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Abstract

Introduction: This study applies a novel algorithm to longitudinal amyloid positron

emission tomography (PET) imaging to identify age-heterogeneous amyloid trajectory

groups, estimate the age and duration (chronicity) of amyloid positivity, and investigate

chronicity in relation to cognitive decline and tau burden.

Methods:Cognitively unimpaired participants (n=257) underwent one to four amyloid

PET scans (PittsburghCompoundB, PiB). Group-based trajectorymodelingwas applied

to participants with longitudinal scans (n = 171) to identify and model amyloid trajec-

tory groups, which were combined with Bayes theorem to estimate age and chronicity

of amyloid positivity. Relationships between chronicity, cognition, clinical progression,

and tau PET (MK-6240) were investigated using regressionmodels.

Results: Chronicity explained more heterogeneity in amyloid burden than age and

binary amyloid status. Chronicity was associated with faster cognitive decline,

increased risk of abnormal cognition, and higher entorhinal tau.

Discussion: Amyloid chronicity provides unique information about cognitive decline

and neurofibrillary tangle development and may be useful to investigate preclinical

Alzheimer’s disease.

K EYWORD S

Alzheimer’s disease, Alzheimer’s, beta-amyloid, biomarker, chronicity, group-based trajectory

modeling, positron emission tomography, tau, trajectorymodeling

1 INTRODUCTION

Alzheimer’s disease (AD) is characterized by amyloid 𝛽 (A𝛽) plaques

and neurofibrillary tau tangles that accrue over time, leading to

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
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neurodegeneration and progressive cognitive and functional decline.

Positron emission tomography (PET) biomarkers enable in vivo

detection of pathophysiologic A𝛽 and tau, and as hypothesized

by Jack and colleagues,1,2 these AD biomarkers follow nonlinear
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longitudinal patterns where detectable pathologic A𝛽 accrues first,3,4

perhaps 20 or more years before clinically detectable cognitive

impairment.5,6 The 2018 Research Framework for AD7 proposes

that amyloid PET may be used to ascertain amyloid status (ie, amy-

loid positive or negative [A+/−]). This dichotomization is heuristi-

cally useful, and multiple studies have shown that A+ cognitively

unimpaired individuals exhibit greater cognitive decline over time

than individuals who are A−,8–10 with greater cognitive decline for

people who exhibit both elevated pathologic amyloid and tau.11,12

However, among individuals who are accumulating amyloid, there

is considerable heterogeneity in the magnitude and onset of amy-

loid accumulation with respect to age.6,13,14 A method for elucidat-

ing such heterogeneity in amyloid-accumulating cases may improve

prediction models of the temporal biomarker cascade and cognitive

decline.

As observed by Jack et al. in their seminal paper,1 there is lit-

tle known about inter-individual differences in middle-age A𝛽 accu-

mulation when individuals are transitioning from undetectable (A−)
to detectable (A+) amounts of A𝛽 . The theoretical sigmoidal model

of A𝛽 accumulation1 suggests that individuals have relatively slow

accumulation initially, followed by faster accumulation as the dis-

ease progresses. Several approaches have examined ways to empir-

ically assess the trajectory of A𝛽 biomarkers in AD.6,13,15,16 These

approaches often attempt to align persons within a disease state to

mitigate the biomarker heterogeneity with respect to age. A method

that combines A𝛽 magnitude and amyloid measurement age to esti-

mate the age at biomarker onset (ie, A+) could be useful in such

scenarios because it would allow realignment of the time axis to

describe the duration, or chronicity, of A+ relative to that person’s

age at any given procedure. Group-based trajectory modeling (GBTM)

is used to describe the developmental course(s) a phenomenon might

follow over time,17,18 and it is well-suited for characterizing poten-

tial sub-distributions of PET measured A𝛽 pathology accumulation

patterns with respect to age. Modeling these sub-distributions in a

sample containing amyloid convertors across the age spectrum may

allow for more accurate estimation of the age at which persons

become A+.
Using data from the Wisconsin Registry for Alzheimer’s Preven-

tion (WRAP) study we investigated the following aims. First, we used

longitudinal Pittsburgh compound B (PiB) to identify and charac-

terize A𝛽 trajectory groups of non-demented healthy middle-aged

participants. Second, we examined whether trajectory group mem-

bership could be reliably obtained from only one PiB scan. We

next utilized this trajectory group information to estimate the age

at A+ (ie, PiB positivity, [PiB(+)]) onset, and thereby, the chronic-

ity of A+ (ie, time between estimated A+ onset and age at a given

assessment). Third, we characterized mathematically the shape of

the amyloid accumulation curve observed in this sample. Fourth,

we investigated whether A+ chronicity was associated with cog-

nitive decline and with tau tangles. Tau tangles were assessed

using [18F]MK-6240, a novel PET radioligand with a high affin-

ity for neurofibrillary tangles and minimal off-target binding in the

brain.19,20

HIGHLIGHTS

• Group-based trajectory modeling identifies age-based

amyloid trajectory groups.

• Longitudinal trained algorithm can estimate age and dura-

tion of amyloid positivity.

• Amyloid-positive duration accounts for age-based amy-

loid accumulation heterogeneity.

• Longer amyloid duration is associated with greater tau

burden and cognitive decline.

• Individuals with younger age at amyloid onset are more

likely to be apolipoprotein 𝜀4 carriers.

RESEARCH INCONTEXT

Previous studies have indicated that Alzheimer’s disease

(AD) has an extended prodromal period of two or more

decades wherein pathological amyloid 𝛽 (A𝛽) and tau pro-

teins are aggregating prior to overt symptomology. Under-

standing longitudinal accumulation trajectories of amyloid

and taubiomarkers is an areaof active research,which is con-

founded by heterogeneity in these trajectories with respect

to age. This study demonstrates a novel approach to esti-

mating the age at amyloid onset informed by longitudinal

positron emission tomography (PET) imaging. The results

indicate that this approach can estimate the age at amy-

loid positivity within individuals, and thereby, the chronicity

of amyloidosis, operationalized as duration of amyloid expo-

sure at a given procedure. Application of this method has

suggested that amyloid chronicity explains considerable het-

erogeneity in age-related amyloid accumulation trajectories

and is associated with longitudinal cognitive decline and PET

measured entorhinal tau tangles. This approach may enable

an intuitive way to investigate temporal sequences in AD.

2 METHODS

2.1 Sample

The sample included 257 WRAP participants who were cognitively

unimpaired at baseline and completed at least one PiB PET scan as of

June 2019 (Table 1).WRAP is a longitudinal observational cohort study

of late middle-aged and older adults, enriched for risk of AD by over-

sampling participants with a parental history of AD (73% parental AD

history; see Johnson et al.21). All study procedures were approved by

the University of Wisconsin-Madison Institutional Review Board and

are in concordance with the Helsinki declaration.
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TABLE 1 Sample characteristics: overall and by PiB trajectory group

Overall

N

Group 1

n(%)

Group 2

n(%)

Group 3

n(%)

Group 4

n(%)

P-
valuea Differing pairs

257 178(69.3) 39(15.2) 21(8.2) 19(7.4)

PACC-3 baseline age,

mean(SD)b
59.1(6.2) 58.3(6.6) 61.3(5.3) 60.8(4.6) 59.1(4.5) 0.025 1 versus 2

PACC-3 follow-up years,

mean(SD)b
7.2(2.3) 7.2(2.1) 6.4(2.8) 8.0(2.0) 7.4(2.5) 0.064

PACC-3 baseline

performance, mean(SD)b
0.055(0.75) 0.08(.75) −0.10(0.79) 0.04(0.73) 0.13(0.66) 0.55

WRAT3 reading, mean(SD) 107.0(9.1) 106.8(9.5) 107.6(8.1) 105.5(9.2) 108.6(7.5) 0.71

Years of education, median

[Q1–Q3]

16 [14–18] 16 [14–18] 17 [14–18] 17 [16–17] 17 [14–18] 0.68

Female, n(%) 175(68.1) 125(70.2) 22(56.4) 13(61.9) 15(79.0) 0.25

Parental history of AD,

n(%)

181(70.7) 118(66.7) 30(76.9) 15(71.4) 18(94.7) 0.044 1 versus 4

APOE ɛ4 carrier, n(%) 103(40.2) 55(31.2) 19(48.7) 16(76.2) 13(68.4) <0.0001 1 versus 2–4

Non-Hispanic Caucasian,

n(%)

241(93.8) 167(93.8) 36(92.3) 21(100.0) 17(89.5) 0.52

PiB age first scan,

mean(SD)

62.1(6.6) 61.4(6.9) 64.2(6.2) 64.1(4.7) 62.7(5.5) 0.050 1 versus 2

PiB age at most recent

scan, mean(SD)

66.4(6.7) 65.6(7.1) 68.3(5.9) 69.1(4.9) 66.9(4.8) 0.028 1 versus 2–3

PiB chronicity at most

recent scan, mean(SD)

−12.9(13.1) −20.2(4.8) −4.4(7.6) 7.2(5.4) 15.9(5.0) <0.0001 All pairs

PiB(+)c, n(%) 55(21.4) 1(0.6) 16(41.0) 20(95.2) 19(100.0) <0.0001 1 versus 2–4;

2 versus 3–4

MK-6240 PET subset

(n= 198)

198 136(68.7) 30(15.2) 16(8.1) 16(8.1)

Age atMK-6240 scan,

mean(SD) years

67.6(6.4) 66.7(6.8) 70.0(4.7) 70.1(4.8) 67.4(5.1) 0.025 1 versus 2–3

Time between PiB andMK,

mean(SD) years

0.099(0.32) 0.089(0.32) 0.17(0.38) 0.089(0.34) 0.055(0.15) 0.58

PiB Chronicity atMK-6240

scan, mean(SD)

−11.8(13.3) −19.6(4.5) −2.5(6.4) 8.3(5.1) 16.5(5.3) <0.0001 All pairs

Entorhinal cortex SUVR,

median [Q1–Q3]

1.01

[0.92–1.12]

0.99

[0.91–1.09]

1.02

[0.92–1.12]

1.21

[0.96–1.51]

1.47

[1.00–2.02]

0.0004 1–2 versus 3–4

Abbreviations: APOE, apolipoprotein E; PACC-3, Preclinical Alzheimer Cognitive Composite (3 tests); PET, positron emission tomography; PiB, Pittsburgh

compound B; Q1-Q3, first to third quantile; SD, standard deviation; SUVR, Standard uptake value ratio;WRAT3,Wide Range Achievement Test (3rd edition).
aStatistical tests: chi-square or Fisher’s exact for categorical; analysis of variance (ANOVA) for continuous where mean(SD) reported; Kruskal-Wallis for

continuous where median [Q1-Q3] reported. Post hoc pairwise group differences at unadjusted P < 0.05 noted in right-hand column. For example, 1 versus

2, 3 indicates group 1 differed from group 2 and group 3 in separate pairwise comparisons.
bPACC-3 n= 254
cPiB(+) defined as any global PiBDVRwithin a person≥1.2. The group 1PiB(+) participantwas PiB negative as of theirmost recent scanwith global PiBDVRs

of 1.20, 1.17, and 1.13 at ages 66, 68, and 72, respectively.

2.2 Cognitive assessment

WRAP participants completed cognitive assessments at baseline, and

approximately every 2 years thereafter. Longitudinal cognitive perfor-

mance was assessed using a three-test Preclinical Alzheimer’s Cogni-

tive Composite (PACC-3) score,10,22 derived from the Rey Auditory

Verbal Learning Test (RAVLT; Trials 1–5),23 Logical Memory II,24 and

digit symbol substitution.25

2.3 Neuroimaging

All participants underwent T1-weighted magnetic resonance imag-

ing (MRI), and [11C]PiB ([11C]6-OH-BTA-1).26 Amyloid burden was

assessed as a global cortical average PiB distribution volume ratio

(DVR)27 and a threshold of DVR ≥1.228 to ascertain PiB(+); 198
also underwent [F-18]MK-6240 (6-(Fluoro-18F)-3-(1H-pyrrolo[2,3-

c]pyridin-1-yl)isoquinolin-5-amine) PET imaging.19 Radioligand
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synthesis and PET andMRI acquisition, processing, and analysis meth-

ods have been described previously20,29 and in supplemental materials.

2.4 Statistical methods

Statistical analyses were conducted in SAS and R. Sample character-

istics were compared across groups of interest (eg, PiB trajectory

groups) using tests appropriate for the distribution of the data. Tests

included chi-square, fisher’s exact, analysis of variance (ANOVA) and

Kruskal-Wallis.

2.4.1 Aim 1

We used GBTM on the 171 participants with two to four PiB scans to

identify PiB trajectory groups. GBTM is a special case of pattern mix-

ture modeling in which individuals are classified into groups on the

basis of longitudinal data.17,30,31 Models are fit iteratively by adding

and removing groups based on the Bayesian information criteria (BIC)

fit statistics.17,30 We modeled trajectories using up to a cubic polyno-

mial, selecting the best parameterization based on BIC fit and reason-

ableness of the results. For example, if two functions had similarBIC for

a group, themodel thatwasmorebiologically probablewas selected (ie,

accumulating groupswere not allowed to estimate PiBDVR values less

than that of the non-accumulating group).

2.4.2 Aim 2

Using the GBTM functions and Bayes theorem (Equation 1, Table 2)

to estimate the probability of group membership in group “j” for each

participant’s most recent scan, two re-weightings of the Bayes prob-

abilities were applied to up-weight the probability of group 1 or 2

for low global PiB DVR values in age ranges where the trajectory

functions were parallel and close (additional details described in sup-

plement). Trajectory group membership was assigned as the group

with maximum probability. Agreement between GBTM and Bayes

theorem–derived trajectory group assignments was examined using

Kappa statistics.32

2.4.3 Aim 3

After observing strong agreement between PiB trajectory group

assignment methods, the Bayes theorem approach was applied to all

257 participants to ascertain the probability of groupmembership and

group assignment based on their global PiB DVR at their most recent

scan. A+ age was then estimated for each participant using a probabil-

ity weighted average of the A+ ages of the trajectory groups (Table 2,

Equation 2). Amyloid chronicity was then calculated for each PET scan

as the age at scanminus the estimated A+ age (Table 2, Equation 3). By

this convention, positive chronicity indicates the estimated duration of

TABLE 2 Equations

Equation no. Equation

1 Pr(Membership in Group J)= Pr(Group J|Observed

PiB)= Pr(Group J)*Pr(Observed PiB|Group

J)/Pr(Observed PiB)

2 Age PiB(+)≈ Pr(Membership in group 1)*group 1 Age+
Pr(Membership in group 2)*71.3+ Pr(Membership in

group 3)*61.6+ Pr(Membership in group 4)*50.6

3 PiB chronicity (at time of PiB scan)≈Age at PiB scan−
age PiB(+)

4 Group 1 global PiB DVR (“PiB”)≈ 1.0571

5 Group 2 PiB≈ 1.1219+ 0.00941*c65_age+
0.00049*c65_age

2

6 Group 3 PiB≈ 1.2835+ 0.02572*c65_age+
0.00012*c65_age

2 +−0.00005*c65_age3

7 Group 4 PiB≈ 1.6370+ 0.03789*c65_age+
0.00052*c65_age

2

8 Global PiB DVR≈ 1.233+ 0.0186*PiB Chronicity+
0.000444*PiB Chronicity2

9 Global PiB DVR≈ 1.225+ 0.0166*PiB Chronicity+
0.000612*PiB Chronicity2

Abbreviations: DVR, distribution volume ratio; GBTM, group-based trajec-

torymodeling; PiB, Pittsburgh compound B.

Equation 1 notes: Pr(Group J) = proportion assigned to each group via

GBTM (for j = groups 1–4, respectively). Pr(Observed PiB|Group J) was

obtainedby getting themean(SD) residual for all scans of people assigned to

group J and using these values to convert residuals for group J to z-scores.

We then used the normal distribution to obtain the probability of observing

a residual as or more extreme than that one relative to Group J. Similarly,

Pr(Observed PiB) was calculated as the probability of observing a global

PiB DVR as or more extreme than the observed PiB. Post-Bayes theorem

re-weightings for two conditions are described in supplemental materials.

Equation 2 note: “Group 1 Age” is the estimated life expectancy given par-

ticipant’s sex and current age.

Equation 3 note: In general, PiB chronicity at any assessment of interest =
age at the assessment of interest minus estimated age PiB(+).
Equations 4–7 note: “c65_age” indicates age centered at age 65.

PiB(+), whereas negative chronicity indicates the person was PiB(−) at
the time of the scan. Global PiB DVR was then modeled as a function

of amyloid chronicity (including linear and quadratic chronicity terms).

This functionwas used to estimate the timeduration from the10th and

90thPiBDVR centiles of the accumulating groups to the PiB(+) thresh-
old to enable comparisons of amyloidosis duration with this method

and sample to other studies.

2.4.4 Aim 4

We used linear mixed-effects (LME) models to examine whether

amyloid chronicity at baseline PACC-3 modified longitudinal

PACC-3 scores (random intercept and age-related slope; unstruc-

tured covariance; n = 254 after excluding one participant with

multiple sclerosis and two missing PACC-3 scores). Fits of the

base model (covariates of sex, Wide Range Achievement Test 3

[WRAT3], practice, age, and age2) were compared with a model that
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included amyloid chronicity and its interaction with age and age2.

After observing better model fit (a sufficiently lower value of the

corrected-Akaike information criteria [AICc] statistics33) for the

latter model and significant interactions, we depicted the effects of

amyloid chronicity on cognitive trajectories by plotting age trajecto-

ries for amyloid chronicity values that represented mean chronicity at

PACC-3 baseline in each of the four PiB trajectory groups.

In secondary analyses, we used logistic regression to examine

whether concurrent amyloid chronicity and age were associated with

increased risk of abnormal cognition at the most recent visit using

three definitions of abnormal (progression to clinical impairment,

abnormal relative to internal cross-sectional norms, and abnormal rel-

ative to longitudinal norms; see supplemental materials).

We used regression to compare age and amyloid chronicity at MK-

6240 scan, PiB(+/−) status, and PiB DVR as predictors of entorhinal

cortex MK-6240 standard uptake value ratio (SUVR). In separate

models for each continuous predictor (age and amyloid chronicity),

we began with cubic polynomial terms with the plan of sequentially

removing non-significant highest order terms. To estimate how the PiB

trajectory groups differed in terms of increase inMK-6240 per year of

amyloid chronicity, we also used output from a model including a PiB

trajectory group*chronicity interaction.

Sensitivity analyses were performed for all outcomes, substituting

PiB(+/−) status and PiB DVR for amyloid chronicity and comparing

AICc model fit statistics across otherwise identical models and con-

sider |ΔAICc| values<2 to represent comparable models.33

3 RESULTS

3.1 Aim 1

In the subset used for GBTM (n = 171), mean(SD) age at first scan was

61.1(6.1) [range 46.9–78.9] with mean(SD) = 5.8(2.0) years between

first and last scan. Thirty-seven (21.6%) were PiB(+) for at least

one scan, 114 (66.7%) were female, 162 (94.7%) were non-Hispanic

Caucasian, 70(40.9%), apolipoprotein E 𝜀4 carriers (APOE4), and 124

(72.5%) had a parental history of AD dementia.

GBTM identified four age-defined PiB trajectory groups. Mean

and median probabilities of group membership exceeded 70% in each

group (indicating support for the four group solution). GBTM assigned

125 (73.1%) to a non-accumulating group (group 1), 21 (12.3%) to a lat-

est accumulating group (group2), 14 (8.2%) to themiddle accumulating

group (group3), and11 (6.4%) to the earliest accumulating group (func-

tions defining groups 1–4 are equations 4–7, respectively, in Table 2).

Group functions and observed data are shown in Figure 1A.

Solving equations 5 through 7 yielded estimated ages of PiB(+) of
71.3, 61.6, and 50.6 years for groups 2 through 4, respectively. Group 1

indicated an intercept onlymodel that was below the PiB(+) threshold.
Therefore, we estimated age at PiB(+) as age at PET scan plus life

expectancy from a gender-specific life expectancy table (https://www.

dhs.wisconsin.gov/stats/life-expectancy.htm; accessed 7/23/2019);

this resulted inmean(SD) estimated age PiB(+) for group 1= 88.0(2.2).

3.2 Aim 2

We observed strong agreement between PiB trajectory group assign-

ment using GBTM (longitudinal scans) versus using trajectory group

functions and Bayes theorem (only most recent scan in the GBTM

set). Specifically, 160 of 171 group assignments agreed (93.6% agree-

ment; simple Kappa statistic= 0.86, 95% confidence interval [CI] 0.78–

0.94) with perfect agreement in groups 3 and 4. GBTM and Bayes

theorem–derived group membership probabilities were highly corre-

lated (Spearman 0.87 for 160 concordant cases, 0.85 including 11 dis-

crepancies; see supplement for details of discrepant cases). For all sub-

sequent analyses, group membership based on Bayes theorem and

most recent PiB scan is used.

3.3 Aim 3

Using the Bayes theorem approach, we obtained group membership

probabilities for all 257 participants, including 86 not included in

GBTMmodeling, which was used to assign PiB trajectory group mem-

bership (sample characteristics in Table 1). Equations 2 and 3 (Table 2)

were then used to estimate amyloid chronicity for all participants

based on their last PiB scan.

The four trajectory groups did not differ in terms of baseline PACC-

3 performance, WRAT3 reading, years of education, race, or sex, but

did differ in amyloid chronicity at most recent scan, parental history of

AD, and APOE4 carriage. Follow-up pairwise comparisons among tra-

jectory groups showed more APOE4 carriage in each of the accumu-

lating groups compared to group 1 and more parental history of AD in

group 4 (the earliest accumulating group) compared to group 1.

Plots depicting PiBDVRversus chronicity and chronological age are

shown in Figure 1 (1B shows longitudinal plots for the GBTM subset;

Figure 1C and D are plotted cross-sectionally using most recent PiB).

Chronicity and most recent PiB DVR were highly correlated (Pearson

r = 0.895), with a quadratic model indicating a good fit for chronicity

predicting PiB DVR (R2 = 0.945 for all 257 participants, R2 = 0.931

including only groups 2—4; Table 2 Equations 8 and 9, respectively).

Using Equation 9, we estimated it would take 10.0 years to go from

PiB DVR = 1.12 (10th centile of accumulating groups) to PiB(+),
and another 17.7 years to reach PiB DVR = 1.71 (90th centile of

accumulating groups).

3.4 Aim 4

3.4.1 Cognition

LME models of longitudinal PACC-3 showed better fit after adding

the amyloid chronicity terms to the model, including covariates and

age terms (ΔAICc decrease = −25.2). Interaction effects are depicted
in Figure 2 for values representing mean amyloid chronicity at base-

line PACC-3 in each of the PiB trajectory groups. In sensitivity analy-

ses, substituting PiB(+/−) status for amyloid chronicity also resulted in

https://www.dhs.wisconsin.gov/stats/life-expectancy.htm
https://www.dhs.wisconsin.gov/stats/life-expectancy.htm
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F IGURE 1 For all panels, gray indicates group 1 (non-accumulators), red= group 2, green= group 3, and blue= group 4. Horizontal line
indicates PiB(+) threshold (global PiB DVR= 1.2). (A) Spaghetti plot of individual trajectories in set of 171 used in GBTM (thin lines) with four
group functions identified by GBTM superimposed on the figure (thick lines; Equations 4–7 in Table 2). (B) Spaghetti plot of individual trajectories
in set of 171 realigned versus amyloid chronicity. (C) Scatter plot of most recent Global PiB DVR versus chronological age in expanded set (171
original= circles, 86 new people= dots; colors indicate trajectory group). (D) Scatter plot of most recent Global PiB DVR versus amyloid chronicity
in expanded set (coding same as above). Abbreviations: DVR, distribution volume ratio; GBTM, group-based trajectorymodeling; PiB, Pittsburgh
compound B

better fit (ΔAICc = −12.8) relative to the base model, but not as good

a fit as using chronicity (ΔAICc = −12.5 model with amyloid chronicity

AICcminus themodel with PiB(+) AICc).
Logistic regression showed a consistent pattern of statistically sig-

nificant risk of abnormal cognitive status associated with amyloid

chronicity but not age, where abnormal cognitive status was defined

relative to clinical criteria and internal norms.34 Odds ratios and CIs

for age and amyloid chronicity are shown in Figure 3 for each of these

outcomes. Compared to those who did not progress to mild cognitive

impairment (MCI) or AD (n = 238), those who progressed (n = 16)

were on average 4.8(6.2) years older at their most recent cognitive

assessment, but were estimated to be amyloid positive for 15.5(12.5)

years longer. Similarly, age and amyloid chronicity were 0.93(6.2) and

11.2(12.6) years higher in those below (n = 27) versus above (n = 218)

the cross-sectional internal norms cutoff; and age and PiB chronicity

were 2.8(6.2) and 11.2(12.6) years higher in those below (n = 28) ver-

sus above (n = 217) the longitudinal internal norm cutoff. Sensitivity

analyses substituting PiB(+/−) status for chronicity indicated worse fit
statistics for all cognitive outcomes (ΔAICc range=−6.2 to−8.4) com-

pared to chronicity. Substituting last PiB DVR for chronicity indicated

chronicity was a better fit for predicting MCI/AD and abnormal cross-

sectional norms (ΔAICc’s = −3.1 and −3.3, respectively) but not for
abnormal longitudinal norms (ΔAICc= 2.8).

3.4.2 Entorhinal tau

One hundred ninety-eight participants (77%) also underwent MK-

6240 PET scans (mean(SD) of 0.10(0.32) years between last PiB and

MK-6240 scans; mean(SD) age at MK-6240 scan = 67.6(6.4)). Amyloid

chronicity at the time of MK-6240 differed between all PiB trajectory

groups in a stepwise manner (Table 1). Mean entorhinal MK-6240

SUVR was near 1 for groups 1 and 2, increased stepwise for groups 3

and4, and indicated significant group differences (P=0.0004; groups 1
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F IGURE 2 Interaction plot from LME of PACC-3. Lines depict age trajectories for PiB chronicities of−28,−11,−1, and 8 (these values are the
mean PiB chronicity at baseline PACC-3 of groups 1–4, respectively). Dots indicate observed PACC-3 values. Predicted PACC-3≈−0.3658+
−0.4304*Male+ 0.0291*c100_WRAT3+ 0.1142*Practice+−0.09149*c65_age+−0.00182*PiB chronicity+−0.00305*c65_age2 +
−0.00156*c65_age*PiB chronicity+−0.00010* age2*PiB chronicity (and random person-level intercepts and age slopes); c100_WRAT3 indicates
WRAT3 reading standard score, centered at value of 100 and c65_age indicates age centered at 65. Abbreviations: LME, linear mixed effects
model; PACC-3, preclinical alzheimer cognitive composite (3 tests);WRAT3, wide range achievement test (3rd edition)

and 2 differed from groups 3 and 4). Only the linear age termwas a sig-

nificant predictor of entorhinal cortex MK-6240 SUVR; in a separate

model, all terms in the cubic amyloid chronicity polynomialmodel were

significant predictors of entorhinal cortex MK-6240 SUVR (Figure 4;

ΔAICc chronicity—age models = −120.7). Including the trajectory

group term and its interaction with chronicity in the model indicated

that MK-6240 SUVR values were 1.1, 3, and 10.6 times higher for the

amyloid-accumulating groups (ie, groups 2–4, respectively) compared

to the non-accumulating group (ie, group 1; interaction P-value <

0.0001; ΔAICc chronicity polynomial—group*chronicity interaction

model=−6.5).
Sensitivity analyses replacing chronicity with PiB(+/−) status

indicated that PiB(+/−) status was also a significant predictor of

MK-6240 entorhinal cortex SUVR, although it was a weaker predictor

than chronicity (Figure 4; ΔAICc chronicity—PiB(+) models = −81.5).
Replacing amyloid chronicity with Global PiBDVR yieldedmodels with

a similar fit (ΔAICc chronicity—global PiB DVRmodels=−1.3).

4 DISCUSSION

This work demonstrates a novel application of GBTM and Bayes theo-

rem to identify amyloid trajectory groupswith respect to chronological

age and to estimate the age of amyloid positivity within groups and

individuals, and thereby, the time duration of exposure to pathologic

A𝛽 (ie, amyloid chronicity). This methodology was applied to investi-

gate differences between trajectory groups and relationships between

amyloid duration, chronological age, PET measured neurofibrillary

tangles, and cognitive trajectories of initially cognitively unimpaired

persons. Among the key findings was that the estimated duration

of amyloid positivity (ie, amyloid chronicity) maintained information

about dichotomous amyloid status while simultaneously preserv-

ing information about the severity of amyloidosis. In addition, this

approach provided insights regarding the heterogeneity of amyloid

accumulation trajectories with respect to age that become homoge-

neous when reordering the time-axis to reflect the estimated duration

of amyloidosis.

4.1 A𝜷 modeling and rates of accumulation

Previous studies have used several different approaches and cohorts

to model amyloid trajectories with respect to age and amyloid

biomarker levels.1,6,15,35,36 These studies suggest that individuals

in the AD continuum begin accumulating A𝛽 at different ages, but

experience similar rates of amyloid accumulation for a given level

of amyloidosis. In agreement with these studies, the GBTM results

suggest that there exist subgroups of amyloid accumulators that
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F IGURE 3 Forest plots of odds ratios (ORs) with various outcomes indicating abnormal at last cognitive assessment. The top pair of variables
indicates ORs and their 95% confidence intervals (CIs) for predicting progression fromCognitively Unimpaired tomild cognitive impairment (MCI)
or Dementia (cognitive statuses determined by consensus conference as described in Ref. 21). Themiddle pair of variables showORs and CIs for
predicting an abnormal PACC-3 score at themost recent cognitive assessment according to internal demographically adjusted cross-sectional
norms (ie, ≤7th centile or∼1.5 SD ormore below expected). The bottom pair of variables showORs and CIs for predicting an abnormal change in
PACC-3 score at themost recent cognitive assessment according internal longitudinal norms (ie,≤7th longitudinal centile). Additional
abbreviations: PACC-3, preclinical alzheimer cognitive composite (3 tests); SD, standard deviation

differ in the age of PET-detectable amyloidosis onset, but the rates of

amyloid accumulationwith respect to time of amyloid onset are similar

across individuals. This was demonstrated in this study by plotting the

longitudinal amyloid data along the time axis realigned for duration of

amyloid positivity and observing the similarity in slopes across subjects

with similar durations of estimated amyloid positivity. In addition, the

shape of these data were consistent with the early portion of the A𝛽

biomarker model of Jack et al.1 However, we did not observe evidence

of a slowing of the accumulation rate, which was potentially due to

the sample being younger and primarily asymptomatic, and therefore,

earlier in the AD continuum compared to other studies. Further work

adding new longitudinal cases will be needed to examine to what

extent the homogeneity in this curve is maintained in the presence of

new longitudinal scans not used to fit the initial trajectory functions.

4.2 Chronology of A𝜷 relative to tau
and cognitive decline

Understanding the chronology of AD biomarkers and their prognostic

value is important for contextualizing studies relating AD biomarkers

to symptomology and other disease outcomes, and for clinical trial

design. Previous studies have proposed different methods for obtain-

ing metrics reflective of disease state.1,3,15,35–37 In contrast to those

methods, the approach in this study uses fewer model parameters

and less complex model functions. Furthermore, the relative timing

between chronological events is not affected by the positivity thresh-

old, the output (time duration) is easily interpretable, and estimates

can be obtained from a single cross-sectional PET scan once the

group model is trained. A criticism of this approach is that amyloid

chronicity is highly correlated with DVR estimates (r= 0.90). However,

by recasting the magnitude of amyloid elevation along the time dimen-

sion, a number of important questions become contextualized and

more readily addressable, including determining the effect of putative

risk/resilience factors (eg, hypertension, physical activity) on the onset

of AD amyloidosis and or AD-associated cognitive decline.

As initial proof-of-concept, the relationships between the estimated

amyloid chronicity (ie, duration of amyloid positivity) and markers of

tau pathophysiology and cognition were investigated in a late middle-

aged, mostly asymptomatic sample. These analyses suggested that

those who were amyloid positive for a greater length of time at cog-

nitive baseline exhibited faster rates of cognitive decline during the

7.2 years of cognitive follow-up, and that persons who developed clini-

cal levels of cognitive impairment were estimated to have been A+ for
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F IGURE 4 Entorhinal cortex SUVR: (A) chronological age versusMK SUVR (model reduced sequentially from cubic polynomial to model
including only linear age term) and (B) PiB chronicity versusMK SUVR (all three time terms in cubic polynomial were significant). Colors indicate
PiB trajectory group (gray= non-accumulators, red= group 2, green= group 3, blue= group 4). Abbreviations: MK,MK-6240; PiB, Pittsburgh
compound B; SUVR, standard uptake value ratio

a mean of 15 years longer than those who did not convert to clinical

impairment. These intuitive results may partly explain why some stud-

ies demonstrate a relationship betweenA+ status and cognition during

the preclinical stage, whereas others do not.8,38–41

Similar to relationships with cognition, models including chronic-

ity to explain entorhinal tau tangles improved model fits compared

to models with age alone or dichotomous amyloid status. Further-

more, these results suggested a time-lapsed relationship wherein tan-

gles were detectable several years after the detection of pathologic

A𝛽 . In agreement with previous studies, these results support the

hypotheses that the level of amyloid tracer binding is reflective of the

cumulative process of amyloidosis and that markers of AD pathophys-

iology and cognition follow a temporal hierarchy. In addition, these

results support previous findings that suggest that age is a risk fac-

tor for pathophysiology and cognitive decline in AD, but age itself is

not a robust predictor of amyloidosis, entorhinal tangles, and thereby,

AD state.

The major contribution of this “proof of concept” study is that the

trajectory of amyloid accumulation, age at amyloid positivity, and its

chronicity can be estimated and used to describe the disease course of

amyloidosis. Study limitations include the following. WRAP is a volun-

teer cohort with over-sampling of participants with a parental history

of AD; this results in higher AD-risk characteristics than in the gen-

eral population. In addition, the sample is younger andmore cognitively

intact compared to other longitudinal studies of amyloid accumulation;

thus, it is unlikely that our exact equations and parameters will gener-

alize to other radiotracers and study samples. As such, replication of

this method in different cohorts is needed to determine towhat extent

this approach is generalizable. If replicable, estimates of amyloid onset

and chronicity, such as described here, should be examined in other

research contexts to better understand the impact of treatments, pre-

ventative measures, and resilience factors during the preclinical phase

of AD.
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