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Novel developments in X-ray based spectro-microscopic characterization techniques have increased 
the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over 
what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at 
nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique 
opportunity to investigate hierarchically complex and structurally heterogeneous systems found in 
functional devices and materials systems. However, handling and analyzing the large volume data 
generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known 
as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able 
to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the 
underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. 
Our approach can rapidly provide a concise representation of a large and complex dataset to materials 
scientists and chemists. For example, it shows that the surface of common Nd2Fe14B magnet is 
chemically and structurally very different from the bulk, suggesting a possible surface alteration effect 
possibly due to the corrosion, which could affect the material’s overall properties.

The ability to investigate material systems that are hierarchically complex and heterogeneously structured offers 
the possibility of unraveling the interplay of fine-length-scale factors, which are the origins of the material’s mac-
roscopic functionality. While it is often desirable to spatially resolve the fine features within the complex sys-
tems, it is usually scientifically even more important to resolve those features with chemical and/or elemental 
sensitivity. There are quite a number of fine-length-scale probes available for doing this, and they use electrons1, 
X-rays2–6, visible phonons7,8, and fine tips9 to stimulate and detect the localized signal from the sample. Among 
these probes, X-ray based methods show advantages in nondestructive study of the sample’s internal structure 
with the possibility of resolving the chemical species thanks to the X-ray’s penetration capability and chemical 
sensitivity10.

When combined with spectroscopic analysis, the X-ray based full-field imaging4 has been recognized as 
a powerful tool for probing hierarchically complex materials and hence been used in many different fields of 
research including the studies in energy material11–16, industrial catalysis17,18, and archaeological science19. In 
contrast to bulk X-ray spectroscopic experiments20, the use of an area detector in the full-field spectroscopy2–5 
allows millions of pixel to work simultaneously. As a result, a large number of spatially resolved spectrums can be 
acquired in a short time, usually a few million spectra in less than an hour2,4,21. To truly benefit from this advance-
ment in spectro-microscopy, it is essential that some scientifically relevant information is extracted in a com-
parable time frame. We would like to point out that, in this study, we focus on the full-field transmission X-ray 
absorption spectroscopic (XAS) imaging method, which is one kind of the technique termed spectro-microscopy 
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that combines the spectroscopic analysis and the spatial resolving capability. However, the above described chal-
lenge is applicable to the spectro-microscopy in general because of the similarity in the data structure.

In most cases currently, big datasets from full-field spectro-microscopy are analyzed with heavy dependence 
on prior knowledge or expectation of known phases. For example, in a study of pressure induced phase transi-
tion in a BiNiO3 particle22, a material that shows negative thermal expansion over a large temperature window23, 
the phase diagram and the signature X-ray absorption spectrum of the end compounds (the pure high pressure 
phase and the pure low pressure phase) were known a priori from bulk X-ray diffraction and spectroscopic meas-
urements. Consequently, it was sufficient to employ the direct linear combination fitting (LCF), a supervised 
machine learning method, to reconstruct the spatial distribution of these two coexisting phases in the studied 
particle; and subsequently, to reveal the dynamics of the propagating pressure-driven phase-transition front22. 
This approach is straightforward and fast, yet very powerful, when the end components of the complex systems 
are known a priori. However, often in material science, especially in hierarchically complex system undergoing 
transformation, many of the end members are not known. The strategy of discovering these unknown phases 
through a low resolution (or bulk) measurement as was employed for the BiNiO3 study is not always successful, 
because often functionally important phases occur as trace/minority phases, for example, as transition or pinning 
phases at the reaction front.

Without any guidance from the knowledge of all the end members present in the sample, the analysis of the 
spectro-microscopic data based on the traditional supervised approach becomes difficult, and tends to overlook 
functionally important features in complex material systems. Due to the high data acquisition rate, it is not practi-
cal to manually interact with every single spectrum as it is acquired. On the other hand, it is risky to simply select 
a subset of the big data for detailed analysis because the unknown/new material phases are often minority phases 
spatially segregated in a few small localized region. Automatic clustering algorithms become attractive if they can 
quickly and reliably find minority phases in spectro-microscopic data. Although clustering algorithms such as 
k-means clustering24 have been applied for unsupervised classification, for example, to the study of LiFePO4 bat-
tery electrode material25 and ancient ceramic samples26, they still needs some guidance and inputs from humans, 
especially about the number of clusters, limiting their applicability. In here, we demonstrate application of the 
clustering algorithm known as the density-based spatial clustering of applications with noise (DBSCAN)27, that is 
robust to noise and doesn’t require a priori knowledge about number of phases.

We apply DBSCAN to analyze full field XAS investigation of a rare-earth element based permanent magnet 
material, Nd2Fe14B, which has become the most widely used and one of the strongest types of permanent mag-
net since it was discovered in 198228. The importance of this type of magnet can be seen from its wide range of 
industrial applications, e.g. in MRI scanners29, Maglev trains30, and electric vehicles31. Material scientists in this 
field have been making continuous effort to improve the performance in many aspects including the magnetism, 
thermal stability, coercivity, etc. Another noticeable effort in this field is the attempt to reduce the use of rare-earth 
elements due to the concern regarding the stable and sustainable supply of rare-earth elements for the increasing 
demand32. While considerable attention has been paid to the possibility of substituting the rare-earth elements 
with other materials33, the nano/meso scale structural heterogeneity is one of the areas that are believed to have 
an important impact on the overall performance of the material and, however, are not very well understood. Our 
analysis efficiently reveals nanoscale heterogeneity in the surface and near surface regions which could affect it’s 
the durability and macroscopic performance of magnets.

Results and Discussion
The NdFeB permanent magnet.  We investigated a small piece of Nd2Fe14B sample crushed from a mag-
net rod (Goodfellow, item #531-114-16) using the energy resolved transmission X-ray microscope at beamline 
6-2C of the Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory. The 
sample was exposed to the air at room temperature for about a year without any particular effort to protect it 
from the oxygen and/or humidity, which could cause corrosion on the magnet. Full-field nanoscale spectroscopic 
imaging was performed over the Nd L2 at ~6722 eV and L3 edges at ~6208 eV, respectively. We choose to avoid 
the Nd L1 edge at ~7126 eV because it has a much lower cross-section and it largely overlaps with the Fe k edge 
at ~7112 eV34. More details about the experiment can be found in the method section of this work. As shown 
in Fig. 1, the spectro-microscopic data is set of 2D spatially images collected at 1024 energies over Nd L3 and L2 
edges (or in terms of spectroscopy spatially resolved and energy dependent absorption coefficients). Because of 
frame-to-frame misalignment images were cropped to 602 ×​ 643 pixels to keep spatially registered over the entire 
energy stack. The data, therefore, contains over 300,000 points (pixels); and each one of these points has 1026 
attributes (2 spatial +​ 1024 energies). The dataset is not particularly large, but is rather complex due to the very 
large number of attributes. An Eigen analysis can show that the 1024 energy attributes can be remapped into a few 
attributes without loss of significant information; still the datasets has over 5 attributes. In conjunction with noise, 
the complexity of this data poses a challenge.

All the single pixel spectrums over both the Nd L2 and L3 edges are independently normalized using a 
well-established method known as MBACK35 prior to any further analysis. The normalized spectrums over two 
selected representative pixels (the red and the blue pixel highlighted in Fig. 1a) are presented in Fig. 1b,d, with 
the magnified near edge regions shown in Fig. 1c,e, respectively. The near edge region of the spectra shows that 
the blue pixel near the particle surface is more oxidized than the red one, which is more towards the center of the 
particle. The differences observed in these two pixel spectrums highlights the nanoscale heterogeneity exist at 
single pixel (~30 nanometers) level. It worth mentioning that this dataset was acquired within about two hours of 
beamtime at the beamline 6-2C of SSRL. Given the data acquisition rate at this scale, it is not practical to perform 
pixel by pixel analysis illustrated in Fig. 1. A robust algorithm is, therefore, very much desired in this study to 
automatically classify similar spectra (and therefore similar chemical composition) in to a few clusters for further 
detailed spectroscopic analysis.
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The density-based spatial clustering of applications with noise (DBSCAN).  In order to effectively 
and automatically perform identification and clustering of the pixels with similar spectrum and, thus, with similar 
chemical compositions, we adapt a powerful algorithm known as the density-based spatial clustering of appli-
cations with noise (DBSCAN)27. The spectro-microscopic dataset described above can be viewed as 602 ×​ 632 
data points distributed in a high-dimensional space (each attribute of the data can be viewed as an independent 
dimension). The DBSCAN algorithm evaluates the data density at each location and groups together data points 
that are densely packed in an area. There are two critical parameters for the algorithm, Eps and MinPts. The Eps 
parameter represents the radius of the search for neighboring points; the MinPts parameter is the minimum 
number of data points needed to form a cluster. We briefly describe the idea behind DBSCAN below; see the work 
by Ester et al.27 for more details.

As shown in Fig. 2a, the data points are grouped into different clusters, with each data point identified as 
either 1) cluster core point, 2) cluster boundary point, or 3) outlier point. Figure 2b shows a certain iteration of 
the search centered on data point P. In this step a spherical region in the multi-dimensional space is drawn based 
on the radius specified by the input parameter Eps. The number of data points within this ball is then calculated. 
If there are sufficient number of data points (equal to or larger than the input parameter MinPts) within the 
region, all the points are labelled as belonging to cluster N; the current center point (P) is labelled as a core point 
of cluster N. After this step, the search center is moved from the current position (P) to another data point (P’) 
within cluster N, as schematically shown in Fig. 2c. When P’ can be included in cluster N, but cannot be identified 
as a cluster core point due to the fact that there is an insufficient number of data points within the ball centered 
at P’ (like the situation shown in Fig. 2d), P’ is identified as a cluster boundary point of cluster N. Figure 2f shows 
another situation, where there are some data points that cannot be identified as an independent cluster and are 
not connected with any other large cluster. All those points are regarded as outlier data points. All the outlier data 
points are grouped together forming an outlier cluster. It worth pointing out that the data points with insufficient 
signal to noise ratio have been already eliminated from the clustering search. Therefore, outlier data points are 
not outliers in a traditional sense, but should be regarded as a minority chemical phase in the material. We would 
mention that the DBSCAN implemented in this work can perform the clustering evaluation rather efficiently. The 
calculation present in this work takes less than five minutes on a normal laptop.

The chemical phase maps.  As described above, the DBSCAN method is applied to the classification of the 
spectro-microscopic data of the Nd2Fe14B sample. For better confidence of the clustering results, we treat L3 and 
L2 edges independently. It worth pointing out that L3 and L2 edges arise from similar electronic excitations and 
should have very similar spectroscopic signatures36. The idea here is to use the uniqueness of the information 
contained in each edge to crosscheck the end results. In both case, the DBSCAN identified two major chemical 
components in the sample (phase 1 and phase 2), and a third minority phase (phase 3) which cannot be well rep-
resented by either one of these two major phases or their linear combination. The chemical phase maps identified 
by DBSCAN from the Nd L3 edge data are shown in Fig. 3a–c; and the ones from the Nd L2 edge data are shown 
in Fig. 3d–f. The maps in Fig. 3a–c and Fig. 3d–f are similar but not identical. For a more quantitative measure-
ment of the comparison, we show, in Fig. 3g, the histogram of the differences between Fig. 3a,d (in blue), as well 
as that of Fig. 3b,e (in red). Figure 3g, shows a large peak around zero difference indicating very good agreement 
between the phase maps generated from the Nd L3 edge data and that from the Nd L2 edge data (Note, that the 

Figure 1.  The structure of the nanoscale spectro-microscopic data on the studied Nd2Fe14B Particle is 
shown in panel a, indicating it is a three dimensional dataset. The single pixel spectrums over the two 
highlighted pixels in panel a are shown in panels b (for the Nd L3 edge) and d (for the Nd L2 edge) with 
the selected near edge region displayed in panels c and e, respectively. The pixel size of the images is at 
31.2 nanometers.
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histograms are plotted on a log scale in Fig. 3g). Considering the fact that Nd L3 edge is significantly stronger 
than the Nd L2 edge, the small number of pixels contributing to the tails of the difference histogram could be 
attributed to the reduced signal to noise ratio at Nd L2 edge. As a result, we will limit our further spectroscopic 
analysis to the spectra of the three identified chemical phases over the Nd L3 edge, which are plotted in Fig. 3h 
with the near edge region magnified in the corresponding inset. We would also point out that other clustering 
algorithms, such as the well-known principle component analysis (PCA), can also be used to group the pixels 
with similar spectroscopic signatures. For comparison we show, in the Supplementary Fig. S1, the PCA generated 
clustering results of this dataset. In our implementation of PCA, we preserved 98% accuracy of the original data 
and extracted two principle components. By linear combination fitting of the raw data using the two detected 
principle components, a third compound, which cannot be well represented by those two major components and 
their linear combinations, was identified. We again repeated this calculation on both the L2 edge and L3 edge data. 
Significant differences in the chemical maps were observed (see Supplementary Fig. S1). As discussed above, the 
consistency between the chemical maps derived from the L2 edge and L3 edge data is an important indicator of the 
figure-of-merit in our study because there is known physical similarity between those two edges. As a result, we 
conclude that the DBSCAN shows superior performance for unsupervised clustering of the spectro-microscopic 
data in the presented case study.

An x-ray absorption spectrum contains information about both the electronic structure of the absorbing 
atom as well as the arrangement of atoms around it. In the clustering analysis so far we have focused on the edge 
and the near edge structure. The differences between the spectra of the three clusters are most prominent in the 
intensity and the width of the white-line feature. The intensity and width of the white-line features are thought to 
be very sensitive to small changes in the p-d orbital hybridization as well as subtle changes in the nearest neighbor 
distance. The intensity of the white-line can also be suppressed by over-absorption and self-absorption effects, 
which in turn dependent on the thickness and the porosity of the sample. To address the concern about the 
thickness effects, we extracted Extended X-ray Absorption Fine Structure (EXAFS) oscillation from the region 
between the L3 and L2 edge. (EXAFS oscillations are dominated by the local structure.) Below, we show, based 
on the analysis of the EXAFS oscillations that the three clusters observed in the spectrums in Fig. 3h also show 
distinct differences in short-range atomic arrangement around the Nd atoms and are not artifact of variation in 
the sample thickness.

EXAFS analysis.  While the clustering method described above identified three components that appear to 
have different electronic structure, and provided the spatial distributions of them, the detailed spectroscopic 
analysis of each one of the three clusters is essential for a deeper understanding of how they differ from each other 
chemically and structurally. We show in Fig. 4a the EXAFS oscillations of all the three clusters in the momentum 

Figure 2.  Schematic drawings of the DBSCAN clustering algorithm. Panel a shows the clustering results 
where the data points are grouped into two major clusters and an outlier group. Panels b through f schematically 
show how the algorithm searches through the data points distributed in the high-dimensional space.
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space (the k-space) weighted by the factor of k2. It is well known that Fourier transformation of the k-space signal 
can reveal the real space atomic configuration around the targeted central element37, which is Nd in this study. We 
choose to perform Fourier transformation of the k-space data over the selected k range (as indicated by the box in 
Fig. 4a) to convert it into the real space signal (the R-space, as shown in Fig. 4b) for the purpose of extracting the 
averaged information of the bonding distance of the first shell coordianted atoms. Figure 4b clearly suggests that 
the phase 2 has the longest first shell bonding distance, while the phase 3 has the shortest first shell bonding dis-
tance. It is interesting to note that the phase 1 shows mixed signature of the phases 2 and 3. The phases 1 and 2 are 
identified as the major phases because the number of pixels that are assigned to these two clusters are significantly 
larger than that of phase 3 (as one could see in the Fig. 3a through 3f). However, the EXAFS analysis indicates that 
the phases 2 and 3 are actually the most chemially different, while phase 1 is likely to be a mixture of these two 
orthogonal componds. It should be pointed out that the quality of the spectra extracted from our imaging data 
is not as good as a typical spectrum from bulk spectroscopic measurements due to the limited amount of sample 
exposed to the beam. We performed bulk EXAFS measurement at beamline 4-1 of SSRL on powdered Nd2Fe14B 
sample. As shown in Supplementary Fig. S2, the bulk EXAFS data shows signatures that is similar to that of a 
mixture phase 1 and 2. Data and analysis of a spectrum from bulk sample, therefore, woundn’t have necessarily 
suggested that the surface of the sample particles is chemically very different from the core of the particles, nor 
would it have help identify the spectra needed for a least square reconstruction of the full field x-ray spectra. Our 
results, thus, highlight not only the the importance of the spatially resolved spectroscopic study but the need for 
a robust automatic clustering capability, such as that provided by DBSCAN method.

Figure 3.  Cluster maps generated by DBSCAN based on the Nd L3 edge data are shown in panels a–c, 
respectively. The cluster maps based on the Nd L2 edge data are shown in panels d–f, respectively. Panel g shows 
the histogram of the difference between the cluster maps in panels a and d (in blue), as well as the difference 
between panels b and e (in red). A large peak around zero indicates good agreement between the maps 
generated from these two independent datasets. Panel h shows the averaged spectra for the three identified 
clusters with the near edge region magnified in the corresponding inset.
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Summary and Conclusion
The novel developments in the X-ray spectro-microscopic technique have been recognized as a powerful exper-
imental method that has the potential to help solving challenges in many research fields, including investigation 
of hierarchically complex functional material systems. In order to effectively perform data analysis on modern 
high-dimensional nanoscale spectro-microscopic experimental datasets, we have introduced an advanced algo-
rithm known as the density-based spatial clustering of applications with noise (DBSCAN). This algorithm can 
cluster large, high-dimensional datasets with little or no human supervision, automatically discovering important 
patterns and trends in the data. This method was applied to the study of a rare-earth element based permanent 
magnet, Nd2Fe14B. The DBSCAN identified three chemically different compounds as well as their spatial distribu-
tions in the studied sample. It is very probable that smaller and more heterogeneously distributed of these phases 
(phase 3) would have been missed in a traditional supervised analysis. Further detailed spectroscopic investi-
gation suggested that the phases 2 and 3 are the most chemically different, while the phase 1 is likely a mixture 
of the phases 2 and 3. If phase 1 is indeed a mixture of phase 2 and 3, it shows up as a distinct cluster instead of 
separating into the two other clusters because it must be mixed at a length scale that is beyond the spatial resolu-
tion limit of the current measurement, which is at about 31.2 nm. This finding echoes with the observation of the 
segregation of a Nd rich phase at the particle surface by Kao et al.34. It is well known that the sintered Nd2Fe14B 
tends to be vulnerable to corrosion, especially along grain boundaries. The particle studied is crashed from a 
magnet rode, and is likely to be broken away along the existing grain boundaries within the sintered magnet. The 
surface alternation we observed may also be attributed to the grain boundary corrosion, which can cause serious 
deterioration. Since the observed Nd rich surface phase increases the consumption of the rare-earth element (Nd) 
and is altered from the desired composition, it is beneficial to minimize the formation of this undesired secondary 
phase.

We would also point out that the developed method can also been directly applied to the studies in many other 
fields, in which the rational design of hierarchically complex functional materials plays an important role, such 
as catalysts, batteries, fuels cells, and optical devices. Especially with the large investment over last several years 
in larger and faster detectors, orders of magnitude increase in beam brightness, novel new X-ray optics38–41 and 
advance X-ray facilities42 rate of acquisition of the scientific data has dramatically accelerated. While these new 
facilities and accelerating rate of new data brings the promise of a deeper understanding of functioning of com-
plex materials under real world conditions, without the ability to perform effective, reliable, and automatic data 
mining in comparable time frame as data acquisition that promise will remain unfulfilled.

Methods
We studied a small piece of Nd2Fe14B sample crushed from a magnet rod (Goodfellow, item #531-114-16) using 
the energy resolved transmission X-ray microscope (TXM) at beamline 6-2C of the Stanford Synchrotron 
Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory.

The TXM experimental setup is briefly described below and more details can be found elsewhere43. The X-rays 
from a 56 pole 0.9 Tesla wiggler pass through several mirrors and are then focused to about 200 microns for serv-
ing as the secondary source for the microscope. The monochromator is a liquid nitrogen cooled double-Si(111) 
crystal system that selects a narrow band pass from the incident X-rays, providing quasi-monochromatic  
(Δ​E/E =​ 5 ×​ 10−4) illumination. The TXM, designed to work over an energy range of ~5–13 keV, utilizes a cap-
illary condenser to focus the beam to a spot with size down to a few of microns for illuminating the sample. 
A Fresnel zone plate with 200-μ​m diameter and 30-nm outermost zone width is employed to project to the 
image of the sample to the detector with magnification factor of around 50. The scintillator crystal after the zone 
plate converts the incoming X-rays into visible photons and is coupled with an optical lens and detector system 

Figure 4.  EXAFS analysis of the Nd L3 edge spectrums the three chemical phases as identified by the 
DBSCAN clustering algorithm. Panel a: the k2 weighted EXAFS signals in the k-space; panel b: R-space plot 
calculated using the k-space signal in the wavenumber window of 2 to 6.5.
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further downstream. The spatial resolution of this system is ~30 nm which has been demonstrated in earlier 
publications44.

The projection images of the sample are acquired as the energy of the incoming X-rays is tuned from 6000 eV 
to 7023 eV with step size at 1 eV, covering the Nd L2 at ~6722 eV and L3 edges at ~6208 eV. At each energy, one 
image of the sample as well as one reference image (with the sample moved out of the field of view) are recorded 
for flat field correction by applying Beer-Lambert law45. After the reference correction, the data went through 
several image processing steps including the magnification correction, the spatial registration of images taken at 
different energies, and the normalization of the pixel spectrums. All of these were performed using an in-house 
developed software package known as the TXM-Wizard21.

For better reducing the demand of large scale computing power and improving the quality of the clustering 
calculation, we first reject the pixels with insufficient signal to noise ratio in the corresponding spectrum before 
loading the entire dataset into the DBSCAN. The limited signal to noise ratio in the rejected pixels is due to the 
limited amount of sample of interest over the corresponding areas in the field of view. This step allows us to group 
the outlier pixels (as identified in the DBSCAN) as a third cluster (the outlier cluster, which is also referred to as 
cluster 3) with confidence, because these pixels provides good signal over the Nd L3 and L2 edges and thus are, 
indeed, chemically different from the rest of the pixels.

After clustering the extracted three key spectrums are subjected to spectroscopic analysis using a software 
package known as Athena46 for more detailed investigation.
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