includes not only internal connections but
external connections to other assemblies of the whole net-
work. An important feature of the model is its evolution with
time. In the course of learning, the network connections are
subject to epigenesis by selective stabilization of synapses (13).
At critical stages of development, stable connections emerge
from an initial growth process with overproduction of synap-
tic contacts with maximal diversity and variability, and then a
selection–stabilization regulated by the state of activity of the net-
work takes place, together with the elimination—or pruning—of
the unselected ones (13). We examine, at all three levels of
organization, how this development happens, both at local and
global scales, and how internal and environmental factors affect
its evolution.

Physical environment

Social and Cultural
environment

Cognitive level

Sensorimotor level

Conscious level

Metacognitive level

Ascending 

Neuromodulation

Interneurons

Exc. neurons
Group 0

Exc. neurons
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Motor
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Fig. 1. The full network architecture comprises sensorimotor, cognitive,
conscious, and metacognitive levels. This is a schematic representation of
the full network and its components. Colors of arrows depict different
types of connections: light blue, excitatory long ranged (fixed: between VC
and GNW; STDP: between GNW and motor cortex - MC); red, inhibitory
(STDP); green, excitatory (STDP); yellow, extracellular dopamine modulation
(affects dopamine modulated STDP). This version of the model is used to
perform the trace conditioning task on the conscious level. To use the
model with the delay conditioning task we do not introduce the interneurons
population on the cognitive level.
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The intrinsic spontaneous activity of the component neurons
is a singular functional component introduced in the model
proposed to occur at all its hierarchical levels. Also, the network
is not exclusively composed of excitatory neurons as in most
standard networks. At the highest level, we introduce inhibitory
interneurons and test how the interneuron vs. excitatory neu-
ron ratio affects the performance. Long-range connections (5)
which interconnect widely distinct territories of the global net-
work are introduced at the higher cognitive and conscious
levels.
Last, throughout this work, we use concomitantly different

types of learning. At the local level, the network evolves under
Hebbian learning with STDP (36). However, all the global
connections are controlled by reinforcement learning (12). To do
so, we introduce the dopamine reward system (37), which is mod-
ulated by interactions with the external environment (Fig. 1).

Description of the Tasks. The three selected tasks challenge dif-
ferentially the sensorimotor, cognitive, and conscious levels.
The sensorimotor level is common to all tasks. At this level,

we use the MNIST (Mixed National Institute of Standards and
Technology) dataset of handwritten digits as visual input to the
visual cortex (38). The network performs a number recognition
task (39). Following image presentation, the network processes
spikes arriving within the first 250 ms, followed by a relaxation
period of the same length. Thus, one image is shown every 500 ms
during the learning period. At the higher levels, when the full
network receives an input from the visual cortex, the network is
expected to respond to the question posed by the experimenter:”
Is this number larger than x? If yes, push a button.” For the case
with only “0” and “1” in the input data, we took x equal to “0.”
Two other tasks, delay and trace conditioning (40), have

been used to challenge the cognitive and conscious levels. In
delay conditioning, the unconditioned stimulus (US) immedi-
ately follows or coterminates with the conditioned stimulus
(CS), whereas, in trace conditioning, the CS and US are sepa-
rated in time by a “trace” interval. Here, the numerical input
operates as the CS. We study two different variations of the
task with different temporal locations of the CS and US. Dur-
ing the delay conditioning, we present a number for 150 ms,
and the trigger stimulus coincides with the last 50 ms of the
input. To create the trace conditioning, we first introduce an
input for 150 ms, followed by a pause of 200 ms where the
input is removed, and, only after this pause, the GNW receives
the trigger stimulus of 50 ms. Whenever the motor cortex pro-
duces output, that is, the firing frequency of the motor neuron
is above a certain threshold, the environment provides a nega-
tive or positive reward, depending on the answer.

Local Network of the Visual Cortex. The architecture of this
network (Fig. 2A), inspired by the work of Masquelier and
Thorpe (41), consists of three layers representing the simplified
model of the visual pathway. The first layer imitates the lateral
geniculate nucleus and performs a convolution operation with
filters of various angles. Then, in the second layer, only the
strongest orientation reaches the V1 area. And, in the last layer
(V4 area), the patterns of digits are learned by means of STDP.
In the text, we use the notation of “complex” and “simple:
cells; thus the overall architecture can be written as S1–C1–S2
(see ref. 37). A detailed description of each layer can be found
in Materials and Methods.
To train the model and observe the local epigenesis of STDP

regulated synapses, we used the MNIST dataset of handwritten
digits (Fig. 2B). These inputs consist of images of handwritten

digits from “0” to “9.” MNIST is one of the fundamental data-
sets in machine learning, which makes it reliable and easy to
use, as well as an informative benchmark for nontraditional
learning methods. The images are introduced to the network
continuously, with equal relaxation periods in between. These
relaxation phases are needed for the system to eliminate the
temporal effect on STDP coming from the previous stimulus,
and to bring all membrane potentials back to rest.

After a number of images are presented, the network’s plastic-
ity allows it to evolve from a homogeneous state to one that has
encoded various patterns by way of Hebbian learning. Fig. 2 C
and D shows what the patterns of 20 S2 cells look like before
and after the network completes its learning process, respectively.
These images are plotted using the HSV (hue, saturation, value)
color scheme. Values for each pixel are set to 100%. Hue and
saturation are determined in the following way: Each pixel com-
bines information from six synapses (by the number of used ori-
entations). These six synaptic weights are transformed into the
complex plane: from w to w� = w � expðiφÞ, where φ is the par-
ticular orientation. Next, all six weights are added together. The
absolute value of the resulting complex number is saturation, and
the angle is hue. Using this color scheme, we are able to see not
only the strength of the C1–S2 connection but also the domi-
nant orientation (if present) coming from any of the C1 cells
(Fig. 2 D).

Full Network. After the local network has undergone the pro-
cess of Hebbian learning, the weights of C1–S2 connections
are frozen, and this network is considered mature. Then, a new
architecture is constructed on top of it, to explore global

Functional
characteristics Input Convolution MaxPool STDP

Anatomical
characteristics Eye LGN V1 area V4 area

B C D

A

Fig. 2. The local network of the visual cortex performs a classification task
on the MNIST dataset. (A) The schematic representation of the network
structure with functional descriptions of each layer and corresponding ana-
tomical analogies. The model is based on three processing layers, where
the first one performs convolutions on the original image with six different
filters of the same scale responsible for six different orientations. The sec-
ond layer propagates only the strongest orientation in a given area. The
connections of the last layer are regulated by STDP. The model is inspired
by the paper of Masquelier and Thorpe (41); for more information see the
original article. (B) The sample of the MNIST dataset of handwritten digits,
100 examples. (C and D) Pattern reconstructions of the 20 last layer cells
before (C) and after (D) learning. The reconstructions were done using the
HSV color scheme, where the color of each pixel represents the mean of
the intensities throughout the six orientations at that location.
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connections. This intermediate network consists of four funda-
mental elements: the GNW, the visual and motor cortices, and
the Striatum, represented by a single “dopamine” neuron (Fig. 1).
The visual cortex is essentially represented by the aforementioned
local network with deactivated STDP and fixed synaptic weights.
Input to the global network consists of the output of S2, once
its trained model has been extracted from the stream of images,
features to be read by the full network. In other words, raw data
are inaccessible to the full network, and only intermediate fea-
tures can be accessed by subsequent brain regions. S2 output is
passed to the excitatory population in the GNW.
The motor cortex is minimally represented by only a single

neuron. The firing of this neuron is interpreted as revealing the
interaction with the external environment, such as pushing a
button and giving a positive answer to a question. It processes
outputs only from the excitatory populations in the GNW.
The GNW is assumed to contain two populations of neu-

rons: excitatory neurons and interneurons. To test the cognitive
level with the delay conditioning, we use the simplest version
of GNW without interneurons. The excitatory population is
divided into two selective groups (by the number of digits we
want to use for the task; in our case, it is a binary classification,
and we only use digits “0” and “1”). Each selective group is
connected to S2 cells in the visual cortex model which are
responsible for one specific digit. All these connections are
fixed. The connections inside the GNW between both excit-
atory and interneurons are all to all.
Learning in the GNW–MC connections is accomplished

using reinforcement via interaction with the external environ-
ment (dopamine-modulated STDP). The internal GNW con-
nections are subject to Hebbian learning (classical STDP) in
the same way as C1–S2 connections in the local network. More
detailed information about STDP models can be found in
Materials and Methods.

Results

The proposed model of an elaborate multilevel neural network
(Fig. 1) is able to pass behavioral tasks of increasing difficulty.
The three levels of structural organization exhibit increasing
connectomic complexity with each nested level.

Sensorimotor Level—Visual Recognition Task: Stabilization
and pruning. At this level, the neuronal network—described
above as the “visual cortex local network”—can perform a rec-
ognition task of numbers, using handwritten digits as inputs.
This image processing task mobilizes nonconscious perception,
by leveraging local synaptic epigenesis as well as the spontane-
ous activity of the network. Fig. 3 shows the computed multi-
step evolution of this performance.

The initial state of the LGN-V1 synaptic population is highly
homogeneous. The synaptic weights are normally distributed
around the mean of 70% with an SD of 2%. When the network
is presented with the constant input stream of images, the synap-
tic population starts to evolve. The evolution of the synaptic
strength of the whole synaptic population is presented in Fig.
3B. This graph shows the evolution of the percentiles for the
population with a step size of 10, from 0 to 100. It can be seen
that all synapses do not behave in the same way. Around two-
thirds of population synapses immediately weaken and are, as
a consequence, eliminated. At the same time, other synapses are
strengthened and selected (see ref. 13).

Fig. 3C describes the evolution of the population of synapses
in terms of selective stabilization. The selected synapses are
those responsible for the transfer of the signals related to the
input information. Others are gradually eliminated, such that
they exert a lesser impact on the final layer. However, this pro-
cess is not linear, and learning patterns change over time. Fig.
3D represents the evolution of the states within the synaptic
population. In this schematic representation, a synapse belongs
to the green (“selected”) area if the synaptic strength (or synaptic
weight) is greater than 75%. Similarly, the red (“eliminated”)
area accounts for synapses with a strength of less than 25%. All
others between 25% and 75% fall into the gray (“undetermined”)
area. This zone contains the entire population at the beginning
of the simulation.

Due to nonlinear behavior, we have outlined two distinct
stages of learning depending on the growth rate: 1) from the
start to ∼200 shown images and 2) from ∼200 to 2,000. Statis-
tical tests have been performed to establish that the growth
rate of selected and eliminated synapses is reliably different dur-
ing the first and second periods. The t test has shown the
P value < 10�8 and Cohen’s D > 15 for both groups. With
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Fig. 3. Local epigenesis and performance of the local network. (A) Schematic representation of the hypothesis of epigenesis by selective stabilization of
synapses [from Changeux (42)]. (B) Evolution of the synaptic strength of the whole synaptic population in the last layer of the local network. Blue line, the
median; black lines: zero to hundredth percentiles (with a step of 10). (C) The epigenesis process in terms of selective stabilization of synapses, that is,
synaptic numbers instead of strength like in A. Red group represents eliminated synapses with weights of less than 25%. Green group represents selected
synapses with weights of more than 75%. Gray group includes weights between 25% and 75%. (D) The performance of the matured network depends on
the rate of spontaneous intrinsic activity. There is only a specific window where the network can produce a high performance of more than 90%, with exact
rates of the spontaneous intrinsic activity depending on the number of neurons.
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the chosen set of parameters, the first period occurs while the
model is processing the first ∼200 images. During this time,
we notice the rapid selective stabilization of half the synaptic
population. Simultaneously, the percentage of selected synapses
rises either. During this period, V1 cells gain their selectivity
toward specific sets of stimuli.
The second stage of learning can be characterized as the fixa-

tion and reinforcement of the changes that happened before.
The fraction of eliminated synapses monotonously reaches a pla-
teau level with a value of around two-thirds of all synapses. The
group of selected synapses, however, experiences “overshooting”
and, after 200 images, starts to slowly decrease before reaching a
plateau. This behavior can be described as a period when the S2
features become clearer, eliminating redundancy between them
and within the spontaneous intrinsic activity.
In addition to synaptic epigenesis, the intensity of spontane-

ous intrinsic activity is among the factors affecting the perfor-
mance of the network. In our model, each of the C1 neurons is
able not only to produce spikes caused by the S1 layer but also
to generate spontaneous intrinsic activity in a form of random
Poisson distribution with a fixed rate. We can see that high per-
formance (with the accuracy of classification > 90%) can only
be achieved in a specific range of values (Fig. 3D). We observe
no or very weak classification with values of spontaneous intrin-
sic activity close to zero; the same behavior is spotted for large
values as well (> 1.0 Hz). The classification reaches high scores
of >90% only between 0.1 Hz and 1.0 Hz. Thus, a sufficient
but not exceedingly high amount of spontaneous intrinsic
activity is a necessary factor in achieving the accurate recogni-
tion of numbers. The specific values of the spontaneous activity
vary depending on how many neurons are used and how
strongly it affects the conductivity of each neuron.

Cognitive Level—Nonconscious Delay Conditioning Task: Long-
Ranged Connections and Reward. In this section, we examine
which network global architecture is needed for the perfor-
mance of a delay conditioning task (Fig. 2), again using digits
as visual stimuli for the unconditioned and conditioned stimuli.
We discover that both the presence of long-range connections
and their epigenesis are required. The initial state of the net-
work is homogeneous: The local connections are set to 1% of
the maximum weight, and the long-range connections between
the GNW and the motor cortex are 50% for all synapses
(Fig. 4).
The network uses long-range connections to transmit stimuli

between visual and motor cortices via a hub of excitatory neu-
rons, as hypothesized in the GNW model (5). We show that
the network can perform a delay conditioned task (Fig. 4A rep-
resents the temporal relation between the stimulus and the trig-
ger) without conscious processing. Fig. 4B depicts the activity
of the GNW at the beginning and the final stages of the learn-
ing process. The stimulus is erased from memory as soon as the
input is gone, meaning that it is not processed in any way between
visual and motor cortices. However, depending on the initial
parameters, our network can start firing constantly in a positive
feedback loop, since it contains only excitatory neurons. In this
case, the network is not able to hold representations either. The
epigenesis process transpires rather quickly, on the scale of ∼15
shown images, and all the synapses responsible for the representa-
tions of the digit “1” get selected while the representations of the
digit “0” get eliminated (Fig. 4C).
The model turns out to be sensitive to the rate of spontane-

ous intrinsic activity. We have observed that, regardless of con-
figuration, the model can learn how to perform the task only

when the rate is set within a certain interval (Fig. 5). Moreover,
while there is a specific range of values within which the net-
work provides decent classification (accuracy > 95%), excessive
activity can disturb the learning process, and the accuracy will
remain around the chance level. The performance does not
change significantly as long as the spontaneous intrinsic activity
is set in the right interval.

Conscious Processing Level—Trace Conditioning Task: The
critical role of inhibitory neurons. To date, the models associ-
ated with the GNW theory have focused on purely excitatory
networks. Here we show the critical role of inhibitory neurons
for conscious tasks. Additionally, we demonstrate how the per-
formance on those tasks depends on the interplay between the
ratio of excitatory and inhibitory neurons and spontaneous
intrinsic activity.

Although the long-range connectivity itself is enough to per-
form the delay conditioning, it cannot achieve the trace condi-
tioning task by itself (which is represented in Fig. 6A). On this
level, the role of interneurons is seen to be critical in the func-
tion of the GNW for the maintenance of conscious representa-
tion. This is needed to create and hold stable representations of
stimuli and erase them when needed. Our model comprises
two selective excitatory populations and one interneuron popu-
lation. Once mature, it can hold a stable representation and
erase it upon the presentation of a different stimulus (Fig. 6B).
In this case, global epigenesis takes more time, on the order of
∼150 shown images, because it requires the local epigenesis in
the GNW to occur first (Fig. 6C). Therefore, the mechanism
of learning trace conditioning is highly dependent on the ability
of working memory to maintain a needed stimulus.

B

A

C

Fig. 4. Epigenesis of the long-range connections network between GNW
and motor cortex while performing binary classification under the delay
conditioning. (A) Description of the delay conditioning task. (B) Evolution of
the firing rate of the two populations of neurons within the GNW (excit-
atory selective for the digit “1,” excitatory selective for the digit “0”). Fifteen
neurons per population are shown; each dot shows a neuron spiking.
Depending on the network parameters, if the internal excitation in the
GNW is not strong enough to cause constant feedback firing, the stimulus
representation exists only while the input signal is present. (C) Epigenesis
of the global connections between GNW and motor cortex. The network
needs less than 20 images to learn the task and makes mistakes only when
the visual classification in the local network is wrong. Blue and gray lines
correspond, respectively, to one and zero output of the GNW.
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Just as in the intermediate level, with the delay conditioning,
we have studied how the model behaves with various values of
the spontaneous intrinsic activity and the excitatory/inhibitory
(E/I) ratio. The performance of the model strongly depends on
both parameters, and high accuracy can be achieved only in the
specific range of both values (Fig. 7A). In this case, we have
identified a very specific range of spontaneous intrinsic activity
(8 Hz to 13 Hz), as well as a narrow interval of the E/I ratio
which is located between 70% and 95% (maximum accuracy
achieved with ratio = 80% and rate = 12 Hz).
The same study has been conducted for the delay condition-

ing task, to assure that the model can achieve good perfor-
mance on the same parameter values (SI Appendix, Fig. S1). It
is a crucial step toward biological plausibility: The network can-
not perform the trace conditioning task without being able to
work with delay conditioning beforehand. In our case, we have
identified, with high accuracy, the region where both tasks are
performed.

Discussion

In this paper, we address the issue of how the progressive com-
plexification and integration of an artificial neural network
gives rise to cognitive abilities. The current model features the
GNW (5) as a primary mechanism for conscious processing;
however, it is not strictly limited to a particular brain area. The
model is based on three hierarchical levels of information proc-
essing: the sensorimotor level; the cognitive level corresponding
to the global nonconscious processing of information across dif-
ferent brain regions; and, last, the conscious level corresponding
to the autonomous and lasting processing of information, even
in the absence of externally applied sensory stimulation. This
partition is consistent with the former distinction by Descartes
(43) and Kant (44) of three levels of functional processing,
“sensibility, understanding and reason” (see refs. 31 and 32).
More recently, Daniel Kahneman proposed the dichotomy of a
fast “system 1,” instinctive and emotional, and a slow “system 2,”
which is more deliberative and logical (6). The development of
computer science and artificial intelligence has led to a strik-
ingly different distinction, such as David Marr’s (45) partition
of computational mechanisms into what he refers to as “formal

levels”: implementation, algorithms, and computations. Marr’s
claim relied on the underlying assumption that the computations
required for a given cognitive task are distinct from the physical
implementation, natural or artificial, of the network. They are
independent of the cognitive process under study and, most of
all, of the level of organization of the network. The word “level”
has, in the two cases, entirely different meanings.

In light of the need for grounding cognitive models in biology
and validating their genuineness across levels, we followed succes-
sive mechanisms in known structural and functional organiza-
tions, identified through both the development and evolution of
the human brain (46). The first step proceeds from local to
global integration of information; a second one moves from non-
conscious to conscious processing. This leads to the three struc-
turally and physiologically grounded levels: “perception,” with
the learning of invariants through local synaptic epigenesis;
“cognition,” with the learning of nonconscious integration through
the long-range connectivity and reward; and, finally, conscious
processing, with the learning of maintenance of representation
online through interneurons and spontaneous activity. In our
particular model, the conscious level does not comprise all the
features of consciousness but rather emphasizes the necessary
functional elements, such as the working memory. Functional
characteristics are, indeed, essential for the study of conscious-
ness, and may even fundamentally help to solve the hard prob-
lem (47). Here, the learning process is based on the idea of
sequential network maturation, when the local areas are trained
before the global connections (48, 49). Those critical periods of
learning should display better performance than training the
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Fig. 5. Effect of spontaneous intrinsic activity on the performance during
the delay conditioning on the cognitive level. The accuracy of the binary
classification as a function of the rate of spontaneous intrinsic activity is
shown. High values of spontaneous intrinsic activity force neurons to fire
continuously, in an “epileptic” manner, and the network loses the ability to
perform classification tasks. In such a state, the average accuracy is slightly
lower than a chance level (50%) because the visual cortex does not have
100% accuracy in digit recognition (Fig. 3D).
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excitatory selective for the digit “1,” and excitatory selective for the digit
“0”). Fifteen neurons per population are shown; each dot shows a neuron
spiking. Depending on the network parameters, if the internal excitation
in the GNW is not strong enough to cause constant feedback firing, the net-
work gradually learns to sustain the representation of a stimulus in the
GNW. When the next stimulus is present, the previous one is erased. The
interneuron population also forms two distinct subpopulations selective to
two different excitatory groups. (C) Epigenesis of the global connections
between GNW and motor cortex. The network needs around 150 images to
learn the task, which is significantly more than with the delay conditioning
because it also has to spend time learning how to hold representations in
the GNW. Blue and gray lines correspond, respectively, to one and zero
output of the GNW.
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whole network simultaneously; however, this hypothesis remains
to be tested in future work. The model expresses key insights
across the three levels of analyses: First, synaptic epigenesis, mod-
eled here by selection and stabilization of synapses, is a critical
mechanism at all levels, from perception to consciousness; sec-
ond, dopamine is necessary for cognitive tasks to achieve proper
credit assignment despite temporal delay between perception
and reward; third, interneurons allow the maintenance of self-
sustained representation within the GNW in the absence of sen-
sory input, thus enabling the system to solve conscious tasks.
Even though it has been debated that trace conditioning is corre-
lated with consciousness (50), this type of test is still considered
to be one of the best measures to test conscious processing in
the absence of explicit reports (51). Finally, our results show
how balanced spontaneous intrinsic activity facilitated epigenesis
at both local and global scales; the balanced E/I ratio increased
performance. Those observations, in addition to emphasizing
general principles at play in the human brain, are in surprising
accordance with empirical observations. For instance, without
including synaptic pruning, the temporal evolution of synaptic

weights leads to the three classical phases of growth, maximal
variability, and stabilization (42). More unexpectedly, the opti-
mal neurobiological parameters predicted for the conscious level
are 20% of inhibitory neurons, which is predicted for balanced
networks (52). Lastly, the “optimal” 12 Hz of spontaneous activ-
ity discovered in our artificial network coincides with the actual
recordings of spontaneous spiking in the human cortex. More
generally, according to Fig. 7A, the optimal range of the sponta-
neous intrinsic activity lies within 8 and 14 Hz, which is also
strongly reminiscent of the highly conserved and omnipresent
alpha rhythm in the cerebral cortex (53). This correlation (along
with its importance for the system) may be studied in the future
as one of the mechanisms supported by the alpha rhythm and
how it may relate to stochastic resonance (54).

Computational neuroscience has increasingly relied on mul-
tiscale brain models (55, 56) to explain basic cognitive func-
tions (18); active, top-down, and prospective memory retrieval
(57, 58); and even syntactic processing for the production of
language (59). Some of these models, like ours, have employed
spiking neural networks with STDP to study synaptic epigene-
sis during learning of sensory representation for tactile (60) and
visual (41) perception, or to demonstrate how biases in natural
statistics can influence population encoding and downstream
correlates of behavior (61). These models, however, have tended
to focus on a single learning mechanism, applied to a specific
task. Here we combine both Hebbian and reinforcement learning
across different canonical tasks. While the tasks considered here
may appear minimalistic compared to recent sensational break-
throughs coming from artificial intelligence (62, 63), our goal was
not to achieve behavioral complexity but to uncover general bio-
logical principles through natural plausibility. Moreover, while it
is certainly possible for artificial systems to mimic the behavior of
a conscious agent, it is far less trivial to demonstrate the genuine-
ness of its semantic understanding and subjective experience (64).
From a purely pragmatic viewpoint, the Turing test (65) relies
only on the judges being unable to tell whether the agent is a
human or a machine (66). We chose to view the problem in
another way, by grounding the cognitive architecture in neurobi-
ology and, from there, building the most parsimonious, realistic
model capable of solving both perceptual and conscious tasks.
This allowed delineating necessary and sufficient biological mech-
anisms for cognitive abilities in an artificial neural network (67),
especially to achieve artificial consciousness (68, 69). Future works
should probe the role of other important biological mechanisms
such as oscillations (70) or distributed coding for task value (71),
and may likewise wish to take into account additional subcortical
structures (beyond the striatum), such as the thalamus (72) and
the basal ganglia (73). A promising avenue is also to explore the
combination of the GNW architecture with predictive processing
(74); the top-down feedback required for ignition and conscious
access then becomes entangled with the prediction signal of the
internal generative model of the world (75). Finally, the GNW
architecture is also opening new venues in deep learning: on the
one hand, by creating high-level inductive biases that improve
out-of-distribution generalization (76, 77), and, on the other, by
providing an amodal latent space where alignment of representa-
tions across modalities becomes automatic (78, 79).

Recently, a separate distinction was made between basic
“conscious” processing and “the self-monitoring of those com-
putations, leading to a subjective sense of certainty or error”
(80). This metacognitive dimension of consciousness is also
linked to the hypothesis of the social origin of consciousness,
which proposes the sense of self as a vestige of the evolutionary
skills initially developed for understanding others (81). In this
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Fig. 7. Factors affecting the performance during the trace conditioning on
the consciousness level. (A) The accuracy of the binary classification as a
function of the rate of spontaneous intrinsic activity and the proportion of
the interneurons. Unlike the delay conditioning on the cognitive level, the
rate of the spontaneous activity plays a great role here, and, in order for
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sense, the hominization of primates seems connected to molec-
ular changes associated with social cognition (82) and, in line
with our results, with the increase of long-range connectivity
and regulation of the balance between excitatory and inhibitory
neurons(4). Beyond these features, the prolonged postnatal brain
development with a proper cascade of critical periods (83, 84)
leverages the multiple nongenetic interactions with the physical,
social, and cultural environment, ultimately giving rise to categor-
ically human-specific cognitive abilities, including the recursivity
of language (4, 85). A key perspective is thus to further investi-
gate the role of cultural embedding and intersubjective interac-
tion (86), adding, explicitly, a social dimension to the GNW
(17, 87). Some dyadic computational models (88, 89) have
already been proposed using either continuous dynamical systems
or discrete symbolic representation. Anchoring future computa-
tional models in both biological and social realities will not only
continue to shed light on the core mechanisms underlying cogni-
tion, but it will also help to provide a unique bridge to artificial
intelligence toward the only known systems with advanced social
consciousness: the human brain (90).

Materials and Methods

This section presents a technical description of the network with all the learning
mechanisms used. All the code is available on the GitHub repository: https://
github.com/ppsp-team/EpigeneSys/tree/master/GNW (91).

Local Network.
S1 layer. The convolution of the images is done with six 7 × 7 Gabor filters. The
frequency is 0.1 and the SD is 1 for all of them. The angles of the filters start at
π/8 and go with a step of π/6. The offset of π/8 was introduced in order not to
focus on vertical and horizontal lines which are not as informative in classifica-
tion. Every time the Gabor kernel overlaps a border of a picture, this picture
is extended by replicating the edge pixels. The resulting convolution is
again resized to 128 × 128 pixels, thus creating an S1 layer with the size of
128 × 128 × 6.

C1 layer. Each cell of this layer processes spikes from S1 cells in a 7 × 7 square
(receptive field size of a given C1 cell). A C1 cell propagates only the single
strongest orientation from its receptive field at a time. The receptive fields of two
adjacent C1 cells are shifted by six pixels, meaning that they have an area
of intersection of 7 × 1 pixels. This leads to a total C1 layer size of 25 × 25 × 2
(25 × 25 for the propagated values and 25 × 25 to store the orientations). How-
ever, the C1–S2 connections need to be set in a way that helps to identify not
only the intensity of the propagated signal but the orientation. To implement
this in a more biologically plausible way, the C1 layer has to be transformed.
Each element on the 25 × 25 grid would now contain six C1 cells (one for each
orientation) with the winner-takes-all condition: Only one out of six cells can fire
at a given time. Now, if we want to trace the signal back, we can determine not
only its spatial location but also its orientation. This modification leaves the C1
layer with a size of 25 × 25 × 6 with only 25 × 25 cells firing each time. We
have also implemented the lateral inhibition procedure in a way it is done in the
Masquelier and Thorpe (41) model. The C1–S2 connections were governed
by STDP.

S2 layer. The S2 layer is represented by a fixed number of integrate-and-fire
neurons (we used either 10 or 20 neurons). We have also added a sinusoidal
function into the equations of S2 cells to model the alpha waves. By doing this,
we achieve a clearing effect of periodic modulations. The wave and the images
are not perfectly in phase with each other, and the modulation wave is shifted
by an angle of π/8. This provides better elimination of the spontaneous intrinsic
activity and signal amplification. To determine which S2 cells encode which
numbers, the mature network was presented with a test set of images. To per-
form such classification, the winner-takes-all strategy is used once more: A stimu-
lus gets propagated to only one cell which fires first. Then each S2 cell is
assigned to a number to which it fires the greatest number of times.

Full Network.
GNW. The population is represented by 100 integrate-and-fire neurons. Eighty
neurons are excitatory, and they are connected to the S2 layer of the visual cortex
network. The excitatory population is divided into selective groups in a way that
the number of groups is equal to the number of digits presented in the input
(e.g., two groups if we use only images of “0” and “1”). Each selective group is
connected to S2 patterns responsible for one particular digit. The other 20 are
interneurons, and they play an inhibitory role instead. The connection pattern in
the GNW is all to all.

Such a state of the GNW model was used to perform trace conditioning.
To create the intermediate level for performing nonconscious delay condi-
tioning, all the interneurons were deleted from the model. The use of inhibi-
tory neurons for trace conditioning is necessary to create a working memory
for the highest, conscious level. The functionality of this level can be more
complex for different tasks, but the current model shows that the working
memory is essential for trace conditioning as one of the basic markers of con-
scious processing (51). The GNW does not represent a single brain area in
particular but a network of long-range connections that is able to interact
with multiple different regions.
Motor cortex. The model of the motor cortex uses only one integrate-and-fire
neuron. It gets input from the excitatory population of the GNW. Its output is
considered to be a sign of transmission of the information to the external envi-
ronment, and it induces the activation of the reward pathway.
Striatum. To perform the reinforcement learning, we introduce one integrate-
and-fire neuron responsible for changing the extracellular dopamine concen-
tration in the GNW. It can be seen as a model of the striatum. The dopamine
concentration is set on a baseline and increases or decreases depending on
whether the answer was right or wrong. Before the next image is presented, the
concentration exponentially decays back to the baseline.

STDP Mechanisms. In our model, there are three areas where synaptic popula-
tions are subject to epigenesis: C1–S2 connections in the local network, and
GNW–motor cortex and GNW–GNW connections (inhibitory and excitatory) in the
full network. We use different models of STDP to set up different connections.
Classical STDP. This is the main plasticity model in our networks that is used in
all excitatory connections except GNW–motor cortex. We used the following
equations to model the effect of STDP:

τpre
d
dt
Apre = �Apre [1]

τpost
d
dt
Apost = �Apost: [2]

This system of equations models two possible scenarios: the firing of a presynap-
tic neuron and the firing of a postsynaptic neuron. In the first case, the value of
Apre is updated by adding an increment value ΔApre > 0 (models the effect of
further potentiation), and the synaptic weight is updated by Apost in a given
moment of time (depression). In the second case, everything is the opposite:
Apost is updated by adding an increment value ΔApost < 0 for future depression,
and the weight is potentiated by the value of Apre.
Symmetrical STDP. The symmetrical model of STDP is based on the STDP mea-
sured experimentally in the GABAergic neurons population (92). It is used to
govern the plasticity of interneurons in the GNW. The mechanisms for the sym-
metrical STDP are similar to the classical STDP; however, the equations are
slightly different,

τpre
d
dt
Apre = �Apre � ΔApre

15
[3]

τpost
d
dt
Apost = �Apost � ΔApost

15
, [4]

where ΔApre > 0 and ΔApost > 0. The additional terms are added to keep the
values of Apre and Apost slightly below zero to model the depression when two
neurons fire with a large temporal difference. In other cases, when the temporal
distance is short enough, the model produces an effect of the long-term
potentiation.
Dopamine modulated STDP. This type of synaptic plasticity is used to introduce
reinforcement learning which involves multiple brain regions and feedback from
the external environment. The model is based on the work of Izhikevich (37)
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on linking STDP and dopamine signaling. It is represented by the following set
of equations:

τd
d
dt
d = �d [5]

τc
d
dt
c = �c [6]

τs
d
dt
s = cd [7]

τpre
d
dt
Apre = �Apre [8]

τpost
d
dt
Apost = �Apost: [9]

The variable c is updated in the same way as the synaptic weight is updated dur-
ing classical STDP (using Eqs. 3 and 4). The variable d represents the extracellular
dopamine concentration: If it is lower than a baseline, then it launches the negative
reward mechanism; if it is higher, it launches a positive reward mechanism. The
variable s serves as an increment to the synaptic weight and depends not only on
the sign and magnitude of the classical STDP but on the sign and magnitude of

the variable d. The release of dopamine is controlled by a single neuron that fires
once when a new image is presented with a random delay from 0 s to 1/32 s.

Data, Materials, and Software Availability. Numerical simulations and data
have been deposited on GitHub (https://github.com/ppsp-team/EpigeneSys/tree/
master/GNW) (91).
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