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Abstract: Metabolomics is one of the latest omics technologies that has been applied successfully
in many areas of life sciences. Despite being relatively new, a plethora of publications over the
years have exploited the opportunities provided through this data and question driven approach.
Most importantly, metabolomics studies have produced great breakthroughs in biomarker discovery,
identification of novel metabolites and more detailed characterisation of biological pathways in
many organisms. However, translation of the research outcomes into clinical tests and user-friendly
interfaces has been hindered due to many factors, some of which have been outlined hereafter.
This position paper is the summary of discussion on translational metabolomics undertaken during a
peer session of the Australian and New Zealand Metabolomics Conference (ANZMET 2018) held
in Auckland, New Zealand. Here, we discuss some of the key areas in translational metabolomics
including existing challenges and suggested solutions, as well as how to expand the clinical and
industrial application of metabolomics. In addition, we share our perspective on how full translational
capability of metabolomics research can be explored.

Keywords: biomarker; clinical and industrial application; personalised medicine and nutrition;
multi-omics; metabolite quantification

1. Introduction

In the last decade a significant amount of data has been generated using metabolomics technologies,
resulting in better understanding of the metabolism of many biological systems [1–4]. The term
“metabolomics” was introduced over 20 years ago and since then, remarkable improvements have been
made to the analytical platforms and data analysis pipelines [5–9]. In the beginning, metabolomics
was described as a tool for functional genomics that can be used for the analysis of all metabolites
produced by a cell or system [10,11]. However, we are still a long way from getting comprehensive
coverage of all the metabolites even though drastic developments have already taken place [12,13].

Metabolomics has evolved over the last two decades and is now mostly described as the study of
metabolites using advanced high throughput analytical approaches and informatics [13,14]. Although
initial metabolomics studies were carried out using mostly untargeted approaches, soon it became
evident that the use of a single analytical platform was unlikely to provide global overview of the
metabolites produced by any biological entity [6,15]. Therefore, targeted metabolomics approaches
using a combination of analytical platforms facilitated by advancements in analytical and data
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processing systems are now becoming more prevalent for positive and reliable identification, detection
and quantification of hundreds of metabolites simultaneously [9].

Like many fields of research, metabolomics studies are driven by scientific questions aimed to
bring significant developments in the advancements of science that can profoundly benefit humankind.
Generally, metabolomics can provide insight on the biochemistry underpinning the response of an
organism to internal and external alterations. Some examples include identification of environmental
contaminants [16] and characterisation of food and food derivatives [17–19]. Many metabolomics
studies are also focused on finding biomarkers for diagnosis of existing conditions or prognosis
of physiological conditions that may not be clinically evident. Application of metabolomics in
biomedical research has achieved discovery of a variety of biomarkers for disease such as risk to
diabetes [3,20], heart disease [21] and cancer [22–24], while also making promising progress for a
variety of therapeutics [25].

Although targeted and untargeted metabolomics workflows have many advantages over classical
analytical chemistry, there are still many limitations and challenges that need to be addressed for the
advancement of this comparatively new omics field [26–28]. As a data and question driven approach,
metabolomics has shown high potential in hypothesis generation and biomarker discovery [9].
However, the current spotlight on metabolomics may not last long if we do not drive the field towards
applied research that would have a direct positive impact on advancement of industries and welfare of
end users [13,28]. These translational opportunities will push metabolomics past an academic exercise
and further toward having an impact in the real world.

To investigate different perspectives of this area, a peer session on ‘translational metabolomics’ took
place during the most recent Australian and New Zealand Metabolomics (ANZMET) conference held
in Auckland, New Zealand, from 30 August to 1 September 2018. Over 20 metabolomics researchers
attended the session and participated in the discussion on how the full translational capabilities of
metabolomics can be achieved in the near future. In addition to summarising the key points from the
peer session, here we discuss the key challenges that any omics (including metabolomics) faces in
getting to the translational phase and how those challenges can be handled. Some recommendations
from the metabolomics community regarding different translational opportunities are also provided at
the end of the paper.

2. Translational Omics: Where Are We Now?

Translational omics is broadly defined as applied research which aims to turn the results of
an omics experiment into a useful turnkey product. Of course, how this looks in practice can vary
significantly depending on the nature of the specific research area. The most commonly cited example
is the successful implementation of novel biomarker tests in a clinical environment [23,24,29,30],
though it is far from limited to this area as this paper discusses. Historically this type of research was
considered outside the scope of the field, though during the past 20 years, translational research has
evolved significantly and now only metabolomics studies that have real life clinical and industrial
implications are gaining momentum [31].

Since the initiation and completion of the Human Genome Project (HGP) [32,33], a vast amount
of omics data has been generated due to the rapid development of analytical instrumentations to
measure different omics component [26,28,34–36]. Although many tools for analysing and interpreting
this massive amount of data have been published and available currently, it is still considered as a
bottleneck of omics technologies. Therefore, many still argue that the combined omics revolution has
over promised and under delivered and this has been a popular topic of many reviews, perspectives
and editorials in past 10 years [37–40]. A set of these allegations comes from the funding agencies and
end users such as practicing professionals, industries and government bodies which point to the large
number of ”false positive” markers and laboratory tests [28,31,41]. Therefore, guidelines have been
proposed on how to take omics data, particularly genomics data, to the translational phase [42–44].
For example, the Institute of Medicine (IOM) submitted a report on Evolution of Translational Omics to
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provide recommendations and guidelines on omics-based tests to predict patient outcomes in clinical
trials. An IOM committee was formed in response to a letter from 30 statisticians and bioinformaticians
who expressed major concerns regarding lack of proper validation of some gene expression-based
clinical tests developed by a group of scientists based at Duke University [44]. Ultimately, the IOM with
the support from different government and regularity bodies prepared guidelines on how omics-based
tools should be taken to the translational phase. Although this step was undertaken in regard to
genome-based tests, most of these guidelines are also suitable for other translational omics.

Genomics is the predecessor of all other omics technologies making it the most matured and
far-reaching omics field. In the beginning, like any other omics, most of the genomics data were
semi-quantitative in nature. However, significant advancements have been made over the last two
decades to generate quantitative genomics data [45,46]. Phillips, et al. [47] recently published an
interesting study where they surveyed the data on existing genetic tests from 2014 to 2017. They reported
nearly 75,000 genetic tests available albeit not certain if all these tests are in use. Regardless, their data
show that prenatal tests are the genetic tests on which customers spend most of their money,
while hereditary cancer tests are the second highest in this category. Another recent publication in
The Journal of New England Journal of Medicine, Splinter, et al. [48] evaluated 1519 undiagnosed
patients with various diseases, of which 382 patients managed to have complete evaluation. Their
data show that 74% of these diagnoses were made by exome or genome sequencing, which led to the
changes in therapy for 21% of patients, changes in diagnostic testing for 37% of them and the rest (36%)
went through variant-specific genetic counselling [48]. Therefore, genetic tests are becoming more
available in the diagnostic laboratories and many physicians are now taking into account the results
from these tests in order to decide the treatment strategies. Another significant translation opportunity
that genomics will have in near future is within the personalised medicine and nutritional field [49–51].
More details on translational genomics can be found in these publications [31,40,52].

The journey of transcriptomics started back in the 1970s with the aim of measuring actively
transcribed RNA, thus determining the diversity of cell types, cellular status and regulatory
mechanisms [53]. Like metabolomics and proteomics, transcriptomics serves as another functional
genomics tool. As such, only one proteomic assay and only five transcriptomics assays have ever
been translated into a clinical setting, illustrating how translational outcomes are less advanced in
other omics fields compared to genomics [29,36]. However, identification of candidate biomarkers has
been increasingly growing in recent years (Table 1). Due to the availability of more quantitative data
and robust validation process, we may experience the full benefits and translations of proteins and
transcripts to the clinical and industrial settings in the near future.

Although metabolomics is still considered an emerging omics tool and less evolved than other
omics, metabolites are the downstream products of cellular processes [12]. In the past five years,
many quantitative metabolomics methods were published, and quantitative metabolite measurements
have enabled the translation of more than 300 chemical tests to the clinic [2]. Some of the recently
discovered candidate biomarkers are shown in Table 1 and more details will be provided in Section 6.

Table 1. List of a few candidate biomarkers in different omics fields.

Omics Candidate Biomarker(s) Application Reference

Genomics

IL1B Obesity [54]

CCL3L1
Kawasaki Disease, risk of coronary artery
lesions and resistance to intravenous
immunoglobulin

[55]

GSK3B Alzheimer's disease [56]

PNPLA3, TM6SF2, HSD17B13 Alcoholic liver disease [57]

TP53, CCND1, CDKN2A, FGFR1 Head and neck squamous cell carcinoma [58]

MSI-H, PD-L1, TML-H Cancer of unknown primary (CUP) [59]

FTO rs9939609 Obesity [60]
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Table 1. Cont.

Omics Candidate Biomarker(s) Application Reference

Transcriptomics

TGx-DDI Genotoxicity Screening [61]

Transcriptome factors of enzymes:
Monooxygenase, vitellogenin
superoxide dismutase, catalase

Metal mixture toxicity [62]

ITGBL1 Colorectal cancer [63]

ICAM1, ITGAL, ITGB2, PECAM1, IGFBP2,
IGFBP6, CTSG, MMP2, ACOX3, FADS2,
PLA2GA4

Lower respiratory tract infection [64]

PI3, CA1, SNCA, FCGBP, GNG10, PROK2,
CHPT1, GZMB, CD79A, ALPL Friedreich’s ataxia [65]

AOP2, SAUR16, ASN1, DIN2 Plant early metal exposure [66]

PLXDC2, STK3, ANTXR2, KIF1B, CD163,
CTSZ, PDK4, GRAP, MAL, ID3 Stroke [67]

Proteomics

SAA4, gelsolin, vitamin D-binding protein Rheumatoid arthritis [68]

Solute carrier family
3 member 2, S100 calcium-binding protein
A2, interleukin-1
receptor antagonist protein

Oral squamous cell carcinomas [69]

C3a, APOAI, 14-3-3ε, SPFA2, S100A6 Systemic sclerosis [70]

FN1, RPS6KA3 Sporadic medullary thyroid cancer [71]

Azurocidin, lysozyme C, myosin-9,
alpha-smooth muscle actin

Periodontal
disease [72]

Haptoglobin, alpha-1-antitrypsin Chronic renal failure and FuShengong
Decoction [73]

SERPINA3 Lupus nephritis chronicity [74]

Metabolomics

Linoleic acid,
13(S)-hydroxy-9Z,11E-octadecadienoic acid Psoriasis [75]

LTE4, LTE4/PGF2a Aspirin-exacerbated respiratory disease [76]

Dopamine 3-O-sulfate, dopamine
4-O-sulfate, alliin, N-acetylalliin,
S-allylcysteine

Food biomarkers in postmenopausal
women [77]

Proline Xenoestrogenic exposures in MCF-7 cells [78]

Aspartate, histidine, myo-inositol, taurine,
choline Metal(loid)-contaminated mosquitofish [79]

Re, Rg1, Rg2, a flavonoid, Rc, Rf, F1, Ro,
vina-R4, acetyl-Rh13/Rh19,
floral-I/J

Systematic chemical differentiation of five
different parts of Panax ginseng [80]

5-Oxoprolinate, Erythronic acid,
N-Acetylaspartic acid Human papilloma virus [81]

3. Translational Challenges in Metabolomics

In order to successfully translate the results of a metabolomics experiment, one has to start with a
robust experimental design followed by data acquisition, data mining and interpretation, and finally
validation of candidate biomarkers. Inappropriate conduct of any of these steps will be problematic,
if not this will cease translation of metabolomics into clinical and industrial application. In the following
sections we will discuss different facets of this complex and nascent discipline, and briefly examine
some of the barriers that need to be addressed.

3.1. Perceptions

One of the many challenges facing the development of metabolomics is poor publicity compared
to other omics technologies. Metabolomics is somewhat less known among funding bodies and also
within media thus, there is intrinsically less interest in it. This can be justified by the fact that most other
omics fields are considerably much more mature than metabolomics, and so have had longer to come
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to prominence [82]. Therefore, we think a greater focus on publicising instances where metabolomics
has contributed to solving societal problems could go a long way.

Another perception often mentioned in opinion pieces is that omics approaches are perceived to
overpromise but under deliver when it comes to translational outcomes, as discussed in Section 2 [37].
This is in part due to the fact that we are somewhat buried under the massive data generated during
the omics revolution, most of which still need to be interpreted and explored properly in order to
maximise experimental output and help deliver the promised outcomes [26]. Furthermore, given that
the functional genomics tools are still making significant advancements, there is not much room
for metabolomics to gain attention and reach its full potential. The metabolomics community can
play a significant role to make key outcomes more public by taking advantage of social media and
highlighting how many important results have been obtained by metabolomics or in combination with
other omics.

3.2. Costs

The second barrier that makes translational metabolomics difficult is experimental costs,
particularly the cost of analytical instrumentation. Many of the other omics approaches can acquire
a broad spectrum of data using mostly one analytical platform, while comprehensive metabolome
analyses rely on a combination of different analytical platforms to examine the chemical complexity of
the biological system [12]. It has become evident over last 10 years that each instrumental platform has
its own advantages and disadvantages and comprehensive metabolome coverage can only be achieved
through a combination of different types of analytical instruments [12,26]. Therefore, those wishing to
set up their own metabolomics laboratory are faced with the prospect of having to purchase multiple
analytical platforms.

Considerable funding is required to cover the cost and maintenance of a set of analytical
instruments which is collectively very expensive. For example, a modern gas chromatography coupled
to mass spectrometry (GC-MS) system may cost US $200k–600k, while a LC-MS system may cost
US $300k–800k depending on the required triple, quadrupole or high-resolution architecture, and a
nuclear magnetic resonance (NMR) system may be upwards of US $800k. The tools for data mining
and analysis of the resulting data can also be perceived as expensive or difficult to use, and may put
many scientists off attempting a metabolomics experiment even though these are typically only a
fraction of the cumulative price. However, as many of these instrumental platforms, particularly those
MS based technologies, are now widely used in a targeted manner [83,84]. Therefore, we have recently
seen an increase trend of purchasing a LC-MS system that is usually able to detect over thousands of
features within a single run.

Those who do not wish to set up a laboratory can still undertake metabolomics experiments
by collaborating with external institutions, such as metabolomics facilities that provide commercial
services. Contract research laboratories offer bespoke metabolomics experiments under a fee for service
regime, allowing anyone with money and a hypothesis the chance to explore the power of metabolomics
as a technique. As with any paid service there is a tendency to reduce costs by decreasing sample
numbers, though this can have a negative impact on the robustness of an experiment. This can be
somewhat counteracted by simplifying and automating metabolomics experiments and methods in the
fashion of high-throughput analytical testing however, this is also not without drawbacks. Therefore,
before conducting any metabolome analysis, it is extremely important to follow the guidelines of
designing experiments. Detail on this topic can be found in Pinu, Beale, Paten, Kouremenos, Swarup,
Schirra and Wishart [26].

3.3. Expertise

Metabolomics is one of the multi-disciplinary research areas that requires input from
different types of experts including biologists, analytical chemists, statisticians, data scientists and
bioinformaticians [26]. A large metabolomics group may contain all these experts together in a single
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laboratory, which may not be possible for a smaller size research group. Thus, there is room for the
development of specialised training programmes to teach individuals the unique interdisciplinary
skillset required for metabolomics. However, the lack of availability of an instrument or even expertise
in one group is not necessarily a problem as the deficiency can usually be filled by collaborating with
other groups. A strong collaboration platform also increases the chance of getting funding for any
metabolomics project.

3.4. Data Acquisition

The first area and core of any metabolomics experiment is data acquisition. A wide spectrum
of procedures exist for sample preparation, type of analysis and interpretation of the output data.
The variation in these procedures is ultimately dictated by the common lab practices, the sample
type, metabolites of interest and the analytical platform [28,85–87]. However, universal procedures
that are most frequently implemented among metabolomics labs remain to be a few or non-exiting at
this stage. For example, evaluation of readily accessible biofluids, specifically blood (and its variants
such as serum and plasma) is the most widely explored sample for biomedical and clinical studies,
and application of MS and NMR are the most widely used analytical platforms [6,88]. These variations
may however seem ambiguous to newcomers in metabolomics. Some of the challenges along this road
and the translational opportunities and hurdles are briefly discussed in this section.

One of the major challenges in metabolomics is measuring the complete metabolome of a biological
entity using a single analysis method [6,89]. This is in part rooted in the biological nature of living
organisms and the vast diversity of the different classes of metabolites [1,90]. The metabolome of any
particular organism contains a chemically diverse range of metabolites, with concentrations that vary
orders of magnitude, from g/L to less than ng/L [6]. Metabolites are also different in terms of their
stability and they do have very different turnover rates inside cells [90,91]. Some others are unstable in
the presence of oxygen or light or diverse temperatures or under other analytical conditions, which
can cause a significant problem during sample preparation as well as instrumental analysis [90,92].
For example, sample preparation for detection of vitamins is very sensitive as degradation may happen
in the presence of direct light [93]. Thus, due to this extensive diversity, there is currently no universal
analytical method which has the sensitivity and specificity of identifying and quantifying the full
scope of all existing metabolites present in the broad range of commonly used biological samples [6,88].
However, standard operating procedures (SOP) are usually followed as standardisation and quality
control purposes while performing metabolome analysis of different types of samples to reduce the
pre-analytical variation [94]. There is a challenge in simplifying the sample logistics in clinical routine
due to the lack of sample stabilisation procedure to simplify transfer of biofluids from the primary
care physician to the clinical laboratory. Significant degradation of metabolites can occur if existing
procedures (e.g., dried blood spots) are followed. Most of the primary care facilities do not have
access to expensive instrumentation (e.g., rapid centrifugation in sub-zero temperature) and quenching
protocols to inhibit the degradation of metabolites. Moreover, dry-ice frozen transport of clinical
samples to the laboratory could be an option albeit not cheap.

Only very sensitive detectors like mass spectrometers are able to directly detect metabolites
present at very low concentrations, however, these instruments are less inclined to simultaneously
measure the higher concentration components [35,95]. Furthermore, the choice of chromatographic
separation does have an impact on the types of measured compounds and the biochemical pathways,
as reverse phase approaches are better for non-polar components like flavonoids and fatty acids, while
normal phase approaches are better for polar compounds like nucleotides and sugars. Advances in
analytical instrumentation are slowly making progress in this area, continually expanding the scope of
metabolites which can be measured using a single method [96]. The combined use of NMR and mass
spectrometry (MS) technologies are gaining more interest in the recent years to obtain much wider
coverage of metabolites (Figure 1) [97–102]. Hyphenation of different analytical platforms such as
LC-NMR-MS has also been developed for global metabolite profiling that also allows identification
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of novel compounds in addition to already detected and reported ones [15,103–105]. Furthermore,
two-dimensional chromatographic separations are becoming increasingly widespread [106]. However,
more efforts need to be taken to simplify the setup of such platforms and data analysis platforms.
Simultaneously, analytical platforms are constantly being developed for increased sensitivity to enable
detection of metabolites at lower concentrations (Figure 1), increased consistency of detection and
reproducibility, while decreasing the physical size of the instruments [107–110]. A good example is
NMR. Historically, NMR has been and continues to be the one of the preferred instruments owing to
its robustness of operation and detection, capability of simultaneous identification and quantification,
and ability of reproducing consistent data [79,85,86]. However, its shortfall lies in sensitivity of
detection which can cover a limited scope of metabolites with higher abundance (Figure 1). MS and
NMR instruments have evolved over time to become smaller in size and better in detection [108,109].
As these developments continue it will become increasingly easy to solve difficult metabolic problems
with increasing translational opportunities.
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Figure 1. Schematic diagram showing the typical analysis platforms used for metabolomics experiments,
illustrating the range of detection limits and number of detectable metabolites typically achieved.

3.5. Metabolite Identification and Pathway Mapping

The conclusive identification of actual metabolites as opposed to putative identification of features
with only a known mass or retention time is a very important and determining task that drives
future steps of the analysis [88]. This is the case in both targeted and non-targeted metabolomics
where identification of “true” metabolites allows informative interpretation of metabolomics data [17].
This perspective is widely accepted in the metabolomics community and is addressed by developing
inexpensive, comprehensive, and readily-available libraries of metabolites, particularly for GC-MS
based methods [6,111]. In addition to commercial metabolite libraries, most of the large scale
metabolomics labs have developed their own in-house spectral libraries and are capable of matching
retention times or chemical shifts, and converting putative metabolites/features into positive
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identifications [97,112]. However, not all metabolites found naturally in biological beings are
currently available commercially, nor may it be possible yet to have such a metabolite kit [88].
Although the development of spectral libraries like Metlin or mzCloud have provided a bench
mark for identification of wide range of metabolites [113], more bioinformatics tools are required to
enhance automated spectral analysis and metabolite identification using web-accessed libraries [7,26].
Similar to metabolite identification, pathway analysis and mapping will only be possible if the true
identification of the metabolites can be obtained. Therefore, platforms/tools to fill this gap still require
more development and available databases also needs to be updated and improved significantly.
A significant milestone has been obtained already with the development of different metabolome
databases including human metabolome database (http://www.hmdb.ca/), food metabolome database
(http://foodb.ca/), DrugBank (https://www.drugbank.ca/) and T3DB database (http://www.t3db.ca/).
With time, more metabolites are being discovered particularly from the untargeted metabolomics
approaches and these should be included in metabolome databases in order to guide the metabolomics
community with metabolite identification.

3.6. Quantification

Quantification is the cornerstone of metabolomics and also of other omics technologies. Most of
the data generated by the different analytical platforms are semi quantitative and are produced by
normalising the abundance of the metabolite signals to that of an appropriate internal standard [95].
Currently, there is somewhat of a lack of quantitative comprehensive metabolomics data and because of
this, pathway interpretation becomes difficult. Moreover, the growing need to incorporate metabolomics
data with data from other omics technologies, also known as multi-omics integration, is also not
feasible with semi-quantitative data. Keeping these in mind, absolute quantification of metabolites is
now in the core of metabolomics studies and a requirement for translational purposes and clinical
applications [12].

The field of analytical chemistry and metabolomics, in its current capacity, has a plethora of
experience, technologies and protocols to achieve absolute quantification of the metabolome [114].
Indeed, different research groups are developing new methods for absolute quantification of metabolites
whilst still using an unbiased metabolite profiling approach, some of which have already been made
available [115–121]. A list of some the available methods for absolute quantification of metabolites is
provided in Table 2. The absolute quantification of a given compound usually requires a calibration
curve obtained with different concentrations of a standard, which is only feasible during targeted
analysis of metabolites. However, recently calibration curve free metabolite quantification has been
reported for GC-MS based metabolomics [121]. Quantified concentration of metabolites enable facile
comparison of results and the ability to rapidly translate results into products for the use of general
public. Absolute quantification permits defining the benchmark from normal ranges of metabolite
concentration thus, determine abnormal values for diagnosis and prognosis purposes and biomarker
discovery [28,122]. Indeed, quantifying referential normal and healthy concentrations forms the
foundation to translating metabolomics research from pure experimentation to clinical application.
Moreover, quantification is especially important for early detection of subclinical conditions which
harbour no visible phenotypic indicators of a given condition [123,124]. Predicting disorders prior to
manifestation of (sub)clinical symptoms provide time for informative decision making and change
of the cascade of physiological patterns leading to the disorder. Such predictive measures will have
substantial economical and welfare effects on the biological organism, by either increasing the quality
of life for a human being or increasing longevity of livestock and saving on treatment costs [85].

On the other hand, accuracy of metabolite quantification (relative or absolute) is a challenge that
needs further progress. Accurate quantification depends on many factors, including the exhaustiveness
of sample extraction, repeatability and reproducibility of extraction and instrumental analysis steps,
as well as factors which can introduce bias like impure analytical standards, or systematic matrix
effects. Therefore, quality control of the metabolomics protocol needs to be maintained to avoid

http://www.hmdb.ca/
http://foodb.ca/
https://www.drugbank.ca/
http://www.t3db.ca/
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the inaccurate quantification of metabolites and misleading biological interpretation [27]. Different
standardization steps have been proposed to be followed throughout the experimental and data
analysis procedure [89,125,126]. The Metabolomics Society has also an oversight committee named
“Metabolomics Standards Initiative (MSI)” to monitor and review the standardization of metabolomics
workflow [127]. Therefore, these drawbacks can easily be mitigated in near future through more
community-based approaches [26].

Despite the challenges, quantified metabolomics data have been widely attempted for its
application in biomarker discovery [128]. Metabolites, in comparison to other biological components,
can be more easily and routinely quantified at a relatively low cost, making it ideal as a panel of
biomarkers [85]. Indeed, more and more metabolite biomarkers are being identified and used for
clinical practices, higher than gene or protein biomarkers [129].

Table 2. Sample processing and data acquisition strategies used for absolute quantitation of metabolites
using either targeted or untargeted approaches on different analytical platforms.

Platform Quantification Method Number of
Metabolites Targeted/Untargeted Reference

GC-MS Calibration curve free quantification method using
methyl chloroformate derivatisation (MCF) method 50–100 Targeted [121]

GC-MS N,O-bis -(trimethylsilyl)trifluoroacetamide (BSTFA)
derivatisation of primary metabolites 49 Targeted [130]

GC-MS/MS MCF derivatisation 67 Targeted [115]

LC-MS/MS and
FIA-MS/MS,UPLC-

MS/MS
AbsoluteIDQ™ p180 Kit (Biocrates) 188 Targeted [131,132]

LC–MS Stepwise multiple ion monitoring-enhanced
product ions 277 Untargeted [133]

UPLC-MS/MS
Derivatization assisted sensitivity enhancement with

5-aminoisoquinolyl-N-hydroxysuccinimidyl
carbamate

124 Targeted [134]

QTOF LC-MS PRM 222 Targeted [135]

LC-MRM/PRM-MS MRM and PRM 71–387 Targeted [83]

NMR Ratio method 58 Targeted [136]

NMR HR MAS 32 Targeted [137]

Here, GC—Gas Chromatography; LC—Liquid Chromatography; MS—Mass Spectrometry; UPLC—Ultra
Performance Liquid Chromatography; PRM—Parallel Reaction Monitoring; MRM—Multiple Reaction Monitoring;
HR MAS—High-Resolution Magic Angle Spinning; FIA—Flow Injection Analysis; NMR—Nuclear Magnetic
Resonance; QTOF—Quadrupole Time-of-Flight.

4. Translational Opportunities in Metabolomics

In order to advance metabolomics to the translational stage, there are some general trends in
the experimental workflow that can be followed, as shown in Figure 2. This begins with finding an
appropriate problem to solve: one which is achievable within a reasonable timeframe, and one where
there is an adequate niche for the results to be translated into. Sometimes this can mean steering away
from the “glamour topics” like cancer and diabetes, and focusing on more parochial issues, like local
medical, agricultural, or industrial problems which can have a more immediate and localised impact.
It is often beneficial in these instances to partner directly with an industry body to help provide context
and scope for the experiments, devise an agreeable hypothesis, and then find some resources to do
the work.
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Figure 2. Generalised workflow for a metabolomics experiment, including some additional
considerations which are often not considered within the scope of metabolomics.

Upon completion of a metabolomics experiment and acquiring data, identification of trends that
can lead to a pattern and identify a metabolic signature increases the chances of successful translation
of results into clinical and industrial application [28]. At a minimum, this usually involves publishing
the result in a peer-reviewed journal, and if the results can be sufficiently refined, offering a routine
test for the key markers in their suite after a proper validation is carried out. Ultimately, it may even
be desirable to translate these results into the development of a portable device which can be used
for field testing of diseases or metabolic phenotypes. In the era of personalised medicine and mobile
devices, metabolic biomarkers have the opportunity to be delivered to the masses at the palm of their
hand [2]. Some of the considerations in this process are discussed in the following sections.

4.1. Simplification

The major barrier to translational opportunities in metabolomics like other omics is the complexity
of results as omics studies are fundamentally data rich [138]. Thus far, based on all the published
metabolomics data, it is evident that metabolomics studies are often considered a success if the
author can show a principle component analysis (PCA) or hierarchical cluster analysis (HCA) plot
with separation between groups, for example a difference between healthy and diseased animals,
or wild-type versus knockout organisms. However, this trend is changing, and more awareness
is visible within the metabolomics community. It is noteworthy that most metabolomics based
biomarker studies are usually done in case-control-studies. Large prospective studies that are cost-
and time consuming are needed to unravel the benefit in a real-life setting. The main problem is
that a development of a routine test or a portable device may not be achievable if these results are
produced by using a hundred different metabolites. However, if the number of necessary variables can
be reduced to 10 or even one, then the results are far more promising and can easily be translated to
clinical and industrial settings. Generally speaking, researchers should aim to select as few variables
as necessary to be able to observe the difference they are looking for. Unfortunately, this is always
not possible because of the richness and complexity of metabolomics data. Commercialisation of
multi-metabolite tests is usually more difficult than those containing only a few analytes, because they
require significantly more development and validation than single-analyte methods. However, it may
be possible to select subgroup of metabolites and develop multiple test sets, but this will increase the
cost of testing, thus may not be used as a routine analysis. Keeping these in mind, it is of utmost
importance to simplify the test/s to be developed for commercial use.
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4.2. Commercialisation

If the results of a study show that a small selection of metabolites, i.e., candidate biomarkers,
can be used to discriminate between different groups or classes, then there is a chance that the test
could be adopted and offered by a commercial testing laboratory. The primary consideration in this
instance is whether or not the test is profitable, which will depend on how many people will use it.
This can either occur by developing a sufficiently beneficial test that people will voluntarily do it, or by
developing a test that people have to do because it is enforced by specific legislation. The later usually
requires enforcement by industrial or regulatory bodies. In this case, researchers need to involve with
industrial partners since the beginning of the study. While some blue-sky research projects may get
adopted for routine usage, it is far more likely to occur when research organisations work explicitly on
specific industrial and societal problems.

4.3. Test Format and Miniaturisation

An obstacle that needs significant focus is transforming expensive detection platforms and
laborious sample preparation methodologies into an easy to use, low-cost, rapid and hand-held
detection tool that can be used and interpreted by any user. Undoubtedly many will consider this
outside the scope of the field, though it is not so far-fetched when considering how cross-disciplinary
metabolomics already is. Many areas could benefit from such devices, including medicine [21,22],
environmental monitoring [16], animal husbandry and farming [85], and the characterisation of
foods [15,17,18]. One may imagine a day when a universal biomarker for each type of cancer is
discovered, and a device as simple as a pregnancy test can be purchased from a pharmacist and used
in the privacy of the home. Some examples of different formats for such miniaturised devices are
shown in Figure 3, some of which are already under development, particularly originated from other
omics technologies.
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specific metabolites.

Many examples can be stated where the measurement of biomarkers has been downscaled from
laboratory-based methods to a portable device. Kits based on lateral flow assays are one of the
platforms currently being widely used for pregnancy detection in women [139]. Currently, some of the
glucose test kits for measurement of insulin response and detection of diabetes use electrochemical
platforms (https://www.fda.gov/medical-devices/vitro-diagnostics/blood-glucose-monitoring-devices).
Volatile metabolites traditionally measured by techniques such as gas chromatography are also expected
to be more conveniently detected through breath-measuring devices such as the ones used for road-side
alcohol testing. Clinical labs are now routinely using metabolite kits for detection of various diseases
such as colonic adenomatous polyps [140]. However, many other areas of science such as livestock
research and some fermentation industries are lagging in metabolomics research, biomarker discovery
and its translation [85].

https://www.fda.gov/medical-devices/vitro-diagnostics/blood-glucose-monitoring-devices


Metabolites 2019, 9, 108 12 of 25

Different industrial efforts are already ongoing to develop simpler and better LC-MS/MS
systems to make them suitable for routine clinical applications. For instance, Sciex has developed a
benchtop, affordable and user-friendly In Vitro Diagnostic (IVD) LC-MS/MS instrumentation for clinical
diagnostic laboratories (https://sciex.com/diagnostics). Waters has commercialised an ACQUITY
UPLC I-Class/Xevo Tandem Quadrupole Detector (TQD) IVD System that provides robust analysis
of metabolites in clinical laboratories (https://www.waters.com/waters). Other simpler ways of
quantifying smaller and targeted metabolites are the available Enzyme-linked immunosorbent assay
(ELISA) and other enzymatic kits [141–144]. However, these approaches also have limitations including
metabolite degradation, rapid metabolite turnover rates during the analysis, cross-reactivity, lack of
simultaneous analysis and poor enzyme/antibody specificity [144,145].

A great opportunity to explore for interdisciplinary metabolomics research and miniaturisation is
the use of current mobile devices that collect large datasets with personalised health data from healthy
individuals such as heart rate, number of steps taken, walking distance, exercise pattern, nutritional
intake, etc. [2]. The combination of hand-held devices and big datasets on healthy controls can make
a significant contribution to the foundation and platform of successful translation of metabolomics
research for the public.

5. Clinical and Industrial Applications of Metabolomics

A plethora of studies that employed metabolomics as a functional genomics tool have been
published in last 15 years. In this section, we provide brief discussions on some of the key areas where
metabolomics is showing or will have significant translational opportunities.

5.1. Biomarker Discovery and Development of Diagnostic Tools

Biomarker discovery is one of the key areas where metabolomics has already shown substantial
potential, which is evident from the large number of published studies [2,25,64,76,81,124,146].
Many pharmaceutical and clinical institutes/organisations are keen to work either with academics
or they have their own research group who spend considerable time and resources to determine
biomarkers for diseases that can be used as a simple clinical test. However, like any other omics
predecessors, metabolomics is also facing hurdles as most of metabolomics studies published thus far
focus principally on generating and interpreting data. The initial focus of many metabolomics studies
starts with developing appropriate and accurate methods for metabolite measurements. Although it
is quite possible to identify potential biomarkers from metabolomics data, lack of proper validation
actually slows the translational capability of metabolomics in clinical settings. However, this is not
unique to metabolomics and true for most of the omics platforms as discussed in Section 2. Once
validated appropriately, biomarkers can be used by physicians and health workers as diagnostic tools
and also as a tool to assess therapeutic interventions [2,28].

The metabolome is most closely linked to the phenotype of any biological system, therefore,
can reflect the changes occurring in cell metabolism resulting from any disease or other external
stimuli. Trivedi, Hollywood and Goodacre [2] recently published a review article that discussed
the current positioning of metabolomics in biomarker discovery and the future of this approach
in a personalised world. They provided valuable information and insight on how metabolomics
should drive forward by undertaking more large scale and multi-cohort studies to increase the
number of biomarkers with the aim of transitioning these biomarkers towards clinics and diagnostic
centres after rigorous validation. Moreover, detailed standards for biomarker discovery study
design and statistics can be found in Pepe, et al. [147]. An updated list of available metabolite
biomarkers that diagnostic laboratories are already using can be found on the mayo clinic website
(https://www.mayocliniclabs.com/). Based on this list, metabolite biomarkers can be categorised into
three different classes: predictive biomarkers to determine the population of patients who might
respond to specific treatment regimes [148,149], prognostic biomarkers to determine the prospect of

https://sciex.com/diagnostics
https://www.waters.com/waters
https://www.mayocliniclabs.com/
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the disease in a patient [148,149] and pharmacodynamics biomarkers to indicate an outcome of the
interaction between drugs and target [148].

Many of these biomarkers are used to diagnose diseases solely or in combination with other
tests. For example, amino acids profiling is one of such test developed using targeted and untargeted
metabolomics approaches to provide valuable information if any person is at risk of type 2 diabetes.
Individuals at high risk of type 2 diabetes can be identified by the presence of high concentration of
isoleucine, leucine, valine, phenylalanine, tyrosine and aminoadipic acid in serum even before 15 years
prior to onset of the disease [150–152]. The level of accuracy of predicting type 2 diabetes by these
biomarkers has found to be more than genome-wide association studies (GWAS) or other genetic
data [12,150]. The use of oncometabolites in cancer diagnosis is another example as these endogenous
metabolites play a very significant roles in tumour growth and metastasis. 2-hyroxybutyrate, sarcosine,
choline, succinate, lactate, fumarate and glucose fall within oncometabolites and are considered as
biomarkers of different types of cancers including leukaemia, renal carcinoma, breast, brain and prostate
cancers [129]. While many of the chronic and acute diseases were once considered genetic in origin,
the rise of metabolite biomarkers are now making it clear that metabolic disorders could be the reasons
behind the development of many diseases including diabetes, cancer and cardiovascular problems.

Drucker and Krapfenbauer [148] identified three major pitfalls in clinical biomarker translation
including selection of unsuitable biomarkers during discovery phase including improper biomarker
validation strategies and unavailability or robustness of analytical instruments in the clinics. Therefore,
translational strategies of metabolite biomarkers should be considered from the very beginning of the
experimental phase and careful consideration should be in place during the validation process [128].

5.2. Personalised Medicine and Nutrition

Personalised medicine and nutrition is another key area where metabolomics has the potential to
have a great impact as it is already established that one approach of treating one patient might not be
suitable for another patient. In this case, comprehensive measurement of metabolome or other omes
of an individual will assist in pre-determining reference intervals to diagnose a clinical issue, or for
advanced screening of healthy patients. In principal this type of analysis has widespread benefits,
however, analytical and clinical validation issues as mentioned in earlier sections have significantly
prevented further advancements of this area [2,148]. By taking lessons from previous omics related
experiences, limitations have already been identified and mitigation strategies can be undertaken for
the further development of metabolomics in personalised medicine and nutrition [12,51,148,153,154].

Another important aspect of personalised medicine is the use of medicines tailored for the
particular metabolic characteristics of an individual for enhanced treatments. This has the obvious
advantage of potentially allowing doctors to give the most effective treatment to an individual based
on their response towards particular drug/s [154]. Metabolomics can provide important insight in
this regard and guide treatment plans [153]. In addition, metabolomics can also give insight to the
mechanistic impacts of drugs and also guide the development of more effective drugs by providing a
better understanding of the system-wide impacts they have in vivo [155].

Similarly, metabolomics also has a range of applications in nutrition. The primary field of research
in this area is to understand how the chronic or acute consumption of different foods affects the
metabolism of an organism [156]. This type of information is intrinsically valuable for the maintenance
of general health and wellbeing, and so is considered a valuable research avenue. For instance,
metabotyping of individuals is becoming an important assessment tool that allows customisation of
nutritional requirements in order to obtain the best possible outcomes from precision nutrition [157].
More details on this topic can be found in [157–159]. Personalised nutrition is still in its infancy and we
strongly believe that metabolomics along with other omics predecessors will have a significant impact
on the development of this area, thus a considerable impact on modern society’s health and wellbeing.
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5.3. Drug Targets and Development

Similar to biomarker discovery and personalised medicine applications, metabolomics is showing
promising outcomes in identifying drug targets and development as many of the diseases directly
affect the human metabolism [155]. Thus, changes in metabolites due to a specific illness allow the
identification of potential inhibition points, which is necessary for the development of suitable drug
targets [160]. Over the last 10 years, it became inherently evident that metabolomics also can be a more
cost-effective tool for new drug discovery, testing and development compared to costly traditional
approaches [12]. Moreover, application of untargeted metabolomics is leading the way of determining
novel connection between metabolites and diseases. For example, a number of theories have been
suggested about the development of Alzheimers and its association with disturbed glucose and lipid
metabolism [161]. Metabolomics based research in understanding the disease development due to
changes in lipid metabolism in the pre-Alzheimer patients will allow development of control strategies
and possible drug targets to slow down the development of disease by undertaking preventive
measures [162]. Another example that shows the huge potential of metabolomics to determine drug
target for atherosclerosis initiated through the identification of atherotoxin trimethylamine N-oxide
(TMAO), a by-product of trimethylamine (TMA) [163]. This revelation ultimately led to the identification
of two new protein targets including flavin monooxygenase 3 (in the liver) and bacterial choline
TMA-lyase and these enzymes have the capability of TMAO reduction, thus providing significant
opportunity to prevent atherosclerosis [12,164]. In addition, Pusapati, et al. [165] recently demonstrated
that co-targeting of the glycolytic enzyme (glucose-6-phosphate isomerase) and mTORC1 synergistically
suppressed tumour cell growth, revealing several promising novel combinatorial therapeutic strategies
for cancer treatment.

As many metabolites are directly and indirectly linked to development of many diseases,
the measurement of metabolome can lead to the development therapeutic solutions including new
drugs targeted for specific metabolites and even medical foods (e.g., ketogenic diets) and dietary
supplementation [12]. In addition, metabolomics also can help determine toxicity related to the
drug use and this is the earliest application of metabolomics in the pharmaceutical industry [166].
Now that metabolomics has access to even better analytical instrumentations and data analysis
pipelines, pharmaceutical industries will be able to explore other potential avenues in drug discovery
and developments.

5.4. Industrial Applications

Since the beginning of metabolomics, different industries have enjoyed the benefits of adopting
metabolomics even though translational opportunities of metabolomics are mainly focused on
clinical settings. Metabolomics is an essential tool now for bioenergy and fermentation industries.
However, these applications are quite different to what we discussed so far. Industrial application of
microorganisms dates back to 3000 years through the production of bread and fermented beverages.
Metabolomics is helping to develop novel information and insights on the microorganisms associated
with fermentation [9]. For example, the metabolite profile of wines depends to a large extent on
the types of grapes, metabolite supplementation and yeast used. These profiles can be used in food
authenticity applications [97,167,168]. The strains of yeast and bacteria used can also have an impact
on the small molecule profile of the wine, which has been extensively investigated by 1H NMR [169].
Similar metabolomics studies have been carried out for other fermented foods, including beer [170],
soy sauce [171] and others fermented products. Although these applications are not directly linked
to a simple form of industrial translation, metabolomics is playing a major role in regard to a better
process control. This type of knowledge better guides the developments of future industrial products,
providing an economic benefit to the relevant industries.

Bioenergy is another sector where metabolomics can have a considerable impact by addressing
many issues related to climate change and sustainability [172]. As we do not have an unlimited
source of fossil fuels, many industries are now seeking alternatives not only to be future ready but
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also to protect the environment from dangerous amount of CO2 released from the use of fossil fuels.
Microbial fermentation is one such technique that has been used to explore the production of biofuels
by using different raw materials including sugarcane, corn and other lignocellulose materials [173].
Metabolomics can help better understand the fermentation potential of selected microorganisms and
then metabolic engineering approaches can be used to improve the yield and performance of those
microorganisms [173,174]. In addition, production of inhibitory metabolites during biofuel production
is a bottleneck, which can be explored by using metabolomics to determine the inhibitory pathways,
resulting in better control on the fermentation process [175,176]. Moreover, breeding of suitable crops
for the production of biofuels also can be improved using a metabolomics approach [177].

Gas fermentation is another area where metabolomics along with metabolite flux analysis and
metabolic engineering has a significant role to play [178]. In 2005, a start-up company, LanzaTech,
started exploring gas fermentation to determine a way to reduce atmospheric CO2 and ferment
them to produce other important fuel alternatives including ethanol, 2,3-butanediol. LanzaTech
(http://www.lanzatech.com/) is now operating in major Asian cities where polluted air is collected from
steel mills and used as raw materials to start the fermentation by a Clostridium spp. [179]. Another such
example is Syngas fermentation, where Clostridium carboxidivorans P7 is used to ferment a mixtures
of gases (CO2, CO and H2) to produce ethanol, acetic acid, butanol and other chemicals [180]. Wan,
Sathish, You, Tang and Wen [180] recently published an article to explore Clostridium metabolism using
isotopic labelled metabolite profiling and found that major changes in metabolite fluxes during the
syngas fermentation while they also identified acetyl coA as a key metabolite that is limiting alcohol
productivity. Therefore, metabolomics and its associated areas can help identify and improve the gas
fermentation process.

6. Recommendations

Based on our discussion over the peer session in ANZMET 2018, the participants recognised some
key points on translational opportunities metabolomics and how as a community we should move
forward as stated below:

(a) Methods for absolute quantification of metabolites (targeted and untargeted) using different
analytical instrumentations should be improved. Thus far, most of the quantitative methods are
targeted, therefore, some special attention needs to be in place for the development of untargeted
quantitative metabolomics methods as this will be highly useful in biomarker discovery related
work. However, we agree that targeted quantification of metabolites that is done well will be
more useful than poorly done untargeted metabolite profiling.

(b) More research on how to make miniaturised instruments, make them less expensive and accessible
should be encouraged. This will ultimately allow anyone interested in metabolite measurement to
undertake metabolomics studies. This can be carried out with the support from vendors involved
in developing different analytical platforms through a mutual collaboration.

(c) Automated data processing, development of user friendly software and databases should be
encouraged, particularly efforts should be undertaken to develop more open source web-based
data analysis platforms. This can make data interpretation more robust and will open up avenues
for more translational metabolomics research.

(d) If biomarker and drug target discovery is the main target of a metabolomics study, then all the
guidelines provided by professional and regulatory bodies regarding better experimental design,
data acquisition and validation should be carried out. Successful translation of new biomarkers
only will be possible if the strategies and implementation pathways are considered since the
beginning of a project.

(e) The metabolomics community should work along with other omics communities to establish a
better platform for multi-omics integration in order to gain overall insights on cellular processes.

http://www.lanzatech.com/
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This will not only be helpful with translational opportunities, but also with acquiring funds from
different governmental and industrial bodies.

(f) It is extremely important to organise forums or symposiums where a cross talk among
different professional bodies, government organizations, regularity and funding bodies can
take place. Collaborative approach will definitely provide more translational opportunities for
the omics community.

(g) The metabolomics community should also encourage publishing their outcomes to journals,
newspapers and social media to raise more social consciousness on personalised medicine and
nutrition by providing more scientific evidence. It is already clear that “one glove fits all” does
not work when it comes to translation of scientific results to clinics or industries.

7. Conclusions

Although metabolomics is still considered an emerging omics approach, it has already shown
tremendous potential in different areas of life sciences. Like any other omics predecessors, metabolomics
still suffers from some bottlenecks, however, the metabolomics community is taking notes on those
issues that can be addressed to maximise the effectiveness of metabolomics studies, and to translate
these results into clinics and industries for a more widespread impact on the general population.
These issues span the entire workflow and will require that the metabolomics community does not
rest on its laurels, continuing to upskill and expand capability, and thinking outside the laboratory
to take metabolomics to the next translational phase. Moreover, we believe that as a community we
should take a more realistic approach and do not oversell our capabilities, rather admit and recognise
the weaknesses so that appropriate steps can be taken to improve the field further. It is also extremely
important to have a discussion with other omics fields to determine the future opportunities of
collaboration. It became inherently clear from the last decade that metabolomics is indeed an important
tool but more research should be carried out with the aim of integrating it with other omics data [26].
As a result, all the omics technologies will have better translational outcomes.

Author Contributions: F.R.P., S.A.G. and J.J. prepared the initial draft, F.R.P. reviewed and edited the manuscript
and all the authors agreed on the final version of this perspective article.

Funding: This research received no external funding.

Acknowledgments: We thank the organising committee of ANZMET 2018 and participants of peer session on
‘translational metabolomics’.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dunn, W.B. Current trends and future requirements for the mass spectrometric investigation of microbial,
mammalian and plant metabolomes. Phys. Biol. 2008, 5, 011001. [CrossRef] [PubMed]

2. Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a
personalized world. New Horiz. Transl. Med. 2017, 3, 294–305. [CrossRef] [PubMed]

3. Savolainen, O.; Fagerberg, B.; Vendelbo Lind, M.; Sandberg, A.-S.; Ross, A.B.; Bergström, G. Biomarkers for
predicting type 2 diabetes development-Can metabolomics improve on existing biomarkers? PLoS ONE
2017, 12, e0177738. [CrossRef] [PubMed]

4. Burton, C.; Ma, Y.F. Current Trends in Cancer Biottiarker Discovery Using Urinary Metabolomics:
Achievements and New Challenges. Curr. Med. Chem. 2019, 26, 5–28. [CrossRef] [PubMed]

5. Cui, L.; Lu, H.; Lee, Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics
in diseases. Mass Spectrom. Rev. 2018, 37, 772–792. [CrossRef] [PubMed]

6. Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Narayana, V.K.; Boughton, B.A.; Kanojia, K.;
Dayalan, S.; Jones, O.A.H.; Dias, D.A. Review of recent developments in GC–MS approaches to
metabolomics-based research. Metabolomics 2018, 14, 152. [CrossRef] [PubMed]

7. Chong, J.; Soufan, O.; Caraus, I.; Xia, J.; Li, C.; Wishart, D.S.; Bourque, G.; Li, S. MetaboAnalyst 4.0: Towards
more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [CrossRef]

http://dx.doi.org/10.1088/1478-3975/5/1/011001
http://www.ncbi.nlm.nih.gov/pubmed/18367780
http://dx.doi.org/10.1016/j.nhtm.2017.06.001
http://www.ncbi.nlm.nih.gov/pubmed/29094062
http://dx.doi.org/10.1371/journal.pone.0177738
http://www.ncbi.nlm.nih.gov/pubmed/28692646
http://dx.doi.org/10.2174/0929867324666170914102236
http://www.ncbi.nlm.nih.gov/pubmed/28914192
http://dx.doi.org/10.1002/mas.21562
http://www.ncbi.nlm.nih.gov/pubmed/29486047
http://dx.doi.org/10.1007/s11306-018-1449-2
http://www.ncbi.nlm.nih.gov/pubmed/30830421
http://dx.doi.org/10.1093/nar/gky310


Metabolites 2019, 9, 108 17 of 25

8. Djoumbou-Feunang, Y.; Pon, A.; Karu, N.; Zheng, J.; Li, C.; Arndt, D.; Gautam, M.; Allen, F.; Wishart, S.D.
CFM-ID 3.0: Significantly Improved ESI-MS/MS Prediction and Compound Identification. Metabolites 2019,
9, 72. [CrossRef]

9. Pinu, R.F. Grape and Wine Metabolomics to Develop New Insights Using Untargeted and Targeted
Approaches. Fermentation 2018, 4, 92. [CrossRef]

10. Oliver, S.G.; Winson, M.K.; Kell, D.B.; Baganz, F. Systematic functional analysis of the yeast genome. Trends
Biotechnol. 1998, 16, 373–378. [CrossRef]

11. Fiehn, O. Metabolomics—The link between genotypes and phenotypes. In Functional Genomics; Town, C.,
Ed.; Springer: Dordrecht, The Netherlands, 2002; pp. 155–171.

12. Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev.
Drug Discov. 2016, 15, 473. [CrossRef] [PubMed]

13. Kell, D.B.; Oliver, S.G. The metabolome 18 years on: A concept comes of age. Metab. Off. J. Metab. Soc. 2016,
12, 148. [CrossRef] [PubMed]

14. Beger, R.D.; Dunn, W.B.; Bandukwala, A.; Bethan, B.; Broadhurst, D.; Clish, C.B.; Dasari, S.; Derr, L.;
Evans, A.; Fischer, S.; et al. Towards quality assurance and quality control in untargeted metabolomics
studies. Metabolomics 2019, 15, 4. [CrossRef] [PubMed]

15. Pinu, F.R. Metabolomics: Applications to Food Safety and Quality Research. In Microbial Metabolomics:
Applications in Clinical, Environmental, and Industrial Microbiology; Beale, D.J., Kouremenos, K.A., Palombo, E.A.,
Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 225–259.
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