
Citation: Radac, M.-B. Trajectory

Tracking within a Hierarchical

Primitive-Based Learning Approach.

Entropy 2022, 24, 889. https://

doi.org/10.3390/e24070889

Academic Editor: Adrian-Mihail Stoica

Received: 31 May 2022

Accepted: 23 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Trajectory Tracking within a Hierarchical Primitive-Based
Learning Approach
Mircea-Bogdan Radac

Department of Automation and Applied Informatics, Politehnica University of Timisoara,
300223 Timisoara, Romania; mircea.radac@upt.ro

Abstract: A hierarchical learning control framework (HLF) has been validated on two affordable
control laboratories: an active temperature control system (ATCS) and an electrical rheostatic braking
system (EBS). The proposed HLF is data-driven and model-free, while being applicable on general
control tracking tasks which are omnipresent. At the lowermost level, L1, virtual state-feedback
control is learned from input–output data, using a recently proposed virtual state-feedback reference
tuning (VSFRT) principle. L1 ensures a linear reference model tracking (or matching) and thus,
indirect closed-loop control system (CLCS) linearization. On top of L1, an experiment-driven model-
free iterative learning control (EDMFILC) is then applied for learning reference input–controlled
outputs pairs, coined as primitives. The primitives’ signals at the L2 level encode the CLCS dynamics,
which are not explicitly used in the learning phase. Data reusability is applied to derive monotonic
and safely guaranteed learning convergence. The learning primitives in the L2 level are finally
used in the uppermost and final L3 level, where a decomposition/recomposition operation enables
prediction of the optimal reference input assuring optimal tracking of a previously unseen trajectory,
without relearning by repetitions, as it was in level L2. Hence, the HLF enables control systems to
generalize their tracking behavior to new scenarios by extrapolating their current knowledge base.
The proposed HLF framework endows the CLCSs with learning, memorization and generalization
features which are specific to intelligent organisms. This may be considered as an advancement
towards intelligent, generalizable and adaptive control systems.

Keywords: virtual state; model reference tracking; temperature control system; electrical braking system;
approximate dynamic programming; neural networks; optimal control; reinforcement learning; state
feedback control; primitives; iterative learning control; data-driven; model-free; hierarchical control

1. Introduction

A hierarchical primitive-based learning framework (HLF) for trajectory tracking has
been proposed and extended recently in [1–3]. Its main goal is to make the control systems
(CSs) capable of extending a current knowledge base of scenarios (or experiences) consisting
of different, memorized tracking tasks, towards new tracking tasks that have not been
seen before. While the knowledge base of tracking tasks is improved repetitively in a trial-
or iterative-based manner with respect to an optimality criterion, it is required that for
new tracking tasks, the unseen-before trajectory is to be optimally tracked without giving
the chance of improvement by repetitions. Therefore, the problem is one where the CS is
required to extrapolate its current knowledge base to new, unseen-before scenarios. It is a
form of generalization ability which is specific to living organisms and can be regarded as
a form of intelligence under the name of cognitive control.

The means to achieve such generalization proposes an HLF approach [3]: first, the
lower level L1 is dedicated to learning output- or state-feedback controllers for the un-
derlying nonlinear system with unknown dynamics. Thus, this is a form of model-free
or data-driven control. The L1 learning aims for ensuring that the closed-loop CS (CLCS)
matches a linear reference model, in response to a given reference input; in addition to

Entropy 2022, 24, 889. https://doi.org/10.3390/e24070889 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24070889
https://doi.org/10.3390/e24070889
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8410-6547
https://doi.org/10.3390/e24070889
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24070889?type=check_update&version=2

Entropy 2022, 24, 889 2 of 23

adding stability, uncertainty robustness and disturbance rejection to the CLCS, it enables a
linear closed-loop behavior which fits the linear superposition principle. The latter allows
for straightforward time and amplitude scaling of the tracking tasks. Moreover, the L1 level
leaves open the possibility of applying a secondary, intermediate learning level L2, over a
linear assumption about the CLCS. L2 learning allows for iterative tracking improvement
by means of trials/iterations/repetitions, which is the well-known approach of the iterative
learning control (ILC) framework. The CLCS’s {reference inputs, controlled outputs} pairs
were coined as primitive pairs, or simply, primitives. The principal aspect about the primi-
tives is that they indirectly encode the reference input-controlled output CLCS dynamics
(or behavior). They are useable in a tertiary (and final, uppermost) L3 learning level, to
optimally predict the best reference input which drives the CLCS’s output towards tracking
a novel desired trajectory; this time without having to re-learn by trials.

Level-wise, it is desirable that the learning in all levels takes place without using ex-
plicit mathematical models [3]. Then, the framework’s generalization resembles intelligent
organisms who do not explicitly solve mathematical equations in their brains in order to
enable such features (intuitively, we think here about the neuro-muscular control behavior
and not about conscience-based cognitive processes developed by humans, which may
involve different abstract representations such as models). The hierarchical primitive-based
framework is detailed as follows.

At level L1, a nonlinear observability property invoked for the underlying controlled
system allows for an equivalent virtual state representation constructed from present and
past input–output data samples. This ultimately renders a virtual state–space transfor-
mation of the original unknown input–output dynamics system, where the virtual states
are fully measurable. This “state” is useable for virtual state-feedback control learning,
to ensure many control objectives, among which the linear model-reference matching (or
tracking) is very popular. Two compatible approaches have recently been proposed in
this context: virtual state-feedback reference tuning (VSFRT) [4] and model-free value
iteration reinforcement learning (MFVIRL) [3–5]. These two approaches share the same
goal of model-reference matching; however, they have very different methodologies and
also some different traits: VSFRT is “one-shot” non-iterative in the learning phase, whereas
MFVIRL is iterative throughout its learning phase. Both are capable of learning (virtual)
state-feedback control, over linearly or nonlinearly parameterized controllers, and over
linear or nonlinear unknown dynamical systems. This is a form of implicit model-free feed-
back linearization where the virtual state-feedback controller learns to cancel the controlled
system nonlinearities in order to make the CLCS behave linearly from the refence input to
the controlled output. Some recent applications with stability and convergence guarantees
for these two techniques are mentioned in [4] for VSFRT and in [5,6] for MFVIRL. We
keep in mind that VSFRT stems from the original popular VRFT approach in control sys-
tems [7–12], whereas MFVIRL is a reinforcement Q-learning approach from the well-known
reinforcement learning framework [13–18], which is common both with artificial intelli-
gence research [19–22] and with classical control with a focus on theoretical research [23–30]
and applications [31–36].

The L2 level learning process relies on the CLCS linearity, allowing for the application
of one variant of ILC which is agnostic to the CLCS dynamics, called the experiment-driven
model-free ILC (EDMFILC) [1–3]. This technique belongs to the popular data-driven ILC
approaches [37–42] as part of data-driven research [43–47]. Here, the convergence analysis
selects a conservative learning gain, based on equivalent CLCS models resulting from the
actual reference model and from identified models based on the reusable input–output data.

The L3 level learning brings the idea of motion primitives from robotics towards
generalized tracking behavior. There are many known approaches to primitive-based
tracking control, both older and more recent [48–52]. Their taxonomy is not studied here
because it has been reviewed elsewhere, e.g., in [1–3]. Most of these approaches rely
on learning control principles in various settings, ranging from security-enabled control
system [53,54] to learning control in uncertain environments [55,56] and even iterative

Entropy 2022, 24, 889 3 of 23

learning approach to model predictive control [57]. In the proposed HLF, the primitives
are copied, extended, delayed and padded for use, according to the linearity superposition
principle, to predict the optimal reference input. It is therefore the superposition principle
which ultimately grants the CLCS’s generalization ability.

Some appealing features of the primitive-based HLF are enumerated:

- Capability to deal with multivariable MIMO systems in level L1 and with MIMO
CLCS in level L2 was proven in previous studies.

- Theoretical convergence and stability guarantee at all learning levels, via different
mechanisms. This is based on common data-driven assumptions in level L1, on
data reusability at level L2 and on approximation error boundedness assumptions in
level L3.

- Ability to deal with desired trajectories of varying length at level L3.
- Ability to handle inequality-type, amplitude- and rate-constraints on the output

trajectory indirectly in a soft-wise style, by desired trajectory clipping at level L3 and
by good linear model reference matching in level L1.

- Displaying intelligent reasoning based on memorization, learning, feedback used
on different levels, adaptability and robustness and generalization from previously
accumulated experience to infer optimal behavior towards new unseen tasks. These
traits make the framework cognitive-based.

The HLF has been validated on a number of complex nonlinear mono- and multi-
variable systems such as: an aerodynamic system [4], robotic arm [2], electrical voltage
control [1,3]. This paper’s goal is to prove the framework’s applicability and effectiveness
on other applications which are very different in nature: the active temperature control
system (ATCS) and the electrical braking system (EBS). Both ATCS and EBS have wide in-
dustrial occurrence; therefore, they impact many potential applications. Hopefully, this will
elucidate more about the framework’s generalization ability and bring the CSs a step closer
to the desirable features of intelligent control: learnability, adaptability, generalization
and robustness in harsh environments. The realistic experimental validation on hardware
shows that the HLF’s intermediate levels exhibit robustness against noise, against the
CLCS’s approximate linear behavior and against the varying desired trajectory’s settings
such as length and constraints. As a secondary objective, the proposed HLF shows that
modern machine learning methods (supervised learning in particular) leverage control
system techniques to reach capabilities beyond their classical scope. To this end, a long
short-term memory (LSTM) nonlinear recurrent neural network (NN) controller was used
for the first time with the VSFRT approach. The resulting nonlinear controller showed
superior behavior with respect to a plain feedforward NN controller, which was trained
with the same VSFRT principle. The explanation lies with the LSTM’s ability to learn
longer-term dependencies for time sequences. Function approximation theory is again
employed in the third level (level L3) for predicting optimized reference inputs in the
context of dynamical systems.

This paper discusses basic theoretical assumptions about the controlled systems and
introduces the model reference control problem in Section 2. Application of the proposed
primitive-based learning framework to the ATCS is detailed in Section 3, whereas the
application to the EBS is presented in Section 4. Concluding remarks are outlined in
Section 5.

2. Model Reference Control with Virtual State-Feedback
2.1. The Unknown Dynamic System Observability

The nonlinear unknown controlled system has the input–output discrete-time descrip-
tion (k indexes time sample):

yk = f
(

yk−1, . . . , yk−ny, uk−1, . . . , uk−nu

)
, (1)

fulfilling the following assumptions:

Entropy 2022, 24, 889 4 of 23

A1. The input uk = [uk,1, . . . , uk,mu]
T ∈ ΩU ⊂ Rmu has known domain ΩU , and the

output yk = [yk,1, . . . , yk,my]
T ∈ ΩY ⊂ Rmy has known domain ΩY.

A2. The positive orders ny, nu are unknown integers.
A3. The nonlinear map f : ΩY × . . .×ΩY ×ΩU × . . .×ΩU → ΩY is continuously

differentiable and unknown.
A4. (1) has an equivalent minimal state–space nonlinear realization.{

σk+1 = g(σk, uk),
yk = h(σk),

(2)

where σk = [σk,1 . . . σk,n]
T ∈ ΩΣ ⊂ Rn is the system’s state of unknown order n and

unknown domain ΩΣ, which is again unmeasured.
A5. The nonlinear system (1) is input–output-controllable and the pair (g, h) is observable.

Definition 1 [3]. The unknown observability index of (1) is the minimal value τmin of τ for which

state σk is fully recoverable from the I/O measurement vectors Yk,k−τ = [(yk)
T . . . (yk−τ)

T]
T

,

Uk−1,k−τ = [(uk−1)
T , . . . ,(uk−τ)

T]T . This index has the same role as with observable linear sys-
tems.

Theorem 1. There exists a virtual state–space representation.{
sk+1 = g(sk, uk),
yk = sk,1,

(3)

where g is a partially unknown system function and sk = [(Yk,k−τ)
T , (Uk−1,k−τ)

T]
T ∆

=[
(sk,1)

T , (sk,2)
T , . . . , (sk,2τ+1)

T
]T
∈ ΩY × . . .×ΩY︸ ︷︷ ︸

τ+1 times

×ΩU × . . .×ΩU︸ ︷︷ ︸
τ times

,ΩS ⊂ Rmy(τ+1)+muτ

is called the virtual state from whose definition it clearly results that sk,1 = yk, . . . , sk,2τ+1 = uk−τ .
Additionally, sk is an alias for σk from another dimension/space, being related through an unknown
transformation σk = T (sk).

Proof of Theorem 1 . Proof is based on Theorem 1 from [6] using assumptions A1–A5.
Observation 1. The virtual state–space (3) is fully state-measurable.
Observation 2. The virtual state–space model (3) is input–output-controllable and has

the same input–output behavior of (1) and (2).
Observation 3. Input delays in (1) can still lead to transformations (3) by the appropriate

introduction of additional states. Time delay affects the relative degree of the basic system
(1) and can be measured from input–output data. To accommodate this case, another
assumption follows.

A6. The system’s (1) relative degree is known.
For the subsequent output model reference tracking design, the minimum-phase

assumption about the system (1) is also enforced. The motivation is that the non-minimum-
phase behavior is more troublesome to handle within the model reference control with
unknown system dynamics.

Observation 4. The size of sk built from input–output historical data can be much
greater than the size of the true state vector σk. Dimensionality reduction techniques
specific to machine learning, such as principal component analysis (PCA) or autoencoders
(AEs) are employed to retain the relevant transformed features emerging from the virtual
state sk [4] �.

Entropy 2022, 24, 889 5 of 23

2.2. The Reference Model

A linear, strictly causal reference model described in state–space form is presented as{
sRM

k+1 = AsRM
k + Bρk,

yRM
k = CsRM

k ,
(4)

where sRM
k = [sRM

k,1 , . . . , sRM
k,nm

]
T ∈ ΩSRM ⊂ Rnm is the nm-dimensional reference model state,

ρk = [ρk,1, . . . , ρk,my]
T ∈ Ωρ ⊂ Rmy simultaneously excites the reference model and the

CLCS and there is a one-to-one relationship between the components of ρk, yk, yRM
k , where

yRM
k = [yRM

k,1 , . . . , yRM
k,my

]
T ∈ ΩYRM ⊂ Rmy : each component of ρk drives a corresponding

component from yk and yRM
k , respectively. Assuming an input–output pulse transfer matrix

yRM
k = M(q)ρk, q−1 is the one step delay operator operating on discrete-time signals.

For the model reference control, M(q) must carefully consider the non-minimum-
phase behavior of (1) together with its relative degree and bandwidth. These are classical
requirements for the model reference control problem where the controller tuning for
the nonlinear system (1) should make its output yk track yRM

k when both the CLCS and
the reference model are excited by ρk. M(q) is mostly diagonal, to obtain decoupled
control channels.

2.3. The Model Reference Control

The model reference control tracking problem can formally be written as the optimal
infinite-horizon control [3]

u∗k = argmin
uk

V∞
RM(uk),

V∞
RM(uk) = ∑∞

k=0
∣∣∣∣yk(uk)− yRM

k

∣∣∣∣2
2,

s.t. dynamics (3) (or (1)) + (4).
(5)

In (5), V∞
RM is the cost function measuring the deviation of the CLCS output from

that of the reference model output. The closed-form VSFRT solution to (5) is expressed as
uk = C

(
sext

k
)
, with C(.) being a linear/nonlinear map over an extended state comprising of

sext
k =

[
sT

k , ρT
k
]T . Both sk and ρk will be replaced by their offline calculated counterparts

s̃k and ρ̃k following the VSFRT principle. Problem (5) is indirectly solved as the next
equivalent controller identification problem [3,4]

π∗ = argmin
π

VN
VR(π),

VN
VR(π) = 1

N

N
∑

k=1

∣∣∣∣uk − C
(
sext

k , π
)∣∣∣∣2,

(6)

where π is the controller function parameter leading to notation C
(
sext

k , π
)

(here, the
controller can be an NN or other type of approximator) [4,5]. In [4,5], it was motivated
why the reference model state sRM

k should not be included within sext
k because the former

correlates with ρk. Additionally, [4] proposed theoretical stability analysis of the CLCS
with the resulting controller and how the VN

VR from (6) and V∞
RM from (5) are related. For

other solutions to the model reference tracking problem (5), such as reinforcement learning,
a different sext

k is required in order to ensure the MDP assumptions about the controlled
process [1,3–6].

After solving the model reference control problem at level L1, learning level L2 takes
place, using the EDMFILC strategy. The intention is to learn the primitive pairs in this
level and use them to populate the primitive’s library. The proposed three-levelled HLF
is completed with the final level, L3. Here, the primitive outputs of the learned pairs are
used for decomposing the desired new trajectory, whereas the primitive inputs are used to
recompose the optimized reference input [1–3]. The HLF architecture is captured in the
diagram in Figure 1.

Entropy 2022, 24, 889 6 of 23

Entropy 2022, 24, x FOR PEER REVIEW 6 of 24

After solving the model reference control problem at level L1, learning level L2 takes
place, using the EDMFILC strategy. The intention is to learn the primitive pairs in this
level and use them to populate the primitive’s library. The proposed three-levelled HLF
is completed with the final level, L3. Here, the primitive outputs of the learned pairs are
used for decomposing the desired new trajectory, whereas the primitive inputs are used
to recompose the optimized reference input [1–3]. The HLF architecture is captured in the
diagram in Figure 1.

Figure 1. The three-levelled HLF.

3. The Active Temperature Control System
3.1. System Description

The active temperature control system (ACTS) is an Arduino-centered device dedi-
cated to temperature control in a room-controlled temperature environment [58]. It has an
active heating module in terms of a TIP31C power transistor. Additionally, an active
cooler in terms of a fan relying on a DC motor with nominal characteristic consumptions
of 0.5 amps (A) at about 120 revolutions per second. Using an analogue temperature meas-
uring sensor based on LM35DZ, the main power transistor’s temperature is read and used
for feedback control. The equipment is small in scale and is depicted in Figures 2 and 3. A
single power supply of 12 volts and maximum 2 amps is used from a commercially avail-
able DC–DC buck–boost converter. The power supply alternatively drives the power tran-
sistor and the DC fan via control logic: only one element is active at a time. Both elements
are driven by pulse width modulation (PWM).

Figure 1. The three-levelled HLF.

3. The Active Temperature Control System
3.1. System Description

The active temperature control system (ACTS) is an Arduino-centered device dedi-
cated to temperature control in a room-controlled temperature environment [58]. It has
an active heating module in terms of a TIP31C power transistor. Additionally, an active
cooler in terms of a fan relying on a DC motor with nominal characteristic consumptions of
0.5 amps (A) at about 120 revolutions per second. Using an analogue temperature measur-
ing sensor based on LM35DZ, the main power transistor’s temperature is read and used
for feedback control. The equipment is small in scale and is depicted in Figures 2 and 3.
A single power supply of 12 volts and maximum 2 amps is used from a commercially
available DC–DC buck–boost converter. The power supply alternatively drives the power
transistor and the DC fan via control logic: only one element is active at a time. Both
elements are driven by pulse width modulation (PWM).

The fan control circuit uses a 1N4001 protection diode and a BC637 (up to 1.5 watts)
transistor which allows for varying fan speed, thus accelerating the cooling process by heat
dissipation (which otherwise would be a slow process given the system’s nature).

The heater is the power transistor itself, capable of a maximum 40 watts and gradually
controlling its temperature through the PWM switching logic. A heatsink is attached to the
TIP31C’s body to better dissipate heat, while the LM35DZ temperature sensor is physically
connected to the power transistor using thermal paste for better heat transfer.

Entropy 2022, 24, 889 7 of 23
Entropy 2022, 24, x FOR PEER REVIEW 7 of 24

Figure 2. Schematic diagram of the ATCS (adapted from [58]).

Figure 3. Illustration of the realized ATCS hardware.

The fan control circuit uses a 1N4001 protection diode and a BC637 (up to 1.5 watts)
transistor which allows for varying fan speed, thus accelerating the cooling process by
heat dissipation (which otherwise would be a slow process given the system’s nature).

The heater is the power transistor itself, capable of a maximum 40 watts and gradu-
ally controlling its temperature through the PWM switching logic. A heatsink is attached
to the TIP31C’s body to better dissipate heat, while the LM35DZ temperature sensor is
physically connected to the power transistor using thermal paste for better heat transfer.

A sampling time 𝑇௦ of 20 s is sufficient to capture the ATCS’s dynamics. The
TIP31C’s surface temperature is measured as the voltage 𝑉௨௧ of the analogue sensor and
then converted via the Arduino’s ADC port #0. Finally, the controlled output 𝑦[°C/100]
is just the normalized equivalent temperature in degrees Celsius divided by 100 and used
for feedback control. The control to the heater and cooler transistors uses the PWM output
ports (herein, ports #3 and #5) from Arduino. The alternating high-level switching logic
activating the cooler/heater (just one at a time) uses the equation [58]

Figure 2. Schematic diagram of the ATCS (adapted from [58]).

Entropy 2022, 24, x FOR PEER REVIEW 7 of 24

Figure 2. Schematic diagram of the ATCS (adapted from [58]).

Figure 3. Illustration of the realized ATCS hardware.

The fan control circuit uses a 1N4001 protection diode and a BC637 (up to 1.5 watts)
transistor which allows for varying fan speed, thus accelerating the cooling process by
heat dissipation (which otherwise would be a slow process given the system’s nature).

The heater is the power transistor itself, capable of a maximum 40 watts and gradu-
ally controlling its temperature through the PWM switching logic. A heatsink is attached
to the TIP31C’s body to better dissipate heat, while the LM35DZ temperature sensor is
physically connected to the power transistor using thermal paste for better heat transfer.

A sampling time 𝑇௦ of 20 s is sufficient to capture the ATCS’s dynamics. The
TIP31C’s surface temperature is measured as the voltage 𝑉௨௧ of the analogue sensor and
then converted via the Arduino’s ADC port #0. Finally, the controlled output 𝑦[°C/100]
is just the normalized equivalent temperature in degrees Celsius divided by 100 and used
for feedback control. The control to the heater and cooler transistors uses the PWM output
ports (herein, ports #3 and #5) from Arduino. The alternating high-level switching logic
activating the cooler/heater (just one at a time) uses the equation [58]

Figure 3. Illustration of the realized ATCS hardware.

A sampling time Ts of 20 s is sufficient to capture the ATCS’s dynamics. The TIP31C’s
surface temperature is measured as the voltage Vout of the analogue sensor and then
converted via the Arduino’s ADC port #0. Finally, the controlled output yk[

◦C/100] is just
the normalized equivalent temperature in degrees Celsius divided by 100 and used for
feedback control. The control to the heater and cooler transistors uses the PWM output
ports (herein, ports #3 and #5) from Arduino. The alternating high-level switching logic
activating the cooler/heater (just one at a time) uses the equation [58]{

Vi1 = max(min(0.2 + |u|, 1), 0)× 5V, Vi2 = 0V, when u ≥ 0,
Vi1 = 0V, Vi2 = max(min(0.15 + |u|, 1), 0)× 5V, when u < 0.

(7)

In the above equation, Vi1 and Vi2 are the voltages controlling the heater and the
cooler, respectively (see Figure 3), whereas the thresholds 0.15 and 0.2 compensate the dead-
zones in the cooler and heater, respectively. The TIPC31C does not drive the current below
1 V (hence, no heat is produced) and the fan DC motor does not spin for a voltage supply
under 0.75 V. Equation (2) ensures proper saturation of the voltages per min, max functions.

Entropy 2022, 24, 889 8 of 23

The term u from (2) represents the signed a-dimensional control input uk ∈ [−1; 1], which
interprets a duty cycle of the two PWMs, with the sign ensuring alternate functioning of
the heater and the cooler, respectively.

Next, the input–output data collection step, intended for the virtual state feedback
control learning process, is unveiled.

3.2. ATCS Input–Output Data Collection for Learning Low-Level L1 Control Dedicated to Model
Reference Tracking

The open-loop input–output data collection uses a signal uk described as piece-wise
constant whose levels are randomly distributed in the range [−0.3; 0.8]. The switching
period of these levels is 2200 s (the system has high inertia, being a thermal process). To
capture all relevant dynamics of the system, the exploration is stimulated by an additive
noise similarly modelled as the base signal. The noise levels were uniformly distributed
in [−0.5; 0.5] and its switching period being 100 s. The resulting input–output data are
presented in Figure 4 for N = 4000 samples.

Entropy 2022, 24, x FOR PEER REVIEW 8 of 24

൜ 𝑉ଵ = 𝑚𝑎𝑥(𝑚𝑖𝑛(0.2 + |𝑢|, 1) , 0) × 5𝑉, 𝑉ଶ = 0𝑉, 𝑤ℎ𝑒𝑛 𝑢 ≥ 0,𝑉ଵ = 0𝑉, 𝑉ଶ = 𝑚𝑎𝑥(𝑚𝑖𝑛(0.15 + |𝑢|, 1) , 0) × 5𝑉, 𝑤ℎ𝑒𝑛 𝑢 < 0. (7)

In the above equation, 𝑉ଵ and 𝑉ଶ are the voltages controlling the heater and the
cooler, respectively (see Figure 3), whereas the thresholds 0.15 and 0.2 compensate the
dead-zones in the cooler and heater, respectively. The TIPC31C does not drive the current
below 1 V (hence, no heat is produced) and the fan DC motor does not spin for a voltage
supply under 0.75 V. Equation (2) ensures proper saturation of the voltages per min, max
functions. The term 𝑢 from (2) represents the signed a-dimensional control input 𝑢 ∈[−1; 1], which interprets a duty cycle of the two PWMs, with the sign ensuring alternate
functioning of the heater and the cooler, respectively.

Next, the input–output data collection step, intended for the virtual state feedback
control learning process, is unveiled.

3.2. ATCS Input–Output Data Collection for Learning Low-Level L1 Control Dedicated to
Model Reference Tracking

The open-loop input–output data collection uses a signal 𝑢 described as piece-wise
constant whose levels are randomly distributed in the range [−0.3; 0.8]. The switching
period of these levels is 2200 s (the system has high inertia, being a thermal process). To
capture all relevant dynamics of the system, the exploration is stimulated by an additive
noise similarly modelled as the base signal. The noise levels were uniformly distributed
in [−0.5; 0.5] and its switching period being 100 s. The resulting input–output data are
presented in Figure 4 for 𝑁 = 4000 samples.

Figure 4. Input–output data collected from the ATCS.

To learn a model-free controller using the collected input–output data, the VSFRT
procedure is applied, as thoroughly described in [2,4,58]. The VSFRT paradigm ensures
the procedure for designing a linear (or nonlinear) virtual state-feedback controller which
matches the closed-loop control system to a reference model.

First, a reference model is selected as 𝑀(𝑠) = 1/(500𝑠 + 1) (𝑠 is the continuous-time
transfer function Laplace domain operator). Its selection is qualitative, based on several
key observations: the ATCS is highly damped, it has no dead-time either with respect to
the data acquisition process nor with its intrinsic dynamics, its bandwidth is matched with
the natural open-loop ATCS’s bandwidth, being slightly higher (faster response on closed-
loop than in open-loop which is common sense for the control). This refence model is

0 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.5

0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000

0.4

0.6

0.8

1

Figure 4. Input–output data collected from the ATCS.

To learn a model-free controller using the collected input–output data, the VSFRT
procedure is applied, as thoroughly described in [2,4,58]. The VSFRT paradigm ensures
the procedure for designing a linear (or nonlinear) virtual state-feedback controller which
matches the closed-loop control system to a reference model.

First, a reference model is selected as M(s) = 1/(500s + 1) (s is the continuous-time
transfer function Laplace domain operator). Its selection is qualitative, based on several
key observations: the ATCS is highly damped, it has no dead-time either with respect to the
data acquisition process nor with its intrinsic dynamics, its bandwidth is matched with the
natural open-loop ATCS’s bandwidth, being slightly higher (faster response on closed-loop
than in open-loop which is common sense for the control). This refence model is discretized
using zero-order hold for a sampling interval of 20 s, to render the discrete-time filter M(q).
The fact that M(q) is linear indirectly requires the virtual state-feedback controller to render
a linear CLCS over the ATCS.

Then, the steps below are followed, in order:
Step 1. Define the observability index τ = 2, and form the trajectory {uk, yk, s̃k}, where

the virtual state s̃k = [yk, yk−1, yk−2, uk−1, uk−2] is built by assuming that the nonlinear
ATCS is observable. Using the discrete time index k = 1, N, a total number of 3998 tuples
of the form {uk, yk, s̃k} are obtained.

Entropy 2022, 24, 889 9 of 23

Step 2. The virtual reference input is computed as ρ̃k = M−1(q)y f
k , where y f

k is the low-
pass-filtered version of yk through the filter 0.45

1−0.55q−1 , because yk is slightly noisy. Notably,

M−1(q) involves a non-causal filtering operation which is not problematic because it is
performed offline.

Step 3. Construct the regressor state as sext
k =

[
s̃T

k , 1, ρ̃k

]T
, 1 ≤ k ≤ 3998. The constant

“1” is added into the regressor to allow for the offset coefficient identification, leading to a
linear affine virtual state-feedback controller.

Step 4. Parameterize the virtual state-feedback controller in a linear fashion, as
uk = KTsext

k . The VSFRT goal is to achieve model reference matching by indirectly solving
the controller identification problem [2,4,53]

K∗ = argmin
K

VN
VR(K), VN

VR(K) =
1
N

N

∑
k=1

∣∣∣∣∣∣uk −KTsext
k

∣∣∣∣∣∣2. (8)

Step 5. The problem (8) is posed as an overdetermined linear system of equations
(
sext

1
)T

. . .(
sext

N
)T

K =

u1
. . .
uN

⇔ M1K = M2, (9)

and solved accordingly as K∗ =
(
M1

TM1
)−1MT

1 M2.
Following the previous steps, the linear virtual state-feedback compensator matrix is

K∗ = [−8.532,−1.9441, 9.8722, 0.5199, 0.4131, 1.0127]T ∈ <6, where the fifth value 0.4131
represents the offset gain. Testing the controller in closed loop shows the behavior in
Figure 5.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 24

discretized using zero-order hold for a sampling interval of 20 s, to render the discrete-
time filter 𝑀(𝑞). The fact that 𝑀(𝑞) is linear indirectly requires the virtual state-feedback
controller to render a linear CLCS over the ATCS.

Then, the steps below are followed, in order:
Step 1. Define the observability index 𝜏 = 2 , and form the trajectory {𝑢, 𝑦, 𝒔} ,

where the virtual state 𝒔 = [𝑦, 𝑦ିଵ, 𝑦ିଶ, 𝑢ିଵ, 𝑢ିଶ] is built by assuming that the non-
linear ATCS is observable. Using the discrete time index 𝑘 = 1, 𝑁തതതതത, a total number of 3998
tuples of the form {𝑢, 𝑦, 𝒔} are obtained.

Step 2. The virtual reference input is computed as 𝜌 = 𝑀ିଵ(𝑞)𝑦, where 𝑦 is the
low-pass-filtered version of 𝑦 through the filter .ସହଵି.ହହషభ, because 𝑦 is slightly noisy.
Notably, 𝑀ିଵ(𝑞) involves a non-causal filtering operation which is not problematic be-
cause it is performed offline.

Step 3. Construct the regressor state as 𝒔௫௧ = [𝒔், 1, 𝜌]், 1 ≤ 𝑘 ≤ 3998. The constant
“1” is added into the regressor to allow for the offset coefficient identification, leading to
a linear affine virtual state-feedback controller.

Step 4. Parameterize the virtual state-feedback controller in a linear fashion, as 𝑢 =𝑲்𝒔௫௧. The VSFRT goal is to achieve model reference matching by indirectly solving the
controller identification problem [2,4,53]

𝑲∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑲 𝑉ோே (𝑲), 𝑉ோே (𝑲) = 1𝑁 ||𝑢 − 𝑲்𝒔௫௧||ଶே
ୀଵ . (8)

Step 5. The problem (8) is posed as an overdetermined linear system of equations

(𝒔ଵ௫௧)்…(𝒔ே௫௧)்൩ 𝑲 = 𝑢ଵ…𝑢ே൩ ⇔ 𝑴𝟏𝑲 = 𝑴𝟐, (9)

and solved accordingly as 𝑲∗ = ൫𝑴𝟏்𝑴𝟏൯ିଵ𝑴𝟏𝑴𝟐.
Following the previous steps, the linear virtual state-feedback compensator matrix is 𝑲∗ = [−8.532, −1.9441, 9.8722, 0.5199, 0.4131, 1.0127]் ∈ ℜ , where the fifth value 0.4131 represents the offset gain. Testing the controller in closed loop shows the behavior

in Figure 5.

Figure 5. ATCS control test employing the virtual state-feedback linear compensator 𝑲∗. The red
line is the reference input and the blue line is the reference model’s output, whereas the actual
CLCS’s output 𝑦 is in black.

0 500 1000 1500 2000 2500
-0.2

0

0.2

0.4

0 500 1000 1500 2000 2500

0.3

0.4

0.5

0.6

Figure 5. ATCS control test employing the virtual state-feedback linear compensator K∗. The red line
is the reference input and the blue line is the reference model’s output, whereas the actual CLCS’s
output yk is in black.

A satisfactory model reference tracking performance is achieved, as seen in Figure 5,
thus ensuring indirect CLCS feedback linearization. The VSFRT controller is only lin-
ear; however, nonlinear structures such as NNs have intensively been employed [2,4].
Uniformly ultimately bounded (UUB) stability of the CLCS with the proposed nonlinear
VSFRT controllers was analyzed according to Theorem 1 and Corollary 1 from [4]. The

Entropy 2022, 24, 889 10 of 23

learned process is also one-shot, and no iterations are performed similarly to other learning
paradigms such as value iteration reinforcement Q-learning [1,3,5,53].

3.3. Intermediate L2 Level Primitives Learning with EDMFILC

The closed-loop feedback control system is treated as a linear dynamical system
from the reference input ρk to the controlled output yk. To apply the primitive-based
prediction mechanism for high-performance tracking without learning by repetitions,
the primitives (the pairs of reference inputs–controlled outputs) must be learned in the
first instance. The reason is that the primitive outputs must describe a shape having
good approximation capacity (e.g., a Gaussian shape or others, according to the function
approximation theory). This is enabled by employing the EDMFILC theory to learn such
primitive pairs by trials/iterations/repetitions. This is only achieved once, to populate the
library of primitives, after which the optimized reference input prediction does not require
relearning by repetition.

The EDMFILC theory has been developed for linear multi-input, multi-output (MIMO)
systems [1–3]. In the case of the SISO ATCS, the EDMFILC is particularized as follows.

Let the ATCS closed-loop reference input at the current iteration be defined, in lifted (or super-

vectorial) notation spanning an N-samples experiment, as Rj = [ρ
j
1, ρ

j
2, . . . , ρ

j
N]

T
∈ RN×1,

where ρ
j
k is the kth sample from the reference input of iteration j. Similarly, define

Yj = [yj
1, yj

2, . . . , yj
N]

T
∈ RN×1, where yj

k is the kth sample from the ATCS’s output at itera-

tion j. The iteration–invariant desired trajectory is defined as Yd = [yd
1, yd

2, . . . , yd
N]

T ∈ RN×1,
where yd

k is the kth sample from the desired output, constant for all iterations. Additionally,

Ej = [ej
1 = yj

1 − yd
1, . . . , ej

N = yj
N − yd

N]
T
∈ RN×1, where ej

k is the kth sample of the output
tracking error at iteration j. Non-zero initial conditions, delays, offsets and non-minimum-
phase responses must be properly considered when defining the desired trajectory.

The optimal reference input ρ∗k (R∗ in lifted notation) ensuring zero tracking error is
iteratively searched, using the gradient descent update law

Rj+1 = Rj − χ
∂J
(

Rj
)

∂R
, (10)

where χ is the positive definite learning gain and
∂J(Rj)

∂R is the gradient of the cost function
J(R) = 1

N ‖E(R)‖2
2 with respect to its argument R, evaluated at the current iteration refer-

ence input vector Rj. This cost function penalizes the tracking error over the entire trial.
For linear systems, the gradient is experimentally obtainable in a model-free manner, as
shown by the application steps of the EDMFILC [3]:

Step 1. R0 = Yd is the initialized reference input. With each iteration j, follow the
next steps.

Step 2. Set Rj as reference input to the closed-loop ATCS and record the current
iteration tracking error Ej = Yj − Yd. Let this be the nominal experiment.

Step 3. Upside-down flip Ej to result in ud f
(

Ej
)

.

Step 4. Scale ud f
(

Ej
)

in amplitude by the scalar multiplication gain µ.

Step 5. Use µ · ud f
(

Ej
)

as an additive disturbance for the current iteration reference

Rj. Use Rj + µ · ud f
(

Ej
)

as the reference input to what is called “the gradient experiment”

and record the output Yj
G from this non-nominal experiment.

Step6. Asshownin[3], thegradient in(10) iscomputableas
∂J(Pj)

∂P = 2
N ·ud f

(
1/µ ·

(
Yj

G −Yj
))

.

Step 7. Update Rj based on (10).
Step 8. Repeat from Step 2 until the maximum number of iterations is reached or the

gradient norm ‖ ∂J(Rj)
∂R ‖2 is below some predefined threshold.

Entropy 2022, 24, 889 11 of 23

After Step 8, the learned primitive
{

Rj, Yj
}

is stored in the library as
{

R[m], Y[m]
}

,

with m indexing the mth primitive. Here, R[m] is the mth primitive input, whereas Y[m] is
the mth primitive output.

The choice of the learning gain factor χ was proposed in [1–3], such that it ensures safe
learning convergence. The reference input and the controlled output data from the closed-
loop test of Figure 5 allow for the identification of a linear output-error (OE) approximation
model T(q) of the closed-loop ATCS. Furthermore, M(q) is another good approximation
model of the closed-loop ATCS, resulting via the model reference matching solved via
VSFRT. Then, we solve

χ∗1 = argmax
χ1

χ1, s.t.

χ1 > 0, ‖1− 2
N T(q)χ1T

(
1
q

)
‖∞ < 1,

χ∗2 = argmax
χ2

χ2, s.t.

χ2 > 0, ‖1− 2
N M(q)χ2M

(
1
q

)
‖∞ < 1,

χ∗ = min(χ1, χ2),

(11)

to obtain the value χ∗ = 99.76 which, for the closed-loop ATCS, is the most conservative
learning gain that ensures zero tracking error in the long-term iteration domain, when
applying EDMFILC.

For the ATCS, two primitives are learned by EDMFILC. Experiments are performed in
a room with a controlled temperature environment, ensuring strong repeatability. The first
primitive is defined by the desired trajectory yd

k = 0.4 + 0.2e−(k·Ts−1000)2/50000, 1 ≤ k ≤ 100,
having Gaussian shape and lasting for 2000 s in the 20-s sampling period. The factor 0.4
defines the operating point (corresponding to 40 ◦C), the factor 0.2 sets the Gaussian height,
the factor 1000 sets the Gaussian center and the factor 50,000 sets its time-width. The
scaling factor for the upside-down flipped error in the gradient experiment is µ = 3, for a
maximum of 40 EDMFILC iterations.

The second learned primitive is defined by the desired trajectory yd
k = 0.4 − 0.1

e−(k·Ts−1000)2/50000, 1 ≤ k ≤ 100, again having a Gaussian shape, but this time pointing
downwards. All the parameters preserve the same interpretation from the first primitive.
The learning gain and the scaling factor are the same. The resulting learning history is
shown in Figure 6 for 30 iterations.

Entropy 2022, 24, x FOR PEER REVIEW 11 of 24

Step 7. Update 𝑹 based on (10).
Step 8. Repeat from Step 2 until the maximum number of iterations is reached or the

gradient norm ฯడ൫𝑹ೕ൯డ𝑹 ฯଶis below some predefined threshold.

After Step 8, the learned primitive {𝑹, 𝒀} is stored in the library as {𝑹[], 𝒀[]},
with 𝑚 indexing the mth primitive. Here, 𝑹[] is the mth primitive input, whereas 𝒀[]
is the mth primitive output.

The choice of the learning gain factor 𝜒 was proposed in [1–3], such that it ensures
safe learning convergence. The reference input and the controlled output data from the
closed-loop test of Figure 5 allow for the identification of a linear output-error (OE) ap-
proximation model 𝑇(𝑞) of the closed-loop ATCS. Furthermore, 𝑀(𝑞) is another good
approximation model of the closed-loop ATCS, resulting via the model reference match-
ing solved via VSFRT. Then, we solve 𝜒ଵ∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥ఞభ 𝜒ଵ , 𝑠. 𝑡. 𝜒ଵ > 0, ቛ1 − ଶே 𝑇(𝑞)𝜒ଵ𝑇 ቀଵቁቛஶ < 1, 𝜒ଶ∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥ఞమ 𝜒ଶ , 𝑠. 𝑡. 𝜒ଶ > 0, ቛ1 − ଶே 𝑀(𝑞)𝜒ଶ𝑀 ቀଵቁቛஶ < 1, 𝜒∗ = 𝑚𝑖𝑛(𝜒ଵ, 𝜒ଶ),

(11)

to obtain the value 𝜒∗ = 99.76 which, for the closed-loop ATCS, is the most conservative
learning gain that ensures zero tracking error in the long-term iteration domain, when
applying EDMFILC.

For the ATCS, two primitives are learned by EDMFILC. Experiments are performed
in a room with a controlled temperature environment, ensuring strong repeatability. The
first primitive is defined by the desired trajectory 𝑦ௗ = 0.4 + 0.2𝑒ି(⋅ ೞ்ିଵ)మ/ହ, 1 ≤𝑘 ≤ 100, having Gaussian shape and lasting for 2000 s in the 20-s sampling period. The
factor 0.4 defines the operating point (corresponding to 40 ∘C), the factor 0.2 sets the
Gaussian height, the factor 1000 sets the Gaussian center and the factor 50,000 sets its time-
width. The scaling factor for the upside-down flipped error in the gradient experiment is 𝜇 = 3, for a maximum of 40 EDMFILC iterations.

The second learned primitive is defined by the desired trajectory 𝑦ௗ = 0.4 −0.1𝑒ି(⋅ ೞ்ିଵ)మ/ହ, 1 ≤ 𝑘 ≤ 100, again having a Gaussian shape, but this time pointing
downwards. All the parameters preserve the same interpretation from the first primitive.
The learning gain and the scaling factor are the same. The resulting learning history is
shown in Figure 6 for 30 iterations.

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0 20 40 60 80 100
0.3

0.35

0.4

Figure 6. The second learned primitive: initial reference input ρ0
k and corresponding output y0

k are
in black lines; the desired trajectory yd

k is in blue; the final ρ30
k and y30

k are in red. The intermediate
trajectories throughout the learning phase are in grey.

From the implementation viewpoint, each trial requires repeatability of the initial
conditions, i.e., to reach the vicinity of the initial temperature of the desired profile yd

k , after

Entropy 2022, 24, 889 12 of 23

which, the data logging starts. Although the closed-loop ATCS is not perfectly linear, but
rather, smooth and nonlinear, the EDMFILC is applicable and robust to such behavior. It
is a pure data-driven technique relying on input–output data to learn trajectory tracking
by repetitions/trials. The resulting primitive pairs are

{
R[1], Y[1]

}
and

{
R[2], Y[2]

}
and are

memorized in the primitives’ library. They are called the original primitives. Each original
primitive contains the reference input and the closed-loop ATCS controlled output from the
last EDMFILC iteration. Therefore, each primitive intrinsically encodes the CLCS dynamics
within its signals. These encoded dynamics will be used, although not explicitly, to predict
the optimal reference ensuring tracking of new desired trajectories.

3.4. Optimal Tracking Using Primitives at the Uppermost Level L3

The final application step of the primitive-based HLF concerns the optimal reference
input prediction that ensures a new desired trajectory is tracked as accurately as possible.
This has to be performed without relearning the reference inputs on a trial-by-trial basis, as
it was with EDMFILC. The concept has been thoroughly described in [1–3].

The new desired trajectory for the ATCS is yd
k = min

{0.5, max{0.3, 0.4 + 0.05 · sin(0.002kTs) + 0.00001kTs}}, k = 1, 400. This trajectory’s length
is four times greater than the length of each of the two learned primitives (lasting for
100 samples each). A linear regression dedicated to approximation purposes is to be solved
at the level L3, which is costly when the length of yd

k is large. The strategy is to divide yd
k

into shorter segments (herein four), then predict and execute the tracking on each resulting
segment (or subinterval). The first segment is the part of yd

k corresponding to 1 ≤ k ≤ 100,
consisting of N = 100 samples. However, the length of a segment does not have to equal
that of a primitive, although it should be about the same order of magnitude. After predict-
ing the optimal reference for this first segment, the next segment from yd

k is extracted, the
optimal reference input for its tracking is predicted, and so on until yd

k is entirely processed.
Therefore, the discussion about how to predict the optimal reference input is detailed

for a single segment. For such a segment of length N (assumed even without generality
loss), let the desired trajectory in lifted notation be Yd ∈ RN×1. The steps enumerated
below are performed.

Step 1. Extend Yd to length 2N to result in Yd[e] ∈ R2N×1, by padding the leftmost
N/2 samples having the value of the first sample from yd

k and the rightmost N/2 samples
having the value of the last sample from yd

k .

Step 2. Each original primitive
{

R[δ], Y[δ]
}

, δ ∈ {1, 2} is extended by the same principle,

with padding to length 2N as performed for Yd. The resulting extended primitives are{
R[δe], Y[δe]

}
, δ ∈ {1, 2}, where each signal R[δe], Y[δe] (here expressed in lifted form) has

length 2N.
Step 3. A number of M random copies of the extended primitives are memorized.

These copies are themselves primitives, indexed as
{

R[πe], Y[πe]
}

, π = 1, M.
Step 4. Each copied primitive is delayed/advanced by an integer uniform value

θ ∈ [−N, N]. The delayed copies are indexed as
{

R[θπe], Y[θπe]
}

, π = 1, M. Padding has to
be used again because the delay is without circular shifting. To this extent, a number of |θ|
samples will be padded with the value of the first or last unshifted samples from R[πe] and
Y[πe], respectively.

Step 5. An output basis function matrix is built from the delayed primitive outputs as
B =

[
Y[θ1e], . . . , Y[θMe]

]
∈ R2N×M. These columns correspond to Gaussian signals which

were extended, delayed and padded as indicated in the previous steps. The columns of B
serve as approximation functions for the extended and padded desired trajectory Yd[e], by
linearly combining them asBβ, β = [β1, . . . , βM]T ∈ RM.

Step 6. Find the optimal β∗ = argmin
β
‖Bβ− Yd[e]‖2

2 by solving the overdetermined

linear equation system with least squares.

Entropy 2022, 24, 889 13 of 23

Step 7. Employing the linear systems superposition principle in order to obtain the op-

timal reference input leading to optimal tracking of Yd[e], we compute R∗[e] =
M
∑

π=1
βπR[θπe].

Here, R∗[e] ∈ R2N , and it was shown in Theorem 1 from [3] that R∗[e] theoretically ensures
the smallest tracking error, only bounded by the approximation error of the difference
Y[b]β− Yd[e].

Step 8. To return to N-length signals, the true reference input R∗ is obtained by
clipping the middle interval of R∗[e]. The signal R∗ (ρ∗k in time-based notation) is the
predicted optimal reference input which is to be set as reference input to the closed-loop
ATCS, to execute the tracking task on the current segment.

For the application of the previous steps for the ATCS, we used a number of M = 2400 copies
of the original two primitives, with corresponding delays are uniformly random integers
within [−100; 100], hence spanning 200 samples for extended trajectories of 200 samples.

A secondary aspect is the constraint satisfaction being addressed by the proposed
primitive-based learning framework. As discussed in [1–3], the straightforward approach
to indirectly address controlled output magnitude constraints is to enforce magnitude
constraints upon the new trajectory yd

k . In this case, the role of the max, min operators used
within the definition of yd

k is to enforce such constraints by trajectory magnitude clipping.
This is a form of soft-constraint handling [3]; the accuracy is evaluated only after executing
the tracking task and may vary. Other types of constraints, such as rate constraints, may be
handled similarly, in the presented indirect style. Constraints on other CLCS characteristic
signals are not considered as relevant, be it magnitude or rate inequality constraints: the
ones on the CLCS’s inputs are too “embedded” and they negatively influence the model
matching achievement, whereas the ones on the reference input again affect the trajectory
tracking accuracy at the CLCS’s output.

The trajectory tracking results on a segment-by-segment basis is shown in Figure 7.

Entropy 2022, 24, x FOR PEER REVIEW 13 of 24

were extended, delayed and padded as indicated in the previous steps. The columns of 𝓑
serve as approximation functions for the extended and padded desired trajectory 𝒀ௗ[],
by linearly combining them as 𝓑𝜷, 𝜷 = [𝛽ଵ, . . . , 𝛽ெ]் ∈ ℝெ.

Step 6. Find the optimal 𝜷∗ = arg min𝜷 ฮ𝓑𝜷 − 𝒀ௗ[]ฮଶଶ by solving the overdetermined

linear equation system with least squares.
Step 7. Employing the linear systems superposition principle in order to obtain the

optimal reference input leading to optimal tracking of 𝒀ௗ[] , we compute 𝑹∗[] =∑ 𝛽గ𝑹[ఏഏ]ெగୀଵ . Here, 𝑹∗[] ∈ ℝଶே, and it was shown in Theorem 1 from [3] that 𝑹∗[] theo-
retically ensures the smallest tracking error, only bounded by the approximation error of
the difference 𝒀[]𝜷 − 𝒀ௗ[].

Step 8. To return to 𝑁-length signals, the true reference input 𝑹∗ is obtained by clip-
ping the middle interval of 𝑹∗[]. The signal 𝑹∗ (𝜌∗ in time-based notation) is the pre-
dicted optimal reference input which is to be set as reference input to the closed-loop
ATCS, to execute the tracking task on the current segment.

For the application of the previous steps for the ATCS, we used a number of 𝑀 =2400 copies of the original two primitives, with corresponding delays are uniformly ran-
dom integers within [−100; 100], hence spanning 200 samples for extended trajectories
of 200 samples.

A secondary aspect is the constraint satisfaction being addressed by the proposed
primitive-based learning framework. As discussed in [1–3], the straightforward approach
to indirectly address controlled output magnitude constraints is to enforce magnitude
constraints upon the new trajectory 𝑦ௗ. In this case, the role of the 𝑚𝑎𝑥, 𝑚𝑖𝑛 operators
used within the definition of 𝑦ௗ is to enforce such constraints by trajectory magnitude
clipping. This is a form of soft-constraint handling [3]; the accuracy is evaluated only after
executing the tracking task and may vary. Other types of constraints, such as rate con-
straints, may be handled similarly, in the presented indirect style. Constraints on other
CLCS characteristic signals are not considered as relevant, be it magnitude or rate ine-
quality constraints: the ones on the CLCS’s inputs are too “embedded” and they nega-
tively influence the model matching achievement, whereas the ones on the reference input
again affect the trajectory tracking accuracy at the CLCS’s output.

The trajectory tracking results on a segment-by-segment basis is shown in Figure 7.

Figure 7. The final trajectory tracking results of 𝑦ௗ (blue). The output 𝑦 (red) when the optimal
reference input (𝜌∗ from 𝑅∗) is computed using primitives and the output 𝑦 (black) when the ref-
erence input is 𝜌 = 𝑦ௗ. The green boxes highlight the tracking errors at the end of each segment.

0 1000 2000 3000 4000 5000 6000 7000 8000
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Figure 7. The final trajectory tracking results of yd
k (blue). The output yk (red) when the optimal

reference input (ρ∗k from R∗) is computed using primitives and the output yk (black) when the
reference input is ρk = yd

k . The green boxes highlight the tracking errors at the end of each segment.

Several remarks are given. The tracking accuracy is expressed as the cumulated
tracking error squared norm divided by the number of samples, which is the common
mean summed squared error. The MSE obtained with the reference input is optimally
predicted based on the primitive approach measures 4.75 × 10−4. The same indicator
measured when the reference input is ρk = yd

k is 1.36× 10−3, nearly three times larger.
This clearly shows that the primitive-based approach effectively achieves higher tracking

Entropy 2022, 24, 889 14 of 23

accuracy. Its anticipatory character is revealed in the sense that the noncausal filtering
operations involved lead to a reference input which makes the CLCS respond immediately
when the desired trajectory changes. Therefore, it eliminates the lagged response of the
naturally low-pass CLCS.

Furthermore, the green boxes in Figure 7 highlight the tracking errors at the end time
of the tracking execution on each segment. These errors do not build up, being regarded as
non-zero initial conditions for the next segment tracking task, with their effect vanishing
in time.

Constraint condition imposed on the upper-clipped magnitude of the desired trajectory
in the fourth segment does not reflect very accurately upon the controlled output. The
cause of this, as well as the only three-fold improvement in the tracking accuracy with the
primitive-based approach, is due to the CLCS not being so linear (not perfectly matching the
reference model M(q)). The importance of achieving high-quality model reference matching
(and therefore indirect closed-loop linearization) was identified as crucial [3]. When the
linearity assumption holds, the accuracy may be improved up to 100-fold, and the output
constraints are thoroughly enforced. This has been reported in other applications [1–3].
Therefore, ensuring the low-level model reference matching (or tracking) of the CLCS
is critical.

4. The Electrical Braking System (EBS)
4.1. System Description

A rheostatic brake emulator is next considered as a representative case study (please
refer to Figure 8 below). Such a process has wide applicability in resistive-based braking
in cars, trains or in wind turbine generators [58]. Suppose there exists a variable voltage
source Vsource (due to irrelevant conditions), the goal would be to regulate a constant voltage
Vgen across a section of the circuit, to ensure, e.g., a constant power delivery over some
load. In practice, the (resistive) load consumer is changed accordingly, to adjust for the
voltage level. By Ohm’s law, keeping a constant load while changing the current achieves
an equivalent effect. Hence, the means to control Vgen is achieved by current variation
through the blue line in Figure 8, achievable by changing the current flow through a (power)
transistor (indicated on the blue path in the figure). From a practical perspective, however,
it is easier to maintain Vsource at a constant level and instead control the voltage level Vgen,
to basically illustrate the same effect.

Entropy 2022, 24, x FOR PEER REVIEW 14 of 24

Several remarks are given. The tracking accuracy is expressed as the cumulated track-
ing error squared norm divided by the number of samples, which is the common mean
summed squared error. The MSE obtained with the reference input is optimally predicted
based on the primitive approach measures 4.75 × 10ିସ. The same indicator measured
when the reference input is 𝜌 = 𝑦ௗ is 1.36 × 10ିଷ, nearly three times larger. This clearly
shows that the primitive-based approach effectively achieves higher tracking accuracy. Its
anticipatory character is revealed in the sense that the noncausal filtering operations in-
volved lead to a reference input which makes the CLCS respond immediately when the
desired trajectory changes. Therefore, it eliminates the lagged response of the naturally
low-pass CLCS.

Furthermore, the green boxes in Figure 7 highlight the tracking errors at the end time
of the tracking execution on each segment. These errors do not build up, being regarded
as non-zero initial conditions for the next segment tracking task, with their effect vanish-
ing in time.

Constraint condition imposed on the upper-clipped magnitude of the desired trajec-
tory in the fourth segment does not reflect very accurately upon the controlled output.
The cause of this, as well as the only three-fold improvement in the tracking accuracy with
the primitive-based approach, is due to the CLCS not being so linear (not perfectly match-
ing the reference model 𝑀(𝑞)). The importance of achieving high-quality model reference
matching (and therefore indirect closed-loop linearization) was identified as crucial [3].
When the linearity assumption holds, the accuracy may be improved up to 100-fold, and
the output constraints are thoroughly enforced. This has been reported in other applica-
tions [1–3]. Therefore, ensuring the low-level model reference matching (or tracking) of
the CLCS is critical.

4. The Electrical Braking System (EBS)
4.1. System Description

A rheostatic brake emulator is next considered as a representative case study (please
refer to Figure 8 below). Such a process has wide applicability in resistive-based braking
in cars, trains or in wind turbine generators [58]. Suppose there exists a variable voltage
source 𝑉௦௨ (due to irrelevant conditions), the goal would be to regulate a constant volt-
age 𝑉 across a section of the circuit, to ensure, e.g., a constant power delivery over
some load. In practice, the (resistive) load consumer is changed accordingly, to adjust for
the voltage level. By Ohm’s law, keeping a constant load while changing the current
achieves an equivalent effect. Hence, the means to control 𝑉 is achieved by current var-
iation through the blue line in Figure 8, achievable by changing the current flow through
a (power) transistor (indicated on the blue path in the figure). From a practical perspective,
however, it is easier to maintain 𝑉௦௨ at a constant level and instead control the voltage
level 𝑉, to basically illustrate the same effect.

Figure 8. Schematic diagram of the EBS (adapted from [58]). Figure 8. Schematic diagram of the EBS (adapted from [58]).

Some technical facts about the circuit are detailed. The source voltage is 9 V, a TIPC31C
power transistor is used (capable of up to 40 W in switching operation mode, colored red in
Figure 8). The transistor’s base voltage is compatible with the voltage level obtained from
the PWM output of an Arduino board, in this case represented by Vin ∈ [0; 5] V. Therefore,
the actual control input uk will be the duty cycle to the variation in Vin within its domain.

Entropy 2022, 24, 889 15 of 23

MATLAB software-side processing uses the values {0, . . . , 255} to write the PWM port;
thus, the equation to derive the voltage Vin as a function of uk is

Vin[V] =
5

255
× sat255

0

{
255− 255

100
sat100

0 (30 + 100uk)

}
, (12)

where the operator satH
L (.) saturates its argument within [L; H] values and the value “30” is

offset to ensure a voltage of Vin = 3.5 V at the transistor’s base, around the linear operating
point. Therefore, if uk increases, the Vin decreases, the transistor opens (starts acting as
open-switch), the current decreases and Vgen also increases, whereas vice versa holds. For
our case, the domain of the non-dimensional duty cycle factor uk is [0; 1].

The voltage Vin is low-pass-filtered through an RC stage made up of a 10 kΩ resistor
and 10 µF capacitor. Therefore, the resulting filtered output will actually drive the TIP31C
transistor in its linear operation mode. Additional stage elements use a 100 µF capacitor to
clean Vsource from noise and a voltage divider to reduce Vgen to Vout to within the voltage
levels [0; 5] V acceptable for the ADC input Arduino port. The resulting voltage level Vout
is software-processed, multiplied by two and filtered through 1/(0.2s + 1) to recover the
original value Vgen. For the given Vsource = 9 V and the other electrical components, the
effect is that the controlled output is yk = Vgen ∈ [2; 6.7] V, whose level is to be controlled
within its entire domain. The sampling period Ts = 0.05 s is suitable for data acquisition
and control inference. A picture of the realized EBS hardware attached to the Arduino
board is rendered in Figure 9. The system response is rather fast and subject to noise,
making it challenging for all control stages. Importantly, the EBS module is fairly cheap
and can be used by many practitioners.

Entropy 2022, 24, x FOR PEER REVIEW 15 of 24

Some technical facts about the circuit are detailed. The source voltage is 9 V, a
TIPC31C power transistor is used (capable of up to 40 W in switching operation mode,
colored red in Figure 8). The transistor’s base voltage is compatible with the voltage level
obtained from the PWM output of an Arduino board, in this case represented by 𝑉 ∈[0; 5]𝑉. Therefore, the actual control input 𝑢 will be the duty cycle to the variation in 𝑉
within its domain. MATLAB software-side processing uses the values {0, … ,255} to write
the PWM port; thus, the equation to derive the voltage 𝑉 as a function of 𝑢 is 𝑉[𝑉] = ହଶହହ × 𝑠𝑎𝑡ଶହହ{255 − ଶହହଵ 𝑠𝑎𝑡ଵ(30 + 100𝑢)}, (12)

where the operator 𝑠𝑎𝑡ு(.) saturates its argument within [𝐿; 𝐻] values and the value “30”
is offset to ensure a voltage of 𝑉 = 3.5 V at the transistor’s base, around the linear oper-
ating point. Therefore, if 𝑢 increases, the 𝑉 decreases, the transistor opens (starts act-
ing as open-switch), the current decreases and 𝑉 also increases, whereas vice versa
holds. For our case, the domain of the non-dimensional duty cycle factor 𝑢 is [0; 1].

The voltage 𝑉 is low-pass-filtered through an RC stage made up of a 10 kΩ resis-
tor and 10 μF capacitor. Therefore, the resulting filtered output will actually drive the
TIP31C transistor in its linear operation mode. Additional stage elements use a 100 μF
capacitor to clean 𝑉௦௨ from noise and a voltage divider to reduce 𝑉 to 𝑉௨௧ to
within the voltage levels [0; 5] V acceptable for the ADC input Arduino port. The result-
ing voltage level 𝑉௨௧ is software-processed, multiplied by two and filtered through 1/(0.2𝑠 + 1) to recover the original value 𝑉. For the given 𝑉௦௨ = 9 V and the other
electrical components, the effect is that the controlled output is 𝑦 = 𝑉 ∈ [2; 6.7] V,
whose level is to be controlled within its entire domain. The sampling period 𝑇௦ = 0.05 s
is suitable for data acquisition and control inference. A picture of the realized EBS hard-
ware attached to the Arduino board is rendered in Figure 9. The system response is rather
fast and subject to noise, making it challenging for all control stages. Importantly, the EBS
module is fairly cheap and can be used by many practitioners.

Figure 9. Illustration of the hardware realization of the EBS.

4.2. EBS Input–Output Data Collection for Learning Low-Level L1 Control Dedicated to Model
Reference Tracking

A dataset of input–output samples is measured from the EBS in the first place, to
learn the level L1 controller. Exploration quality is important because it stimulates all sys-
tem dynamics [58,59]. Long experiments ensure that many combinations of 𝑢 and 𝑦
are visited; however, it is of interest to accelerate the collection phase, i.e., to obtain more

Figure 9. Illustration of the hardware realization of the EBS.

4.2. EBS Input–Output Data Collection for Learning Low-Level L1 Control Dedicated to Model
Reference Tracking

A dataset of input–output samples is measured from the EBS in the first place, to
learn the level L1 controller. Exploration quality is important because it stimulates all
system dynamics [58,59]. Long experiments ensure that many combinations of uk and yk
are visited; however, it is of interest to accelerate the collection phase, i.e., to obtain more
variation from the signals in the same unit of time. This can only be obtained with the
help of a closed-loop controller which compensates the system’s dynamics, ensuring faster
transients. To this extent, a discrete-time version of the integral-type controller C(s) = 1/s
is used. The reference input driving the CLCS over the EBS is a staircase signal switching

Entropy 2022, 24, 889 16 of 23

amplitude at every five seconds and whose amplitudes are uniformly random values in
[2.2; 6] V. Additive stair-like noise perturbs the reference input, with a shorter switching
period of 0.1 s and uniform random amplitudes within [−0.1; 0.1]. The noise’s role is to
further break the time correlation between successive samples. The resulting input–output
explored data depicted in Figure 10.

Entropy 2022, 24, x FOR PEER REVIEW 16 of 24

variation from the signals in the same unit of time. This can only be obtained with the help
of a closed-loop controller which compensates the system’s dynamics, ensuring faster
transients. To this extent, a discrete-time version of the integral-type controller 𝐶(𝑠) = 1/𝑠
is used. The reference input driving the CLCS over the EBS is a staircase signal switching
amplitude at every five seconds and whose amplitudes are uniformly random values in [2.2; 6]𝑉. Additive stair-like noise perturbs the reference input, with a shorter switching
period of 0.1 s and uniform random amplitudes within [−0.1; 0.1]. The noise’s role is to
further break the time correlation between successive samples. The resulting input–out-
put explored data depicted in Figure 10.

Figure 10. Input–output data samples gathered from the EBS.

VSFRT is used again for learning a virtual state feedback controller. The reference
model 𝑀(𝑞) is the discretized variant of 𝑀(𝑠) = 1/(0.4𝑠 + 1) at 0.05 s. This selection cor-
relates strongly with the EBS’s open-loop bandwidth, no observed time-delay, no open-
loop step response overshoot and minimum-phase type.

A nonlinear long short-term-memory (LSTM) recurrent neural network controller 𝑢 = 𝒞(𝒔௫௧) is learned as suggested in [12], based on the input–output controller data
sequence {(𝒔௫௧ ≜ [𝒔், 𝜌]், 𝑢)} which is calculated offline according to the VSFRT prin-
ciple, after measuring {𝑢, 𝑦}. The controller’s LSTM network is modelled in discrete
time, based on the LSTM cell as

𝒊 = 𝑙𝑜𝑔𝑠𝑖𝑔(𝑾𝒔௫௧ + 𝑹𝒉ିଵ + 𝒃), 𝒇 = 𝑙𝑜𝑔𝑠𝑖𝑔൫𝑾𝒔௫௧ + 𝑹𝒉ିଵ + 𝒃൯, 𝒈 = 𝑡𝑎𝑛ℎ൫𝑾𝒔௫௧ + 𝑹𝒉ିଵ + 𝒃൯, 𝒐 = 𝑙𝑜𝑔𝑠𝑖𝑔(𝑾𝒔௫௧ + 𝑹𝒉ିଵ + 𝒃), where 𝒄 = 𝒇⨂𝒄ିଵ + 𝒊⨂𝒈, 𝒉 = 𝒐⨂ 𝑡𝑎𝑛ℎ (𝒄), 𝒚ௌ்ெ = 𝑾௬𝒉 + 𝒃௬,

(13)

where 𝑙𝑜𝑔𝑠𝑖𝑔(.) is the sigmoid function applied element-wise, 𝑡𝑎𝑛ℎ(.) is the hyperbolic
tangent applied element-wise, ⨂ multiplies vectors element-wise, 𝒉 ∈ ℝ is the hid-
den LSTM state of size 𝑛 at time step 𝑘, 𝒄 ∈ ℝ is the LSTM cell state at step 𝑘, 𝒔௫௧ ∈ℝక is the exogeneous input sequence of size 𝜉, 𝒊 ∈ ℝ is from the input gate, 𝒇 ∈ ℝ
is from the forget gate, 𝒈 ∈ ℝ is the cell candidate and 𝒐 ∈ ℝ is from the output

0 500 1000 1500 2000
0

0.2

0.4

0.6

0 500 1000 1500 2000
2

4

6

Figure 10. Input–output data samples gathered from the EBS.

VSFRT is used again for learning a virtual state feedback controller. The reference
model M(q) is the discretized variant of M(s) = 1/(0.4s + 1) at 0.05 s. This selection
correlates strongly with the EBS’s open-loop bandwidth, no observed time-delay, no open-
loop step response overshoot and minimum-phase type.

A nonlinear long short-term-memory (LSTM) recurrent neural network controller
uk = C

(
sext

k
)

is learned as suggested in [12], based on the input–output controller data

sequence
{(

sext
k ,

[
s̃T

k , ρ̃k

]T
, uk

)}
which is calculated offline according to the VSFRT

principle, after measuring {uk, yk}. The controller’s LSTM network is modelled in discrete
time, based on the LSTM cell as

ik = logsig
(
Wisext

k + Rihk−1 + bi
)
,

fk = logsig
(

W f sext
k + R f hk−1 + b f

)
,

gk = tanh
(
Wgsext

k + Rghk−1 + bg
)
,

ok = logsig
(
Wosext

k + Rohk−1 + bo
)
, where

ck = fk
⊗

ck−1 + ik
⊗

gk,
hk = ok

⊗
tanh(ck),

yLSTM
k = Wyhk + by,

(13)

where logsig(.) is the sigmoid function applied element-wise, tanh(.) is the hyperbolic
tangent applied element-wise,

⊗
multiplies vectors element-wise, hk ∈ Rnh is the hidden

LSTM state of size nh at time step k, ck ∈ Rnh is the LSTM cell state at step k, sext
k ∈ Rξ

is the exogeneous input sequence of size ξ, ik ∈ Rnh is from the input gate, fk ∈ Rnh is
from the forget gate, gk ∈ Rnh is the cell candidate and ok ∈ Rnh is from the output gate.
Wj ∈ Rnh×ξ , j ∈ {i, f , g, o} are the cell input weights, Rj ∈ Rnh×nh , j ∈ {i, f , g, o} are the
cell recurrent weights and bj ∈ Rnh×1, j ∈ {i, f , g, o} are the cell offsets. The LSTM network
output is yLSTM

k ∈ RnLSTM and linearly depends on hk through the network output weights
Wy ∈ RnLSTM×nh , by ∈ RnLSTM×1. Here, π =

{
Wj, Rj, bj, Wy, by

}
, j ∈ {i, f , g, o} collates all

the trainable elements of the LSTM network.
The cell input weights are initialized with Xavier algorithm, the cell recurrent weights

are initialized orthogonally, and the offsets are all zero except for the b f which are set to
one. Wy is also initialized with Xavier, whereas by are all zero at first. The Adam algorithm

Entropy 2022, 24, 889 17 of 23

is used for training for a maximum of 1000 epochs, over minibatches of 64 elements, initial
learning rate is 0.01, gradient clipping threshold is 5, and 80% of the dataset is used for
training; the remaining 20% is for validation after each 10 epochs. The loss training is the
mean squared error (MSE) with L2 weights regularization factor of 10−4.

The VSFRT LSTM-based recurrent neural network controller is found after the next
steps are applied in order [58].

Step 1. Define the observability index τ = 3 and construct the trajectory {uk, yk, s̃k},
where s̃k = [yk, yk−1, yk−2, yk−3, uk−1, uk−2, uk−3]

T ∈ R7 is a virtual state for EBS. Using
the discrete time index k = 1, N, 1997 tuples of the form {uk, yk, s̃k} are built.

Step 2. The virtual reference input is obtained as ρ̃k = M−1(q)y f
k , where y f

k is the
low-pass-filtered version of yk through the filter 0.1

1−0.9q−1 , due to yk being noisy.

Step 3. Construct the regressor state as sext
k =

[
s̃T

k , ρ̃k

]T
, 1 ≤ k ≤ 1997.

Step 4. Parameterize the LSTM-based VSFRT controller uk = C
(
sext

k , π
)

with
ξ = 8, nh = 10, nLSTM = 1. Initialize the controller network parameters according to
the settings. The VSFRT goal is to ensure model reference matching by indirectly solving
the controller identification problem [1,4,12,53]

π∗ = argmin
π

VN
VR(π),

VN
VR(π) = 1

N ∑N
k=1
∣∣∣∣uk − C

(
sext

k , π
)∣∣∣∣2,

(14)

which, in fact, means training the LSTM network with input sequences
{

sext
k
}

and output se-
quences {uk} in order to minimize the mean squared prediction errors with weight regularization.

Following the previous steps, the resulting LSTM-based VSFRT controller is tested in
a closed-loop against a linear-affine VSFRT controller uk = KTsext

k (but this time with sext
k

including an extra feature “1” to model the affine term), as learned in [58]. The results are
shown in Figure 11. The superiority of the nonlinear, recurrent LSTM controller is clear in
terms of smaller errors and fewer oscillations at higher setpoint values where EBS changes
its character. The reason is that LSTM is better for learning long-term dependencies from
time series.

Entropy 2022, 24, x FOR PEER REVIEW 18 of 24

Figure 11. Closed-loop control test for EBS, with the linear affine VSFRT controller from [58] of
compensator 𝑲∗ vs. the proposed LSTM-based controller. The reference model’s output is green,
the actual closed-loop 𝑦 is orange with the linear affine controller and magenta with the LSTM
controller.

Subsequently, the EBS closed-loop is considered to be sufficiently linearized to match 𝑀(𝑞); hence, the level L2 learning phase is next attempted.

4.3. Intermediate L2 Level Primitives Learning with EDMFILC
For the EBS, the two primitives are learned by the same EDMFILC procedure that

was also applied for the ATCS.
The first primitive is defined by the desired trajectory 𝑦ௗ = 𝜁ଵ + 𝜁ଶ𝑒ି(⋅ ೞ்ିయ)మ/ర, 1 ≤𝑘 ≤ 200, having Gaussian shape and lasting for 8 s in the 0.05-s sampling period, starting

after 2 s in which the system closed-loop system stabilizes its output at 3𝑉 [59]. The factor 𝜁ଵ = 3 defines the 3 V operating point offset level, the factor 𝜁ଶ = 1.5 sets the Gaussian
magnitude, the factor 𝜁ଷ = 6 fixes the Gaussian center and the factor 𝜁ସ = 0.5 fixes its
time-width. The scaling factor for the upside-down flipped error in the gradient experi-
ment is 𝜇 = 3, for a maximum of 10 EDMFILC iterations. The learning gain is safely cho-
sen as 𝜒∗ = 153.7 based on the procedure Erom Equation (11) (using 𝑀(𝑞) and an iden-
tified OE first-order model 0.1227𝑞ିଵ/(1 − 0.8797𝑞ିଵ)), in order to guarantee learning
convergence [3]. The learning process of the first primitive is shown in Figure 12.

0 500 1000 1500
2

3

4

5

0 500 1000 1500
-0.5

0

0.5

40 60 80 100 120 140 160 180 200
3

4

5

40 60 80 100 120 140 160 180 200

3

4

5

Figure 11. Closed-loop control test for EBS, with the linear affine VSFRT controller from [58] of
compensator K∗ vs. the proposed LSTM-based controller. The reference model’s output is green, the
actual closed-loop yk is orange with the linear affine controller and magenta with the LSTM controller.

Entropy 2022, 24, 889 18 of 23

Subsequently, the EBS closed-loop is considered to be sufficiently linearized to match
M(q); hence, the level L2 learning phase is next attempted.

4.3. Intermediate L2 Level Primitives Learning with EDMFILC

For the EBS, the two primitives are learned by the same EDMFILC procedure that was
also applied for the ATCS.

The first primitive is defined by the desired trajectory yd
k = ζ1 + ζ2e−(k·Ts−ζ3)

2/ζ4 ,
1 ≤ k ≤ 200, having Gaussian shape and lasting for 8 s in the 0.05-s sampling period,
starting after 2 s in which the system closed-loop system stabilizes its output at 3V [59].
The factor ζ1 = 3 defines the 3 V operating point offset level, the factor ζ2 = 1.5 sets the
Gaussian magnitude, the factor ζ3 = 6 fixes the Gaussian center and the factor ζ4 = 0.5
fixes its time-width. The scaling factor for the upside-down flipped error in the gradient
experiment is µ = 3, for a maximum of 10 EDMFILC iterations. The learning gain is safely
chosen as χ∗ = 153.7 based on the procedure Erom Equation (11) (using M(q) and an
identified OE first-order model 0.1227q−1/

(
1− 0.8797q−1)), in order to guarantee learning

convergence [3]. The learning process of the first primitive is shown in Figure 12.

Entropy 2022, 24, x FOR PEER REVIEW 18 of 24

Figure 11. Closed-loop control test for EBS, with the linear affine VSFRT controller from [58] of
compensator 𝑲∗ vs. the proposed LSTM-based controller. The reference model’s output is green,
the actual closed-loop 𝑦 is orange with the linear affine controller and magenta with the LSTM
controller.

Subsequently, the EBS closed-loop is considered to be sufficiently linearized to match 𝑀(𝑞); hence, the level L2 learning phase is next attempted.

4.3. Intermediate L2 Level Primitives Learning with EDMFILC
For the EBS, the two primitives are learned by the same EDMFILC procedure that

was also applied for the ATCS.
The first primitive is defined by the desired trajectory 𝑦ௗ = 𝜁ଵ + 𝜁ଶ𝑒ି(⋅ ೞ்ିయ)మ/ర, 1 ≤𝑘 ≤ 200, having Gaussian shape and lasting for 8 s in the 0.05-s sampling period, starting

after 2 s in which the system closed-loop system stabilizes its output at 3𝑉 [59]. The factor 𝜁ଵ = 3 defines the 3 V operating point offset level, the factor 𝜁ଶ = 1.5 sets the Gaussian
magnitude, the factor 𝜁ଷ = 6 fixes the Gaussian center and the factor 𝜁ସ = 0.5 fixes its
time-width. The scaling factor for the upside-down flipped error in the gradient experi-
ment is 𝜇 = 3, for a maximum of 10 EDMFILC iterations. The learning gain is safely cho-
sen as 𝜒∗ = 153.7 based on the procedure Erom Equation (11) (using 𝑀(𝑞) and an iden-
tified OE first-order model 0.1227𝑞ିଵ/(1 − 0.8797𝑞ିଵ)), in order to guarantee learning
convergence [3]. The learning process of the first primitive is shown in Figure 12.

0 500 1000 1500
2

3

4

5

0 500 1000 1500
-0.5

0

0.5

40 60 80 100 120 140 160 180 200
3

4

5

40 60 80 100 120 140 160 180 200

3

4

5

Figure 12. The first EBS learned primitive pair: initial reference input ρ0
k and corresponding output y0

k
are in black lines; the desired trajectory yd

k is in blue; the final ρ10
k and y10

k are in red. The intermediate
trajectories throughout the learning process are in grey.

The second learned primitive is defined by the desired trajectory yd
k = ζ1− ζ2e−(k·Ts−ζ3)

2/ζ4 ,
1 ≤ k ≤ 200, (ζ1 = 3, ζ2 = 1, ζ3 = 6, ζ4 = 0.5), again having a Gaussian shape, but this time
pointing downwards. All the parameters preserve the same interpretation from the first
primitive. The learning gain and the scaling factor are the same. The resulting learning
history is shown in Figure 13 for 10 iterations.

From a practical validation viewpoint, all normal and gradient EDMFILC experiments
start when the controlled voltage output reaches 3V, which is the operating point. For
this reason, only N = 160 samples are actual primitives (Figures 12 and 13), and the first
40 samples out of the 200 allow for the EBS closed-loop to reach the operating point.

Although challenging, the noisy closed-loop EBS is capable of learning the primi-
tives under the linearity assumption about the closed-loop, even in a low signal-to-noise
ratio environment.

The resulting original primitives are
{

R[1], Y[1]
}

and
{

R[2], Y[2]
}

and memorized in the
primitive’s library. Each original primitive contains the reference input and the closed-loop
EBS controlled output measured at the last EDMFILC iteration. In the next step, the final
level L3 learning occurs, where the original primitives will be used to predict the optimal
reference input which ensures that a new desired trajectory is optimally tracked, without
having to relearn tracking by EDMFILC trials.

Entropy 2022, 24, 889 19 of 23

Entropy 2022, 24, x FOR PEER REVIEW 19 of 24

Figure 12. The first EBS learned primitive pair: initial reference input 𝜌 and corresponding output 𝑦 are in black lines; the desired trajectory 𝑦ௗ is in blue; the final 𝜌ଵ and 𝑦ଵ are in red. The in-
termediate trajectories throughout the learning process are in grey.

The second learned primitive is defined by the desired trajectory 𝑦ௗ = 𝜁ଵ −𝜁ଶ𝑒ି(⋅ ೞ்ିయ)మ/ర, 1 ≤ 𝑘 ≤ 200 , (𝜁ଵ = 3, 𝜁ଶ = 1, 𝜁ଷ = 6, 𝜁ସ = 0.5), again having a Gaussian
shape, but this time pointing downwards. All the parameters preserve the same interpre-
tation from the first primitive. The learning gain and the scaling factor are the same. The
resulting learning history is shown in Figure 13 for 10 iterations.

Figure 13. The second EBS learned primitive pair: initial reference input 𝜌 and corresponding out-
put 𝑦 are in black lines; the desired trajectory 𝑦ௗ is in blue; the final 𝜌ଵ and 𝑦ଵ are in red. The
intermediate trajectories throughout the learning process are in grey.

From a practical validation viewpoint, all normal and gradient EDMFILC experi-
ments start when the controlled voltage output reaches 3𝑉, which is the operating point.
For this reason, only 𝑁 = 160 samples are actual primitives (Figures 12 and 13), and the
first 40 samples out of the 200 allow for the EBS closed-loop to reach the operating point.

Although challenging, the noisy closed-loop EBS is capable of learning the primitives
under the linearity assumption about the closed-loop, even in a low signal-to-noise ratio
environment.

The resulting original primitives are {𝑹[ଵ], 𝒀[ଵ]} and {𝑹[ଶ], 𝒀[ଶ]} and memorized in
the primitive’s library. Each original primitive contains the reference input and the closed-
loop EBS controlled output measured at the last EDMFILC iteration. In the next step, the
final level L3 learning occurs, where the original primitives will be used to predict the
optimal reference input which ensures that a new desired trajectory is optimally tracked,
without having to relearn tracking by EDMFILC trials.

4.4. Optimal Tracking Using Primitives at the Uppermost Level L3
The new desired trajectory at the EBS’s output 𝑦ௗ = min{4, max{2.5, 3 +sin(1.8𝑘𝑇ୱ) + 0.05𝑘𝑇ୱ}} when 𝑘 = 1, 640തതതതതതതത, which is right-shifted with the left padding of a

value of 3 for the first 40 samples. Then, 𝑦ௗ is four times greater than the length of each
of the two learned primitives (each one has 160 samples). The strategy is to divide 𝑦ௗ into
four segments and predict and execute the tracking on each resulting segment (or subin-
terval). The first segment is the part of 𝑦ௗ corresponding to 1 ≤ 𝑘 ≤ 160, consisting of 𝑁 = 160 samples. After predicting the optimal reference for this first segment, it will be
set as reference input to the closed-loop EBS, and the trajectory tracking is performed. At
the end, the next segment from 𝑦ௗ is extracted, its corresponding optimal reference input
is predicted and fed to the closed-loop, tracking is executed, etc.

The approach is similar to the first case study of the ATCS. The subsequent steps
done for the EBS are performed in this order [59]:

40 60 80 100 120 140 160 180 200

2

2.5

3

40 60 80 100 120 140 160 180 200
2

2.5

3

Figure 13. The second EBS learned primitive pair: initial reference input ρ0
k and corresponding

output y0
k are in black lines; the desired trajectory yd

k is in blue; the final ρ10
k and y10

k are in red. The
intermediate trajectories throughout the learning process are in grey.

4.4. Optimal Tracking Using Primitives at the Uppermost Level L3

Thenewdesiredtrajectoryat theEBS’soutput yd
k = min{4, max{2.5, 3+ sin(1.8kTs)+0.05kTs}}

when k = 1, 640, which is right-shifted with the left padding of a value of 3 for the first
40 samples. Then, yd

k is four times greater than the length of each of the two learned
primitives (each one has 160 samples). The strategy is to divide yd

k into four segments
and predict and execute the tracking on each resulting segment (or subinterval). The first
segment is the part of yd

k corresponding to 1 ≤ k ≤ 160, consisting of N = 160 samples.
After predicting the optimal reference for this first segment, it will be set as reference input
to the closed-loop EBS, and the trajectory tracking is performed. At the end, the next
segment from yd

k is extracted, its corresponding optimal reference input is predicted and
fed to the closed-loop, tracking is executed, etc.

The approach is similar to the first case study of the ATCS. The subsequent steps done
for the EBS are performed in this order [59]:

Step 1. Extend Yd (lifted notation of yd
k) to length 2N (320 samples in this case) to get

Yd[e] ∈ R2N×1, by padding the leftmost N/2 samples with the value of the first sample of
yd

k and the rightmost N/2 samples with the value of the last sample from yd
k .

Step 2. Each of the original primitives
{

R[δ], Y[δ]
}

, δ ∈ {1, 2} is similarly extended with

padding to length 2N, as was performed with Yd. The resulting extended primitives are{
R[δe], Y[δe]

}
, δ ∈ {1, 2}, where each signal R[δe], Y[δe] (here expressed in lifted form) has a

length of 2N (320 here).
Step 3. M = 2000 random copies of the extended primitives are memorized. These

copies are themselves primitives, indexed as
{

R[πe], Y[πe]
}

, π = 1, M.
Step 4. Each copied primitive is delayed/advanced by an integer uniform value

θ ∈ [−N, N]. The delayed copies are indexed as
{

R[θπe], Y[θπe]
}

, π = 1, M. Padding has to
be used again because the delay is without circular shifting. To this extent, a number of |θ|
samples will be padded with the value of the first or last unshifted samples from R[πe] and
Y[πe], respectively.

Step 5. An output basis function matrix is built from the delayed primitive outputs as
B =

[
Y[θ1e], . . . , Y[θMe]

]
∈ R2N×M. These columns correspond to Gaussian signals which

were extended, delayed and padded, as indicated in the previous steps. The columns ofB
serve as approximation functions for the extended and padded desired trajectory Yd[e], by
linearly combining them asBβ, β = [β1, . . . , βM]T ∈ RM.

Step 6. The optimal weights β∗ = argmin
β
‖Bβ− Yd[e]‖2

2 are found solving the overde-

termined linear equation system with least squares.

Entropy 2022, 24, 889 20 of 23

Step 7. The reference input ensuring that Yd[e] is optimally tracked, computes as

R∗[e] =
M
∑

π=1
β∗πR[θπe]. Here, R∗[e] ∈ R2N .

Step 8. To return to N-length signals, the useful reference input R∗ is obtained by
clipping the middle interval of R∗[e]. The signal R∗ (ρ∗k in time-based notation) is the
predicted optimal reference input which is to be set as the reference input to the closed-loop
EBS, to execute the tracking task on the current segment.

The importance of dividing longer desired trajectories into segments brings lower
complexity to solving for the regression coefficients β∗. This solves a complexity issue
because the number of coefficients is in the hundreds and does not scale up well with the
desired trajectory’s length (more equations added to the linear overdetermined system).

Again, magnitude constraints upon the desired trajectory yd
k are enforced by clipping it

with the max, min operators. The final trajectory tracking results on a segment-by-segment
basis are shown in Figure 14, statistically averaged for four runs.

Entropy 2022, 24, x FOR PEER REVIEW 20 of 24

Step 1. Extend 𝒀ௗ (lifted notation of 𝑦ௗ) to length 2𝑁 (320 samples in this case) to
get 𝒀ௗ[] ∈ ℝଶே×ଵ, by padding the leftmost 𝑁/2 samples with the value of the first sample
of 𝑦ௗ and the rightmost 𝑁/2 samples with the value of the last sample from 𝑦ௗ.

Step 2. Each of the original primitives {𝑹[ఋ], 𝒀[ఋ]}, 𝛿 ∈ {1,2} is similarly extended with
padding to length 2𝑁, as was performed with 𝒀ௗ. The resulting extended primitives are {𝑹[ఋ], 𝒀[ఋ]}, 𝛿 ∈ {1, 2}, where each signal 𝑹[ఋ], 𝒀[ఋ] (here expressed in lifted form) has a
length of 2𝑁 (320 here).

Step 3. 𝑀 = 2000 random copies of the extended primitives are memorized. These
copies are themselves primitives, indexed as {𝑹[గ], 𝒀[గ]}, 𝜋 = 1, 𝑀തതതതതത.

Step 4. Each copied primitive is delayed/advanced by an integer uniform value 𝜃 ∈[−𝑁, 𝑁]. The delayed copies are indexed as {𝑹[ఏഏ], 𝒀[ఏഏ]}, 𝜋 = 1, 𝑀തതതതതത. Padding has to be
used again because the delay is without circular shifting. To this extent, a number of |𝜃|
samples will be padded with the value of the first or last unshifted samples from 𝑹[గ]
and 𝒀[గ], respectively.

Step 5. An output basis function matrix is built from the delayed primitive outputs as 𝓑 = [𝒀[ఏభ], . . . , 𝒀[ఏಾ]] ∈ ℝଶே×ெ . These columns correspond to Gaussian signals which
were extended, delayed and padded, as indicated in the previous steps. The columns of 𝓑 serve as approximation functions for the extended and padded desired trajectory 𝒀ௗ[],
by linearly combining them as 𝓑𝜷, 𝜷 = [𝛽ଵ, . . . , 𝛽ெ]் ∈ ℝெ.

Step 6. The optimal weights 𝜷∗ = arg min𝜷 ฮ𝓑𝜷 − 𝒀ௗ[]ฮଶଶ are found solving the over-

determined linear equation system with least squares.
Step 7. The reference input ensuring that 𝒀ௗ[] is optimally tracked, computes as 𝑹∗[] = ∑ 𝛽గ∗𝑹[ఏഏ]ெగୀଵ . Here, 𝑹∗[] ∈ ℝଶே.
Step 8. To return to 𝑁-length signals, the useful reference input 𝑹∗ is obtained by

clipping the middle interval of 𝑹∗[]. The signal 𝑹∗ (𝜌∗ in time-based notation) is the
predicted optimal reference input which is to be set as the reference input to the closed-
loop EBS, to execute the tracking task on the current segment.

The importance of dividing longer desired trajectories into segments brings lower
complexity to solving for the regression coefficients 𝜷∗. This solves a complexity issue
because the number of coefficients is in the hundreds and does not scale up well with the
desired trajectory’s length (more equations added to the linear overdetermined system).

Again, magnitude constraints upon the desired trajectory 𝑦ௗ are enforced by clip-
ping it with the 𝑚𝑎𝑥, 𝑚𝑖𝑛 operators. The final trajectory tracking results on a segment-
by-segment basis are shown in Figure 14, statistically averaged for four runs.

Figure 14. The final trajectory tracking results of 𝑦ௗ (blue). The output 𝑦 (red) when the optimal
reference input (𝜌∗ from 𝑹∗) is computed using primitives and the output 𝑦 (black) when the

0 100 200 300 400 500 600
2

2.5

3

3.5

4

4.5

Figure 14. The final trajectory tracking results of yd
k (blue). The output yk (red) when the optimal

reference input (ρ∗k from R∗) is computed using primitives and the output yk (black) when the
reference input is ρk = yd

k . The green boxes highlight the tracking errors at the end of each segment.
The red and black trajectories are averaged from four runs.

The tracking accuracy is measured again using the MSE index. The MSE with the
reference input optimally predicted using primitives measures 5.12× 10−3. The MSE when
the reference input is ρk = yd

k measures 1.03× 10−2, which is two times larger. This clearly
shows that the primitive-based approach effectively achieves higher tracking accuracy.
Its anticipatory character is revealed in the sense that the noncausal filtering operations
involved lead to a reference input, which makes the CLCS respond immediately when the
desired trajectory changes. Therefore, it eliminates the lagged response of the naturally
low-pass CLCS.

The tracking errors at the end of each segment do not build up after the segment
tracking episodes. They are seen as non-zero initial conditions for the next segment
tracking task, and their effect vanishes relatively rapidly.

The upper and lower constraints imposed on the desired trajectory do not accurately
transfer upon the controlled EBS output. It is still better than with the reference input
being yd

k . The cause of this, as well as the only two-fold improvement in the tracking
accuracy with the primitive-based approach, is due to the closed-loop being not so linear
(not perfectly matching the reference model M(q)). The importance of achieving high-
quality model reference matching (and therefore indirect linearization of the closed-loop) is
again emphasized.

Entropy 2022, 24, 889 21 of 23

5. Conclusions

The proposed hierarchical learning primitive-based framework has been validated on
two affordable lab-scale nonlinear systems. At a low level (level L1), VSFRT was employed
to learn linear-affine or nonlinear LSTM-like virtual state-feedback neuro-controllers ded-
icated to linear model reference matching. The learning phase relies on the nonlinearly
controlled system assumed as observable, while building virtual state–space representation
from present and past input–output data. Hence, VSFRT is purely data-driven and able to
overcome the dynamical system’s model unavailability.

At the secondary level, EDMFILC shows resilience to smooth closed-loop nonlinearity
and high amplitude noise, although being based on linearity assumptions. The ATCS and
EBS are mono-variable (SISO) systems; however, EDMFILC has been shown as equally
effective on multivariable (or MIMO) systems. In fact, the number of gradient experiments
has been reduced to one, no matter how many control channels (complexity reduced
from O

(
N3) to O

(
N2) [3]). EDMFILC should be used whenever the output primitive

shape is not desirable for approximation purposes when used in the L3 phase. Hence,
the purely data-driven model-free level L2 learning phase has lesser impact on the final
tracking quality. The anticipative response in the final tracking response, which is due to
the non-causal filtering operation, is the qualitative trait of the EDMFILC.

The uppermost L3 learning phase is based on the primitives obtained after sequentially
applying the L1 and L2 learning phases. The final tracking performance and constraint
satisfaction critically depend on the quality of level L1 model reference matching. To this
end, most efforts should be concentrated on the level L1 successful learning.

Although the effectiveness of the primitive-based HLF has been proven, it was shown
how machine learning techniques can help improve and extend the scope of the classical
control systems techniques. Further validation on applications more different in nature
will prove the framework’s ability to induce the CSs with some of the intelligent fea-
tures of living organisms, based on memorization, learnability, generalization, adaptation
and robustness.

Funding: This work was supported by a grant of the Ministry of Research, Innovation and Digitiza-
tion, CNCS/CCCDI—UEFISCDI, project number PN-III-P1-1.1-TE-2019-1089, within PNCDI III.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Lala, T.; Radac, M.-B. Learning to extrapolate an optimal tracking control behavior towards new tracking tasks in a hierarchical

primitive-based framework. In Proceedings of the 2021 29th Mediterranean Conference on Control and Automation (MED),
Puglia, Italy, 22–25 June 2021; pp. 421–427.

2. Radac, M.-B.; Lala, T. A hierarchical primitive-based learning tracking framework for unknown observable systems based on a new
state representation. In Proceedings of the 2021 European Control Conference (ECC), Delft, The Netherlands, 29 June–2 July 2021;
pp. 1472–1478.

3. Radac, M.-B.; Lala, T. Hierarchical cognitive control for unknown dynamic systems tracking. Mathematics 2021, 9, 2752. [CrossRef]
4. Radac, M.-B.; Borlea, A.I. Virtual state feedback reference tuning and value iteration reinforcement learning for unknown

observable systems control. Energies 2021, 14, 1006. [CrossRef]
5. Lala, T.; Chirla, D.-P.; Radac, M.-B. Model Reference Tracking Control Solutions for a Visual Servo System Based on a Virtual State

from Unknown Dynamics. Energies 2021, 15, 267. [CrossRef]
6. Radac, M.-B.; Lala, T. Robust Control of Unknown Observable Nonlinear Systems Solved as a Zero-Sum Game. IEEE Access

2020, 8, 214153–214165. [CrossRef]
7. Campi, M.C.; Lecchini, A.; Savaresi, S.M. Virtual reference feedback tuning: A direct method for the design of feedback controllers.

Automatica 2002, 38, 1337–1346. [CrossRef]
8. Formentin, S.; Savaresi, S.M.; Del Re, L. Non-iterative direct data-driven controller tuning for multivariable systems: Theory and

application. IET Control Theory Appl. 2012, 6, 1250–1257. [CrossRef]

http://doi.org/10.3390/math9212752
http://doi.org/10.3390/en14041006
http://doi.org/10.3390/en15010267
http://doi.org/10.1109/ACCESS.2020.3040185
http://doi.org/10.1016/S0005-1098(02)00032-8
http://doi.org/10.1049/iet-cta.2011.0204

Entropy 2022, 24, 889 22 of 23

9. Eckhard, D.; Campestrini, L.; Christ Boeira, E. Virtual disturbance feedback tuning. IFAC J. Syst. Control 2018, 3, 23–29. [CrossRef]
10. Matsui, Y.; Ayano, H.; Masuda, S.; Nakano, K. A Consideration on Approximation Methods of Model Matching Error for

Data-Driven Controller Tuning. SICE J. Control. Meas. Syst. Integr. 2020, 13, 291–298. [CrossRef]
11. Chiluka, S.K.; Ambati, S.R.; Seepana, M.M.; Babu Gara, U.B. A novel robust Virtual Reference Feedback Tuning approach for

minimum and non-minimum phase systems. ISA Trans. 2021, 115, 163–191. [CrossRef]
12. D’Amico, W.; Farina, M.; Panzani, G. Advanced control based on Recurrent Neural Networks learned using Virtual Reference

Feedback Tuning and application to an Electronic Throttle Body (with supplementary material). arXiv 2021, arXiv:2103.02567.
13. Buşoniu, L.; de Bruin, T.; Tolić, D.; Kober, J.; Palunko, I. Reinforcement learning for control: Performance, stability, and deep

approximators. Annu. Rev. Control 2018, 46, 8–28. [CrossRef]
14. Xue, W.; Lian, B.; Fan, J.; Kolaric, P.; Chai, T.; Lewis, F.L. Inverse Reinforcement Q-Learning Through Expert Imitation for

Discrete-Time Systems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–14. [CrossRef] [PubMed]
15. Treesatayapun, C. Knowledge-based reinforcement learning controller with fuzzy-rule network: Experimental validation. Neural

Comput. Appl. 2019, 32, 9761–9775. [CrossRef]
16. Zhao, B.; Liu, D.; Luo, C. Reinforcement Learning-Based Optimal Stabilization for Unknown Nonlinear Systems Subject to Inputs

with Uncertain Constraints. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4330–4340. [CrossRef]
17. Luo, B.; Yang, Y.; Liu, D. Policy Iteration Q-Learning for Data-Based Two-Player Zero-Sum Game of Linear Discrete-Time Systems.

IEEE Trans. Cybern. 2021, 51, 3630–3640. [CrossRef]
18. Wang, W.; Chen, X.; Fu, H.; Wu, M. Data-driven adaptive dynamic programming for partially observable nonzero-sum games via

Q-learning method. Int. J. Syst. Sci. 2019, 50, 1338–1352. [CrossRef]
19. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; Zaremba, W.

Hindsight experience replay. In Proceedings of the 31st International Conference on Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017; pp. 5049–5059.

20. Kong, W.; Zhou, D.; Yang, Z.; Zhao, Y.; Zhang, K. UAV autonomous aerial combat maneuver strategy generation with observation
error based on state-adversarial deep deterministic policy gradient and inverse reinforcement learning. Electronics 2020, 9, 1121.
[CrossRef]

21. Fujimoto, S.; Van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In Proceedings of the
35th International Conference on Machine Learning, ICML, Stockholm, Sweden, 10–15 July 2018; Volume 4, pp. 2587–2601.

22. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the 35th International Conference on Machine Learning, ICML, Stockholm, Sweden,
10–15 July 2018; Volume 5, pp. 2976–2989.

23. Zhao, D.; Zhang, Q.; Wang, D.; Zhu, Y. Experience Replay for Optimal Control of Nonzero-Sum Game Systems with Unknown
Dynamics. IEEE Trans. Cybern. 2016, 46, 854–865. [CrossRef]

24. Wei, Q.; Liu, D.; Lin, Q.; Song, R. Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games. IEEE Trans. Neural Netw.
Learn. Syst. 2018, 29, 957–969. [CrossRef]

25. Ni, Z.; He, H.; Zhao, D.; Xu, X.; Prokhorov, D.V. GrDHP: A general utility function representation for dual heuristic dynamic
programming. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 614–627. [CrossRef]

26. Mu, C.; Ni, Z.; Sun, C.; He, H. Data-Driven Tracking Control with Adaptive Dynamic Programming for a Class of Continuous-Time
Nonlinear Systems. IEEE Trans. Cybern. 2017, 47, 1460–1470. [CrossRef] [PubMed]

27. Deptula, P.; Rosenfeld, J.A.; Kamalapurkar, R.; Dixon, W.E. Approximate Dynamic Programming: Combining Regional and Local
State Following Approximations. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2154–2166. [CrossRef] [PubMed]

28. Sardarmehni, T.; Heydari, A. Suboptimal Scheduling in Switched Systems with Continuous-Time Dynamics: A Least Squares
Approach. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2167–2178. [CrossRef] [PubMed]

29. Guo, W.; Si, J.; Liu, F.; Mei, S. Policy Approximation in Policy Iteration Approximate Dynamic Programming for Discrete-Time
Nonlinear Systems. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 2794–2807. [CrossRef]

30. Al-Dabooni, S.; Wunsch, D. The Boundedness Conditions for Model-Free HDP(λ). IEEE Trans. Neural Netw. Learn. Syst.
2019, 30, 1928–1942. [CrossRef]

31. Luo, B.; Yang, Y.; Liu, D.; Wu, H.N. Event-Triggered Optimal Control with Performance Guarantees Using Adaptive Dynamic
Programming. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 76–88. [CrossRef]

32. Liu, Y.; Zhang, H.; Yu, R.; Xing, Z. H∞ Tracking Control of Discrete-Time System with Delays via Data-Based Adaptive Dynamic
Programming. IEEE Trans. Syst. Man, Cybern. Syst. 2020, 50, 4078–4085. [CrossRef]

33. Na, J.; Lv, Y.; Zhang, K.; Zhao, J. Adaptive Identifier-Critic-Based Optimal Tracking Control for Nonlinear Systems with
Experimental Validation. IEEE Trans. Syst. Man, Cybern. Syst. 2022, 52, 459–472. [CrossRef]

34. Staessens, T.; Lefebvre, T.; Crevecoeur, G. Adaptive control of a mechatronic system using constrained residual reinforcement
learning. IEEE Trans. Ind. Electron. 2022, 69, 10447–10456. [CrossRef]

35. Wang, K.; Mu, C. Asynchronous learning for actor-critic neural networks and synchronous triggering for multiplayer system. ISA
Trans. 2022. [CrossRef]

36. Hu, X.; Zhang, H.; Ma, D.; Wang, R.; Wang, T.; Xie, X. Real-Time Leak Location of Long-Distance Pipeline Using Adaptive
Dynamic Programming. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–10. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ifacsc.2018.01.003
http://doi.org/10.9746/jcmsi.13.291
http://doi.org/10.1016/j.isatra.2021.01.018
http://doi.org/10.1016/j.arcontrol.2018.09.005
http://doi.org/10.1109/TNNLS.2021.3106635
http://www.ncbi.nlm.nih.gov/pubmed/34520364
http://doi.org/10.1007/s00521-019-04509-x
http://doi.org/10.1109/TNNLS.2019.2954983
http://doi.org/10.1109/TCYB.2020.2970969
http://doi.org/10.1080/00207721.2019.1599463
http://doi.org/10.3390/electronics9071121
http://doi.org/10.1109/TCYB.2015.2488680
http://doi.org/10.1109/TNNLS.2016.2638863
http://doi.org/10.1109/TNNLS.2014.2329942
http://doi.org/10.1109/TCYB.2016.2548941
http://www.ncbi.nlm.nih.gov/pubmed/27116758
http://doi.org/10.1109/TNNLS.2018.2808102
http://www.ncbi.nlm.nih.gov/pubmed/29771668
http://doi.org/10.1109/TNNLS.2017.2758374
http://www.ncbi.nlm.nih.gov/pubmed/29771669
http://doi.org/10.1109/TNNLS.2017.2702566
http://doi.org/10.1109/TNNLS.2018.2875870
http://doi.org/10.1109/TNNLS.2019.2899594
http://doi.org/10.1109/TSMC.2019.2946397
http://doi.org/10.1109/TSMC.2020.3003224
http://doi.org/10.1109/TIE.2022.3144565
http://doi.org/10.1016/j.isatra.2022.02.007
http://doi.org/10.1109/TNNLS.2021.3136939
http://www.ncbi.nlm.nih.gov/pubmed/34971544

Entropy 2022, 24, 889 23 of 23

37. Yu, X.; Hou, Z.; Polycarpou, M.M. A Data-Driven ILC Framework for a Class of Nonlinear Discrete-Time Systems. IEEE Trans.
Cybern. 2021, 52, 6143–6157. [CrossRef] [PubMed]

38. Zhang, Y.; Liu, J.; Ruan, X. Equivalence and convergence of two iterative learning control schemes with state feedback. Int. J.
Robust Nonlinear Control 2021, 32, 1561–1582. [CrossRef]

39. Meng, D.; Zhang, J. Design and Analysis of Data-Driven Learning Control: An Optimization-Based Approach. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 1–15. [CrossRef] [PubMed]

40. Chi, R.; Wei, Y.; Wang, R.; Hou, Z. Observer based switching ILC for consensus of nonlinear nonaffine multi-agent systems.
J. Franklin Inst. 2021, 358, 6195–6216. [CrossRef]

41. Ma, J.; Cheng, Z.; Zhu, H.; Li, X.; Tomizuka, M.; Lee, T.H. Convex Parameterization and Optimization for Robust Tracking of a
Magnetically Levitated Planar Positioning System. IEEE Trans. Ind. Electron. 2022, 69, 3798–3809. [CrossRef]

42. Shen, M.; Wu, X.; Park, J.H.; Yi, Y.; Sun, Y. Iterative Learning Control of Constrained Systems with Varying Trial Lengths Under
Alignment Condition. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–7. [CrossRef]

43. Chi, R.; Li, H.; Shen, D.; Hou, Z.; Huang, B. Enhanced P-type Control: Indirect Adaptive Learning from Set-point Updates. IEEE
Trans. Aut. Control 2022. [CrossRef]

44. Xing, J.; Lin, N.; Chi, R.; Huang, B.; Hou, Z. Data-driven nonlinear ILC with varying trial lengths. J. Frankl. Inst.
2020, 357, 10262–10287. [CrossRef]

45. Yonezawa, A.; Yonezawa, H.; Kajiwara, I. Parameter tuning technique for a model-free vibration control system based on a virtual
controlled object. Mech. Syst. Signal Process. 2022, 165, 108313. [CrossRef]

46. Zhang, H.; Chi, R.; Hou, Z.; Huang, B. Quantisation compensated data-driven iterative learning control for nonlinear systems.
Int. J. Syst. Sci. 2021, 53, 275–290. [CrossRef]

47. Fenyes, D.; Nemeth, B.; Gaspar, P. Data-driven modeling and control design in a hierarchical structure for a variable-geometry
suspension test bed. In Proceedings of the 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA,
14–17 December 2021.

48. Wu, B.; Gupta, J.K.; Kochenderfer, M. Model primitives for hierarchical lifelong reinforcement learning. Auton. Agent. Multi.
Agent. Syst. 2020, 34, 28. [CrossRef]

49. Li, J.; Li, Z.; Li, X.; Feng, Y.; Hu, Y.; Xu, B. Skill Learning Strategy Based on Dynamic Motion Primitives for Human-Robot
Cooperative Manipulation. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 105–117. [CrossRef]

50. Kim, Y.L.; Ahn, K.H.; Song, J.B. Reinforcement learning based on movement primitives for contact tasks. Robot. Comput. Integr.
Manuf. 2020, 62, 101863. [CrossRef]

51. Camci, E.; Kayacan, E. Learning motion primitives for planning swift maneuvers of quadrotor. Auton. Robots 2019, 43, 1733–1745.
[CrossRef]

52. Yang, C.; Chen, C.; He, W.; Cui, R.; Li, Z. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement
Primitives. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 777–787. [CrossRef]

53. Zhou, Y.; Vamvoudakis, K.G.; Haddad, W.M.; Jiang, Z.P. A secure control learning framework for cyber-physical systems under
sensor and actuator attacks. IEEE Trans. Cybern. 2020, 51, 4648–4660. [CrossRef]

54. Niu, H.; Sahoo, A.; Bhowmick, C.; Jagannathan, S. An optimal hybrid learning approach for attack detection in linear networked
control systems. IEEE/CAA J. Autom. Sin. 2019, 6, 1404–1416. [CrossRef]

55. Jafari, M.; Xu, H.; Carrillo, L.R.G. A biologically-inspired reinforcement learning based intelligent distributed flocking control for
multi-agent systems in presence of uncertain system and dynamic environment. IFAC J. Syst. Control 2020, 13, 100096. [CrossRef]

56. Marvi, Z.; Kiumarsi, B. Barrier-Certified Learning-Enabled Safe Control Design for Systems Operating in Uncertain Environments.
IEEE/CAA J. Autom. Sin. 2021, 9, 437–449. [CrossRef]

57. Rosolia, U.; Lian, Y.; Maddalena, E.; Ferrari-Trecate, G.; Jones, C.N. On the Optimality and Convergence Properties of the Iterative
Learning Model Predictive Controller. IEEE Trans. Automat. Control 2022. [CrossRef]

58. Radac, M.-B.; Borlea, A.-B. Learning model-free reference tracking control with affordable systems. In Intelligent Techniques for
Efficient Use of Valuable Resources-Knowledge and Cultural Resources; Springer Book Series; Springer: Berlin/Heidelberg, Germany,
2022; in press.

59. Borlea, A.-B.; Radac, M.-B. A hierarchical learning framework for generalizing tracking control behavior of a laboratory electrical
system. In Proceedings of the 17th IEEE International Conference on Control & Automation (IEEE ICCA 2022), Naples, Italy,
27–30 June 2022; pp. 231–236.

http://doi.org/10.1109/TCYB.2020.3029596
http://www.ncbi.nlm.nih.gov/pubmed/33571102
http://doi.org/10.1002/rnc.5891
http://doi.org/10.1109/TNNLS.2021.3070920
http://www.ncbi.nlm.nih.gov/pubmed/33877987
http://doi.org/10.1016/j.jfranklin.2021.06.010
http://doi.org/10.1109/TIE.2021.3070518
http://doi.org/10.1109/TNNLS.2021.3135504
http://doi.org/10.1109/TAC.2022.3154347
http://doi.org/10.1016/j.jfranklin.2020.07.018
http://doi.org/10.1016/j.ymssp.2021.108313
http://doi.org/10.1080/00207721.2021.1950232
http://doi.org/10.1007/s10458-020-09451-0
http://doi.org/10.1109/TCDS.2020.3021762
http://doi.org/10.1016/j.rcim.2019.101863
http://doi.org/10.1007/s10514-019-09831-w
http://doi.org/10.1109/TNNLS.2018.2852711
http://doi.org/10.1109/TCYB.2020.3006871
http://doi.org/10.1109/JAS.2019.1911762
http://doi.org/10.1016/j.ifacsc.2020.100096
http://doi.org/10.1109/JAS.2021.1004347
http://doi.org/10.1109/TAC.2022.3148227

	Introduction
	Model Reference Control with Virtual State-Feedback
	The Unknown Dynamic System Observability
	The Reference Model
	The Model Reference Control

	The Active Temperature Control System
	System Description
	ATCS Input–Output Data Collection for Learning Low-Level L1 Control Dedicated to Model Reference Tracking
	Intermediate L2 Level Primitives Learning with EDMFILC
	Optimal Tracking Using Primitives at the Uppermost Level L3

	The Electrical Braking System (EBS)
	System Description
	EBS Input–Output Data Collection for Learning Low-Level L1 Control Dedicated to Model Reference Tracking
	Intermediate L2 Level Primitives Learning with EDMFILC
	Optimal Tracking Using Primitives at the Uppermost Level L3

	Conclusions
	References

