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Abstract

Background: Maximum parsimony reconciliation in the duplication-transfer-loss model is a widely-used method
for analyzing the evolutionary histories of pairs of entities such as hosts and parasites, symbiont species, and species
and genes. While efficient algorithms are known for finding maximum parsimony reconciliations, the number of such
reconciliations can be exponential in the size of the trees. Since these reconciliations can differ substantially from one
another, making inferences from any one reconciliation may lead to conclusions that are not supported, or may even

be contradicted, by other maximum parsimony reconciliations. Therefore, there is a need to find small sets of best
representative reconciliations when the space of solutions is large and diverse.

Results: We provide a general framework for hierarchical clustering the space of maximum parsimony
reconciliations. We demonstrate this framework for two specific linkage criteria, one that seeks to maximize the
average support of the events found in the reconciliations in each cluster and the other that seeks to minimize the
distance between reconciliations in each cluster. We analyze the asymptotic worst-case running times and provide
experimental results that demonstrate the viability and utility of this approach.

Conclusions: The hierarchical clustering algorithm method proposed here provides a new approach to find a set of
representative reconciliations in the potentially vast and diverse space of maximum parsimony reconciliations.

Keywords: Phylogenetic trees, Maximum parsimony reconciliation, Duplication-transfer-loss model

Background

Phylogenetic tree reconciliation is a widely-used tech-
nique for studying the evolutionary history of pairs of enti-
ties such as hosts and parasites, pairs of symbionts, and
species and genes. In the duplication-transfer-loss (DTL)
model, the biological events that are used to explain the
possible discordance between pairs of tree are speciation,
duplication, transfer, and loss.

Typically, reconciliation is performed using a maximum
parsimony formulation. Maximum parsimony has been
shown to accurately reconstruct simulated data where
ground truth is known [1]. While alternative statistical
approaches have also been explored, they have many more
parameters that must be estimated and the algorithms are
generally prohibitively slow [2, 3]. Nonetheless, it must
be noted that all reconciliation methods are inherently
limited by the evolutionary processes that they model.
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Moreover, while parsimony methods are appropriate for
relatively simple evolutionary histories, they are likely to
be less accurate for complex ones.

In the maximum parsimony framework, each type of
event has an associated cost and the objective is to find
a mapping of one tree (e.g., the gene tree) onto the other
tree (e.g., the species tree) that minimizes the total cost
of the events induced by that mapping. The maximum
parsimony reconciliation problem in the DTL model has
received considerable attention over the last decade due
to its broad applicability. Efficient algorithms have been
developed for the reconciliation problem [1, 4, 5] and
have been implemented in a number of popular software
tools [1, 4, 6, 7]. Hundreds of published studies in the life
sciences have used these tools in their analyses.

Unfortunately, the number of maximum parsimony rec-
onciliations (MPRs) can grow exponentially in the size
of the trees [8]. Moreover MPRs often differ substan-
tially from one another [9, 10]. In such cases, making
inferences from a single maximum parsimony reconcilia-
tion can lead to conclusions that are not supported, and
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may even be contradicted, by other maximum parsimony
reconciliations.

A fundamental problem, therefore, is that of identi-
fying a set of best representative reconciliations. Prior
work has included efforts to sample MPRs uniformly
at random [8] and to find a single median MPR [11].
Recent work has demonstrated that MPR space is, in
general, too diverse to be represented by a single MPR
[9, 12]. Algorithms have been developed to implic-
itly cluster MPR space using k-medoids and k-centers
[13], but these algorithms have several limitations. First,
the asymptotic running times of these algorithms are
Ok +3 log k) where n is the size of the trees and k is
the desired number of clusters. Thus, these algorithms
are generally impractical except for very small datasets
and numbers of clusters. Moreover, these clustering
algorithms provide a representative reconcliation for each
cluster but do not provide the clustering itself. Thus,
it is not possible to compute various statistics on the
clusterings nor to determine to which cluster an MPR
belongs.

In this paper, we describe an efficient and practical
method for clustering the space of MPRs using agglom-
erative hierarchical clustering. The hierarchical cluster-
ing method described here has a number of important
properties. First, it is applicable to a variety of differ-
ent objectives and linkage criteria. Second, the clusters
are compactly represented as reconciliation graphs [14],
which permits efficient algorithms to compute statistics
on these clusters and to find one or more representative
reconciliations in each cluster including median reconcil-
iations [11] and maximum event support reconciliations
[12], among others. Third, the asymptotic worst-case run-
ning time is practical for large trees, large values of k, and
is not dependent on the number of MPRs. We demon-
strate the viability of this approach on a large Tree of Life
dataset [15] in which some trees induce more than 102
MPRs.

In summary, the contributions of this paper are:

1 A general framework for agglomerative hierarchical
clustering of MPR space;

2 Application of this method for two specific linkage
criteria, one seeking to maximize the average event
support in each cluster and the other seeking to
minimize the distance between MPRs in each cluster;

3 Experimental results on a large biological dataset that
demonstrate the viability and utility of this approach.

We provide an easily-extensible Python tool, called
cluMPR (www.cs.hmc.edu/~hadas/clumpr), that imple-
ments this clustering method.

The next several subsections provide definitions that
will be used to describe our algorithm. For consistency
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of notation and definitions, this material is taken directly
from [9, 10] with permission.

Maximum parsimony reconciliations

An instance of the DTL-MPR problem is a 6-tuple
(S, G,¢,d,t,£) where S = (Vs,Es) and G = (V, Eg) are
binary trees, ¢ is a function that maps the leaves of G to
the leaves of S. This function need not be one-to-one nor
onto. Parameters d, ¢, and ¢ are non-negative event costs
for duplication, transfer, and loss events, respectively.
These events are explained in detail below. The trees S and
G are assumed to be undated, but all results in this paper
can be easily adapted to dated trees as well.

A reconciliation mapping for a given instance is a func-
tion @ that maps the vertices of G to the vertices of S such
that ®(g) = ¢ (g) for each leaf g of G and, if g is an internal
vertex of G with children g’ and g”, then (1) ®(g) cannot
be a descendant of either ®(g") or ®(g”) and (2) at least
one of ®(g’) or ®(g”) is equal to or a descendant of ®(g).

A reconciliation mapping induces four types of events.
Each internal vertex g € Vi induces one speciation, dupli-
cation, or transfer event. In addition, an internal vertex
may induce zero or more loss events. For an internal gene
tree vertex g, with children g’ and g”, the events induced
by @ are as follows:

Speciation event: Vertex g induces a speciation event if
one of ®(g’) and ®(g”) is in the left subtree and the
other is in the right subtree of ®(g).

Duplication event: Vertex g induces a duplication event
if each of ®(g') and ®(g”) is either equal to or a
descendant of ®(g) but does not satisfy the require-
ments for a speciation event.

Transfer event: Vertex g induces a transfer event if
exactly one of ®(g") and ®(g”) is either equal to or
a descendant of ®(g) and the other is neither an
ancestor nor a descendant of ®(g).

Loss events: Each non-root vertex g (including leaf ver-
tices) may induce zero or more loss events as follows:
Let p(g) denote the parent of g in tree G. If ®(p(g))
is ancestral to ®(g), then each species vertex s on
the path from ®(p(g)) to ®(g) induces a loss event,
except for ®(g) and also not ®(p(g)) if p(g) induces
a speciation event. For each loss induced by a ver-
tex s on the path from ®(p(g)) to P(g), we say that g
passes through s.

The cost of a reconciliation mapping is defined to be the
sum of the costs of all of the induced events. Typically,
speciations events are considered null events and thus
have cost zero. A minimum cost reconciliation mapping
is called a maximum parsimony reconciliation (MPR).
Figure 1a shows an example of a DTL-MPR instance and
Fig. 1b, ¢ shows two different MPRs for that instance
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Fig. 1 DTL reconciliation. a An instance of the DTL reconciliation problem comprising a species tree (black), a gene tree (gray), and a leaf mapping.
Duplication, transfer and loss costs are 1,4, and 1, respectively. b and ¢ Two different MPRs, each with total cost 4. d The associated reconciliation
graph. Mapping nodes are indicated with double line borders. Event nodes are designated with S (speciation event), D (duplication event), T
(transfer event), or L (loss event). The reconciliation traversal indicated by solid edges corresponds to the MPR in (b) and the reconciliation traversal
indicated by dashed edges corresponds to the MPR in (c); bold edges indicate shared elements of the two MPRs. Figure adapted from Haack et. al

[9] with permission
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using duplication, transfer, and loss costs of 1, 4, and 1,
respectively.

Using existing algorithms, a maximum parsimony rec-
onciliation can be found in time O(|G||S]) [1, 2]. The
problem becomes NP-complete, however, if the reconcil-
iation is required to be temporally feasible which means
that there exists a total ordering of the events such that
an event involving a gene vertex g comes earlier in the
ordering than any event involving a descendant of g
Fortunately, temporal infeasiblity can be detected when it
occurs [2, 16].

Reconciliation graphs and traversals

The space of all MPRs can be represented in polynomial
space using a reconciliation graph (Fig. 1d). This repre-
sentation was originally developed by Scornavacca et al.
[14] for dated trees and later modified and adapted for
undated trees [17]. For completeness, this representation
is summarized below.

Consider a DTL-MPR instance (S, G, ¢,d,t, ). Let ®
denote the set of all MPRs for this instance. For a gene
vertex g, let the children of g be denoted by g’ and g”.
Then, events(g,s) is the set of the following tuples
induced by each MPR @ € ®:

® (Sgs) ((g5),(g",s")}) for each speciation in which
g is mapped to s, ¢’ is mapped to s’ or one of its
descendants, and g” is mapped to s’ or one of its
descendants, where s’ and s” denote the children of s;

* (Dgs){(g9),(g",9)}) for each duplication in which
g is mapped to s.

® (T(gs),{(g,5), (g",5)}) for each transfer in which g is
mapped to s and one child, wlog g”, is mapped to a
vertex § that is not ancestrally related to s;

* (L) {(g,s))) for each loss in which g passes
through s, and s’ is the vertex that follows s on the
path from @ (p(g)) to ®(g); and

o ((C(g,s), @) for a contemporaneous leaf association
where g and s are leaves and ¢ (g) = s.

Next, we make several observations about this represen-
tation. First, if g is mapped to s as a speciation event, the
children of g, denoted g’ and g”, are mapped to descen-
dents of s. However, the speciation event is represented
by associating g’ with one child of s (denoted s’) and asso-
ciating g” with the other child of s (denoted s”). Loss
events are introduced for each loss incurred as g’ (or g”)
passes through species vertices on the path from s’ (or s”)
to ®(g’) (or ®(g")). Similarly, for a duplication event in
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which g is mapped to s, the children of ¢ may be mapped
to s or descendants of s. However, the duplication event is
represented by associating both g’ and g” with s and then
loss events are introduced for each loss on the path from
s to ®(g’) and on the path from s to ®(g”). Finally, if g is
mapped to s as a transfer event, then one child of g, wlog
¢, is mapped to g or one of its descendants while the other
child, g” is mapped to a vertex § that is not ancestrally
related to s. The transfer event is represented by associ-
ating g’ with s (and associating g” with 5); loss events are
introduced for each loss on the path from s to ®(g’).

For each such tuple e, let type(e) denote its first element,
namely the event type and the ordered pair (g,s), and
let associations(e) denote its second element, namely a
set of zero or more ordered pairs. Note that if e cor-
responds to a speciation, duplication, or transfer event,
then associations(e) is a set containing two ordered pairs,
each representing an association between a gene tree ver-
tex and a species tree vertex. If e is a loss event, then
associations(e) is a set containing one such ordered pair
indicating where the loss is incurred.

Reconciliation graph

The reconciliation graph contains a mapping node for
each (g, s) pair where g is mapped to s in some MPR and,
if not already included, a node (g, s) is also introduced if
g passes through s due to a loss event. The reconciliation
graph also contains an event node corresponding to each
tuple in events(g,s). There is a directed edge from each
mapping node (g,s) to each event node in events(g,s)
and a directed edge from each event node e to a mapping
node corresponding to an ordered pair in associations(e).
(Throughout this paper, we use the term vertex for an ele-
ment of the gene or species tree and the term node for an
element of the reconciliation graph.)

The representation is compact by merit of the fact that,
while a mapping (g,s) and its events may arise in many
different MPRs, they are shared in this graph represen-
tation. Therefore, the size of the reconciliation graph is
easily seen to be polynomial in the size of the two trees.

Ma et al. give a formal description of the algorithm for
constructing undated reconciliation graphs, a derivation
of its O(|G||S|?) running, and show that undated rec-
onciliation graphs are acyclic [17]. Figure 1d shows the
reconciliation graph for the DTL-MPR instance in Fig. 1a
when duplication and loss have cost one and transfer has
cost four.

Reconciliation traversal

Next, we define reconciliation traversals, which corre-
spond to MPRs. Let sources(R) denote the set of source
nodes of reconcilation graph R which, by definition, are
mapping nodes of the form (rg, -) where rg represents the
root of tree G.
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For a reconciliation graph R, a reconciliation traversal
(abbreviated as traversal) is a subgraph of R whose root
is a mapping node in sources(R). Each non-leaf mapping
node added to the traversal has exactly one of its event
node children added to the traversal. Each event node
added to the traversal has all of its mapping node chil-
dren added to the traversal. Figure 1d shows two traversals
corresponding to the two MPRs in Fig. 1b, c.

There is a straightforward bijection between the set of
MPRs and the set of traversals in the reconciliation graph
[17]. A traversal, in turn, can be represented as the set of
event nodes that it comprises. Thus, we may represent an
MPR as the set of event nodes in the corresponding traver-
sal. For an MPR R, let E(R) denote the set of event nodes
in that reconciliation.

A reconciliation graph represents the space of all MPRs
for a given pair of trees G and S their leaf associations, and
their DTL event costs. We will represent subsets of that
space, corresponding to clusters, using subgraphs of the
reconciliation graph. A reconciliation subgraph is a sub-
graph of the reconciliation graph comprising the union of
one or more traversals. Thus, a reconciliation subgraph
includes at least one source node of the reconciliation
graph, all of the sink nodes of the reconciliation graph, and
some subset of the mapping and event nodes.

Methods

In this section, we describe a general method for hierar-
chical clustering of MPR space and then provide examples
of two specific applications of this method, one that seeks
clusterings that maximize the average event support of the
MPRs in each cluster and the other that seeks to minimize
the average distance between MPRs in each cluster with
respect to a given distance metric on MPRs.

Typically, agglomerative clustering algorithms are ini-
tialized with each item (e.g., MPR) forming its own cluster.
Subsequently, pairs of clusters are merged according to
the particular linkage criterion until the desired number
of clusters is obtained. Since the appropriate number of
clusters is often difficult to ascertain a priori, the pair-
ing may continue until all the items are in a single cluster.
By recording the intermediate clusterings, an appropriate
number of clusters can be selected according to one of
many different criteria [18, 19].

However, the initialization step for agglomerative clus-
tering is, in general, not viable for MPRs since the number
of such reconciliations can grow exponentially with the
sizes of the trees [20]. Therefore, our approach is to begin
the agglomerative clustering process with a small num-
ber of clusters, where each MPR is represented in one
of those clusters. In other words, in the interest of com-
putational efficiency, rather than starting the clustering
process with a very large number of singleton clusters, we
begin the process with a much smaller number of larger



Mawhorter and Libeskind-Hadas BMC Bioinformatics (2019) 20:612

clusters. These initial clusters are constructed from the
reconciliation graph and are represented by reconciliation
subgraphs. Subsequently, when two clusters are agglom-
erated, their reconciliation subgraphs are merged. The
number of initial clusters in our agglomerative cluster-
ing algorithm is denoted N; in the next section we show
experimentally that this approach is effective for small val-
ues of N. In other words, the shortcut that is used to start
the clustering with a small number of large clusters is both
efficacious and computationally viable.

In the remainder of this section we describe the method
for initializing the clusters, describe two linkage criteria,
show that these criteria can be computed in polynomial
time, and describe a method for identifying the presence
of clusters.

Representing and initializing clusters
To generate the initial clustering, we begin by selecting a
depth level L to descend in the reconciliation graph. The
set of sources of the reconciliation graph is said to be the
set of level 0 subtraversals. For each source node in that
set, we consider all of its event node children. Each source
node, a single child event node, and the event node’s
children (which are, by definition, mapping nodes) forms
a level 1 subtraversal. In general, given the set of all level
i subtraversals, we construct the set of all level i + 1 sub-
traversals as follows: For each level i subtraversal, consider
the set of all of its mapping node leaves. For each such
mapping node, select one event node child and that event
node’s children (which are, again, mapping nodes) to form
a level i + 1 subtraversal. This process is repeated, each
time constructing all subtraversals at a given level, until
we reach the set of all level L subtraversals. For each level
L subtraversal, we add all of the nodes reachable from its
leaves to form a reconciliation subgraph. These reconcili-
ation subgraphs form the set of initial clusters. Note that
this process has the desirable property that at the largest
possible level, the subtraversals become complete traver-
sals and we construct an initial clustering in which each
cluster is a single MPR.

In our implementation of this algorithm, the user selects
a desired number of initial clusters and the algorithm finds
the smallest value of L that results in at least that many
initial clusters. Let N denote the number of initial clus-
ters actually found by this initialization step. Note that N
may be larger than the desired number since the smallest
level that generates at least the desired number of clusters
depends on the reconciliation graph.

Henceforth, let N denote the number of initial clusters
and let n and m denote the number of vertices in the
species and gene trees, respectively.

Lemma 1 The number of nodes and edges in a reconcil-
iation graph is bounded by O(n*m).
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Proof The number of mapping nodes is bounded by
O(nm) since each mapping node associates a gene tree
vertex with a species tree vertex. Each mapping node has
a number of event node children bounded by O(n) since
a mapping node may induce a speciation event in one of
two ways, depending on which child of g is mapped to
which child of s, it may induce a single duplication event,
it may induce O(n) transfer events since one of the two
children of g may be transferred to a different node of §,
and may induce up to two loss event children depending
on whether the loss occurs on the left or right child of s.
Therefore, the total number of event nodes is bounded by
O(n*m) and the total number of mapping and event nodes
is bounded by O(n?m). Since each of the O(nm) mapping
nodes has a number of children bounded by O(n) and each
of the O(n%m) event nodes has at most two children, the
number of edges is bounded by O(n%m). O

Lemma 2 The construction of the reconciliation sub-
graphs corresponding to the initial clusters takes time
O(Nn*m).

Proof The subtraversals can be constructed using
breadth-first search starting from the sources of the rec-
onciliation graph. By Lemma 1, the reconciliation graph
has O(#*m) nodes and O(n’m) edges. Therefore, this
process takes time O(n%m). Next, each of the N subtraver-
sals is expanded into a subgraph of the reconciliation
graph corresponding to an initial cluster, which takes time
O(Nn?m). O

In the next two sections, we discuss linkage criteria for
merging the initial clusters.

Criterion 1: minimizing average distance
In this section we seek to find a set of clusters that
minimizes the average distance between MPRs within
each cluster with respect to a given distance metric. Let
d(R1, Ry) be a distance metric for any pair of MPRs, R; and
Ry. For example, in the symmetric distance metric, the dis-
tance is the number of events that are in exactly one of the
two MPRs, that is [E(R;) @ E(R;)| where E(R) denotes the
set of events in reconciliation R and @ is the symmetric
set difference operator [11]. In the path distance metric,
the distance is defined as the sum, over all gene nodes g,
of the length of the path from s; to sp, where g is mapped
to s in R; and g is mapped to s in Ry [12, 21]. A number
of other distance metrics for MPRs have been proposed as
well [21, 22]. For concreteness, we use the symmetric dis-
tance metric here, although these results are applicable to
other distance metrics as well.

Let C = {C1,Cy, ..., Ci} denote a k-clustering of MPR
space. Let |C;| denote the number of MPRs in cluster C;
and let u; denote the average distance between all pairs of
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MPRs in C; with respect to the given distance metric. The
weighted average distance (WAD) of C is defined to be

K 1GH
pariale]

To optimize this objective function, a natural linkage
criterion is to agglomerate the pair of clusters that gives
the largest reduction in the weighted average distance,
which is effectively a gradient descent heuristic on this
objective function. The computation of the average dis-
tances between MPRs in a reconcilation graph can be
performed in polynomial time [10] in spite of the fact that
the number of MPRs may be exponentially large.

WAD(C) =

Lemma 3 The running time of the clustering algorithm
for weighted average distance is O(N*n*m? log m).

Proof Computing the number of MPRs in the reconcil-
iation subgraph can be performed in time O(nm) [1] and
computing the average distance between all pairs of MPRs
can be performed in time O(n*m? log m) [10].

By Lemma 2, construction of the initial clustering can be
performed in time O(Nn?m). We then compute the aver-
age distance and number of MPRs for each of the N initial
clusters in time O(Nn*m? log m).

Next, we compute and record the weighted average dis-
tance when merging each pair of initial clusters. This
requires O(N?) computations of the average distance and
number of MPRs, for a total of O(N?n*m? log m) time.

On each of the O(N) successive iterations, it takes O(NN)
time to identify the pair of clusters to merge. Computing
the average distance and number of MPRs in that cluster
takes time O(n*m? logm) and merging the two reconcil-
iation subgraphs takes time O(n?m) since, by Lemma 1,
each of the two subgraphs being merged has O(n*m)
nodes and edges. Finally, we must compute the distance
and number of MPRs between the new (merged) graph
and the other O(N) graphs, which requires O(N) com-
putations of the average distance and number of MPRs.
Thus, each merging iteration requires O(Nn*m? logm)
time, and the O(N) iterations take O(N?n*m? log m) time
in total. The total running time of the clustering algorithm
is, therefore, bounded by O(N2rn*m? log m). O

Criterion 2: maximizing average event support

Another objective of interest is to find a clustering that
maximizes the average event support in each cluster. For
each event found in an MPR in a given cluster, the support
(or frequency) for that event is the fraction of MPRs in that
cluster that include that event [11]. In many cases, a sig-
nificant fraction of events have very low support over the
space of all MPRs [12]. Thus, it may be desirable to par-
tition MPR space into clusters, where the average event
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support with respect to the MPRs in each cluster is higher
than in the entire space of MPRs. By selecting a repre-
sentative MPR in each cluster, we can again obtain a set
of MPRs that better represent the diversity of MPR space
than could be done by selecting a single MPR drawn from
the entire space.

Let C = {C1,Cy, ..., Cy} denote a k-clustering of MPR
space. Let o; denote the average event support in cluster
C;. The weighted average support (WAS) of C is defined
to be

Y5 ICiloi
YELIGH

To optimize this objective function, a natural linkage
criterion selects the pair of clusters whose agglomeration
gives the largest increase in the weighted average sup-
port, which is a gradient ascent heuristic on this objective
function. The computation of event frequencies can be
computed in polynomial time [11].

WAS(C) =

Lemma 4 The running time of the clustering algorithm
for weighted average support is O(N>n’>m).

Proof The analysis is identical to that in Lemma 3 except
that the computation of average distance is replaced by the
computation of support values, which can be computed
in time O(#?m) [12]. Thus, the initial construction of the
clustering takes time O(Nn2m) and the subsequent clus-
tering takes time O(N 212m). Thus, the total running time
is bounded by O(N?n?m). O]

The improvement score

To analyze the performance of the hierarchical clustering
method, we define an improvement score. For the average
event support criterion, which is a maximization prob-
lem, the improvement score for a given clustering is the
weighted average support for the clustering divided by the
weighted average support for the entire MPR space, which
is simply the average event support. The improvement
score indicates the improvement in intracluster support
values using clustering versus using no clustering. For the
average distance criterion, which is a minimization prob-
lem, we invert this ratio: The improvement score for a
given clustering is the average pairwise distance between
all MPRs divided by the weighted average distance for
the clustering. In this case, the improvement score indi-
cates the improvement in the intracluster distances using
clustering versus using no clustering.

Note that the improvement score compares a cluster-
ing of size k to no clustering or, equivalently, a clustering
of size k to a clustering of size 1. A related measure
of interest is the improvement achieved by going from
k — 1 clusters to k clusters, for k > 2. Let C, and Cj be
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the clusters agglomerated by the algorithm when & clus-
ters are reduced to k — 1 clusters or, equivalently, when
k — 1 clusters are split into k clusters. Let C,;, denote the
agglomeration of those two clusters. The local improve-
ment at k, k > 2, denoted WASlocaly for weighted average
support, is defined to be:

WAS({Cas Cp})
WAS({Cap})
Similarly, for weighted average distance, the local

improvement at k is denoted WADlocalj and is defined to
be:

WASlocal;, =

WAD({Cap})
WAD({Cq, Cp})

Note that when the local improvement is relatively small
(e.g., close to 1), there is little improvement in the objec-
tive function due to splitting C,;, into C; and Cj. Con-
versely, when this score is relatively large, the objective
function improves due to the splitting. Therefore, by iden-
tifying the value(s) of k where the local improvement score
is relatively large, we can identify potentially appropriate
number(s) of clusters.

WADIlocal;, =

Results

We applied our algorithm to a widely-used Tree of Life
dataset comprising 100 primarily prokaryotic species and
4849 gene trees [15] using duplication, transfer, and loss
costs of 2, 3, 1, respectively [15, 23]. While these costs have
been used in many studies, the xScape algorithms and
tools provide a systematic approach for selecting event
costs for a given dataset and we recommend using those
in practice [24]. We randomly sampled 100 of the 4849
gene trees that induced at least 1000 MPRs since the
clustering problem is of particular interest in large MPR
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Table 1 Running times for the 100 gene families that were
clustered using weighted average support and distance linkage
criteria

Objective Mean runtime (s) Standard deviation (s) # Timeouts
Support 25.70 61.99 5
Distance 266.72 272.71 13

spaces. Some gene families in this set induced over 1012
MPRs. The 100 selected gene trees had between 20 and
299 leaves.

Running times

We used a commodity server (AMD Opteron 6276 2.3
GHz, 503 GB RAM) for our experiments. We used N = 25
for the minimum initial number of clusters since we found
little benefit to using a larger value of N as discussed
below. We set a 20-min timeout for each tree which
resulted in some timeouts. Running times and the number
of timeouts are summarized in Table 1.

Impact of the number of initial clusters

The efficiency of this clustering method depends on using
a relatively small number of initial clusters, denoted by
the parameter N. In theory, starting with a very large
number of clusters (e.g., singleton clusters, each compris-
ing a single MPR) should produce better final clusterings
than starting with a small number of larger initial clusters
since those initial clusters are simply constructed from the
topology of the reconciliation graph and not iteratively by
applying the linkage criterion beginning with clusters of
size one. Thus, we investigated the relationship between
the improvement score and the number of initial clusters.
Specifically, we measured improvement as a function of
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N for k = 2 because k = 2 is the last iteration of the
algorithm and thus incorporates the agglomeration
choices from all previous iterations. The results are sum-
marized in Fig. 2. Figure 3 shows the change in improve-
ment as a function of N. Note that the sharp spike and
drop-off at the right ends of the two plots are due to very
small sample sizes for those values of N and thus should
not be considered in this evaluation. The average change
in improvement is very small across this range of N, indi-
cating that the quality of the clusterings is not strongly
dependent on the number of initial clusters.

Improvement as a function of k

We explored how improvement (the ratio between the
objective function at k clusters versus 1 cluster) changes
as a function of k. These results are summarized in Fig. 4.
For some gene families, improvements were consistently
close to 1.0, meaning that there is not evidence of clus-
ters in their MPR spaces. However, cases in which the
improvement score is relatively large suggest that clusters
exist. Figure 5 shows local improvement of k (the improve-
ment resulting from splitting k — 1 clusters into k clusters).
The values of k that are relatively large indicate
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candidates for an appropriate number of clusters.
Collectively, these results indicate that while some gene
families do not give rise to clusters, a number of gene fam-
ilies appear to have two clusters and some have an even
larger number of clusters.

Impact of the number of mPRs

Figure 6 shows the relationship between the improvement
score (from no clustering to two clusters) and the number
of MPRs. We found that there is no correlation between
improvement score and the number of MPRs, implying
that the presence of clusters is not dependent on the size
of MPR space for this dataset.

Correlation between linkage criteria
Different linkage criteria may result in different cluster-
ings. Figure 7 summarizes the relationship between the
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clusterings using weighted average support and weighted
average distance, using improvement scores to measure
the strength of the relationship. The plot at left in Fig. 7
shows the results of finding two clusters using the average
weighted support criterion and evaluating the improve-
ment in both weighted average support and weighted
average distance on the resulting clusters. The plot at right
in Fig. 7 shows the analogous results when clustering using
the average weighted distance criterion. There is a small
but statistically significant positive correlation between
the two improvement scores (r = 0.43, p = 9.38 x 1079,
n = 95 for clusters obtained using event support, and
r =051, p = 3.87 x 1077, n = 85 for clusters obtained
using pairwise distance). These results indicate that in
some cases, clusters arise regardless of which of the two
linkage criteria are used. However, in general, the two link-
age criteria are sufficiently different that the presence of
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clusters. The third row shows the pairwise distances for k = 3 clusters obtained using the same method. In this case, the initial distribution is
bimodal, suggesting the presence of multiple clusters. For k = 2, the local improvement is 1.48 and both distance distributions are unimodal,
indicating that two clusters were identified. For k = 3, the local improvement is 1.10 and the distributions are remain unimodal, suggesting the

presence of just two clusters
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clusters under one criterion does not necessarily imply
clusters using the other criterion. Further work is required
to assess which linkage criteria are most meaningful and
useful in practice.

cluMPR software tool

A Python implementation of the agglomerative hierar-
chical clustering algorithm is available in the cluMPR
tool (www.cs.hmc.edu/~hadas/clumpr). This tool sup-
ports clustering using the weighted average support and
the weighted average distance linkage criteria, allows for
a median reconciliation to be generated from each clus-
ter as the representative of that cluster, and is extendible
to other linkage criteria. The tool generates various types
of analyses and plots such as those shown in the previous
section.

We conclude with an example of how the cluMPR tool
can be useful and how the results can be interpreted. For
this example, we chose the gene tree (COG1230) from the
100 trees in our sample that gave the largest improvement
for weighted average distance (1.48) for kK = 2. This tree
induced 718848 MPRs.

We used the hierarchical clustering algorithm to cluster
the MPR space using the weighted average distance link-
age criterion. Figure 8 shows the distribution of distances
between all MPRs at the top left. The second row shows
the distribution of pairwise distances for two clusters (k =
2) and the third row shows the pairwise distances for three
clusters (k = 3).

There is strong evidence for two clusters in this exam-
ple since the original bimodal distribution resolves into
two clusters with unimodal distance distributions. How-
ever, the local improvement drops from 1.48 at k = 2 to
1.10 at kK = 3 and the distributions remain unimodal at
k = 3. Moreover, as shown in Fig. 9, the local improve-
ment remains relatively close to 1 for larger values of &,
further supporting the hypothesis that there are not more
than two clusters in this case.

Conclusion and future work

In this paper we have described an agglomerative hierar-
chical clustering methodology for the space of maximum
parsimony reconciliations in the duplication-transfer-loss
model. We have demonstrated this method for two dif-
ferent linkage criteria and have shown that the worst-case
asymptotic running time is polynomial in the sizes of
the trees and the size of the initial clustering. Using the
improvement score measure, we have shown experimen-
tally that this method is effective even for small initial
clusterings. Thus, this approach provides an efficient way
to identify clusters in MPR space. From each cluster, we
can then select one or more representative MPRs (e.g,
median MPRs or maximum average event support MPRs).
Therefore, we believe that this method provides a useful
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way to identify a best set of representative MPRs when
MPR space is too diverse to be adequately represented by
a single MPR.

A number of challenges remain for future work. First,
determining the appropriate number of clusters in an
MPR space remains an important problem. We have
offered one approach using local improvement scores,
but other techniques such as silhouettes [18] and gap
statistics [19] are potentially applicable and merit inves-
tigation. Second, the relative merits of the two linkage
criteria described here, as well as other possible criteria,
also merit exploration and evaluation. Finally, while the
Tree of Life dataset used here is large and diverse, exper-
imental studies using other datasets and event costs are
also of potential interest.
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