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ABSTRACT

Sequencing technologies have recently facilitated the characterization of bacterial communities present in lungs during health
and disease. However, there is currently a dearth of information concerning the variability of such data in health both between
and within subjects. This study seeks to examine such variability using healthy adult sheep as our model system. Protected speci-
men brush samples were collected from three spatially disparate segmental bronchi of six adult sheep (age, 20 months) on three
occasions (day 0, 1 month, and 3 months). To further explore the spatial variability of the microbiotas, more-extensive brushing
samples (n � 16) and a throat swab were taken from a separate sheep. The V2 and V3 hypervariable regions of the bacterial 16S
rRNA genes were amplified and sequenced via Illumina MiSeq. DNA sequences were analyzed using the mothur software pack-
age. Quantitative PCR was performed to quantify total bacterial DNA. Some sheep lungs contained dramatically different bacte-
rial communities at different sampling sites, whereas in others, airway microbiotas appeared similar across the lung. In our spa-
tial variability study, we observed clustering related to the depth within the lung from which samples were taken. Lung depth
refers to increasing distance from the glottis, progressing in a caudal direction. We conclude that both host influence and local
factors have impacts on the composition of the sheep lung microbiota.

IMPORTANCE

Until recently, it was assumed that the lungs were a sterile environment which was colonized by microbes only during disease.
However, recent studies using sequencing technologies have found that there is a small population of bacteria which exists in the
lung during health, referred to as the “lung microbiota.” In this study, we characterize the variability of the lung microbiotas of
healthy sheep. Sheep not only are economically important animals but also are often used as large animal models of human re-
spiratory disease. We conclude that, while host influence does play a role in dictating the types of microbes which colonize the
airways, it is clear that local factors also play an important role in this regard. Understanding the nature and influence of these
factors will be key to understanding the variability in, and functional relevance of, the lung microbiota.

Within the past 5 years, a diverse array of bacteria has been
detected in healthy lungs through the use of non-culture-

based methods (1, 2). These bacterial communities are commonly
referred to as the lung microbiota and are thought to originate
predominantly from the upper respiratory tract (3, 4). The pres-
ence of particular bacterial communities in the lung has been as-
sociated with several human diseases, including cystic fibrosis (5),
chronic obstructive pulmonary disease (6), bronchiectasis (7),
and lung transplant rejection (8).

While variation in the microbial communities present in the
human lung exists at both large and small scales, based upon the
location of the bacteria within the lungs (9) and the host cell types
present (10), intraindividual variation has been found to be sig-
nificantly less than interindividual variation, indicating that each
individual may play host to a specific lung microbiota (9).

The lung microbiota of healthy domestic sheep has previously
been investigated using culture-based methods (11–14), but these
studies have shown conflicting descriptions of the extent of lung
colonization by bacteria. A study of pneumonic Bighorn sheep
lungs found that, for most sheep studied, bacterial 16S rRNA gene
amplification and sequencing was able to identify additional bac-
terial species which were not found by culturing (15). Previous
studies have also examined the upper respiratory tracts of healthy
sheep by culture-based methods (11, 12, 14, 16). These studies are
highly varied in the types and proportions of microbes identified.

Previously, our group studied the composition of the lung mi-
crobiota in sheep pre- and postinfection with Pseudomonas

aeruginosa (17). That study included the first description of the
lung microbiota communities of healthy domestic sheep by next-
generation sequencing. A diverse community of microbes was
identified, and variability was seen to be high, both within and
between animals. The variability of the healthy lung microbiotas
at specific lung sites over time has not been reported for any ani-
mal, although serial sampling of nondiseased humans is planned
as part of the Lung HIV Microbiome Project (LHMP) (18).

In the present study, protected specimen brush samples were
collected from three spatially disparate segmental bronchi at three
time points (baseline, 1 month, and 3 months) to examine the
compositions and variability of the lung microbiotas in healthy
domestic sheep. In addition, samples were also taken from a sep-
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arate sheep from a greater number of respiratory tract locations to
further explore the extent of spatial variability.

Such studies are fundamental to understanding the functional
relevance of lung microbiota in health and disease in ruminants.
Indeed, bacterial pneumonia is well recognized in cattle and sheep
and is often associated with high morbidity and mortality. Nota-
bly, regional predilection is evident in that infection by Pasteurella
occurs most frequently in the apical and cardiac lobes in both
sheep (12, 19) and cattle (20, 21). Coinfections with other respi-
ratory pathogens are commonplace; it is already well known that
infection by Bordetella parapertussis and Mycoplasma ovipneu-
moniae can lead to more-severe disease caused by Mannheimia
(Pasteurella) haemolytica (22–25), and there are well-recognized
links to stressful events, such as housing or transport. As it is
conceivable that changes in the lung microbiota may precipitate
or associate with such events, it is vital to ground future disease-
related studies on a firm basis of understanding normal variation
in health. While the immediate focus of such studies relates to
animal health, it is also important to acknowledge that sheep are
frequently used as models for human respiratory research (26, 27)
and that there is an ongoing need to highlight any comparative
contrasts and consistencies as and when they arise.

MATERIALS AND METHODS
Animals and airway sampling. Six 20-month-old Suffolk cross sheep
were used in this study (Table 1) (5 females, 1 castrated male) and were
housed indoors in pens for the trial duration. No animals had undergone
bronchoscopic examination during the 4 months preceding the study.
Animal procedures were subject to the Animals (Scientific Procedures)
Act of 1986 and were approved by the Roslin Institute Animal Welfare and
Ethics Committee.

Anesthesia was performed as described previously (28). Sheep were
sampled by protected specimen brushings (disposable microbiology
brush; ConMed, New York, NY, USA) at 0 days (baseline), 1 month, and
3 months. Sampling sites are shown in Fig. 1. Bronchoscopy was per-
formed via an endotracheal tube by the same operator for all sheep at all
time points. The sample harvest dates can be found in Table S1 in the
supplemental material. Before sampling of every sheep on any given day,
7.5 ml of phosphate-buffered saline (PBS) was passed through the bron-
choscope channel to act as an environmental quantitative PCR (qPCR)
control. Bronchoscope washings were centrifuged at 13,000 � g for 15
min, and the pellet was resuspended in 500 �l of PBS.

A throat swab and brushing samples (harvested as described above)
were also taken from another sheep (female; age, 36 months; 60-kg body
weight) at a single time point to further explore the spatial variability of
the lung microbiotas (sampling date 1 May 2015). Brushing sites were
dorsal and ventral trachea and paired sites from either side of airway
bifurcations progressing along the anterior-to-caudal lung axis (Fig. 2).

DNA extraction, amplification, and sequencing. DNA extraction was
performed using the Mo Bio (Carlsbad, CA, USA) PowerSoil DNA isola-
tion kit. Brushes were transferred into PowerSoil bead tubes with Power-

Soil solution C1 and PowerSoil bead solution. Bead tubes were heated at
65°C for 10 min and then placed in a FastPrep FP120 cell disrupter (Qbio-
gene, Inc., France) for 45 s at 5.0 m/s. From this point onward, the man-
ufacturer’s instructions were followed, except for the final elution step.
Purified DNA was eluted into 50 �l rather than 100 �l of PowerSoil
solution C6 to increase the DNA concentration.

All PCR steps used Q5 high-fidelity 2� master mix (New England
BioLabs, Beverly, MA, USA). A nested PCR was performed with Illumina
adaptor sequences and barcodes (see Table S2 in the supplemental mate-
rial) included only on the primers for the second round in an attempt to
reduce bias caused by barcoded primers when amplifying low-biomass
samples (29). The conditions for the first round of PCR, amplifying the
V1-to-V4 16S hypervariable regions (primers 28F [5=-GAGTTTGATCN
TGGCTCAG-3=] and 805R [5=-GACTACCAGGGTATCTAATC-3=]),
were as follows: 94°C for 2 min, followed by 20 cycles of 94°C for 1 min,
55°C for 45 s, and 72°C for 1.5 min, followed by 72°C for 20 min. The
conditions for the second round of PCR, amplifying the V2-to-V3 16S
hypervariable regions (primers 104F [5=-GGCGVACGGGTGAGTAA-3=]
and 519R [5=-GTNTTACNGCGGCKGCTG-3=]), were as follows: 98°C
for 30 s, followed by 20 cycles of 98°C for 10 s, 67°C for 30 s, and 72°C for
10 s, followed by 72°C for 2 min. Amplicons from both rounds of PCR
were purified using the AMPure XP PCR purification system (Beckman
Coulter, La Brea, CA, USA). Amplicons were sequenced using an Illumina
MiSeq or HiSeq (Illumina, San Diego, CA) run producing paired-end
250-nucleotide reads (30). Those samples sequenced by two MiSeq runs
are listed in Data Set S1 in the supplemental material, and those sequenced
by HiSeq are listed in Data Set S2. When samples from the MiSeq runs
were found to have low read numbers, they were sequenced again on a
separate MiSeq run (samples 2D618 RA [right apical] at 3 months and
2D619 RA at 3 months). We previously confirmed cross-run stability by
comparing separate runs made on the same samples (Fig. S1).

FIG 1 Diagram of a sheep lung, divided into anatomical segments. Boxes
indicate the segments where protected specimen brushings were performed in
the lungs of six sheep at three time points; these correspond to the right apical
(RA), right caudal diaphragmatic (RCD), and left caudal diaphragmatic
(LCD) segments.

TABLE 1 Sheep used in this study

Sheep ID Gender
Mean wt
(kg) � SD

Mean rectal temp
(°C) � SD

2D618 Female 51 � 3.1 39.0 � 0.06
2S066 Male (castrated) 69 � 2.6 39.6 � 0.20
2D619 Female 59 � 1.7 39.3 � 0.20
2D620 Female 64 � 4.6 39.1 � 0.21
2D644 Female 65 � 1.0 39.3 � 0.06
2D645 Female 70 � 2.0 39.4 � 0.06
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Extraction kit controls were produced by carrying out a reagent-only
extraction using the Mo Bio PowerSoil DNA isolation kit. PCR reagent
controls were constructed by adding 20 �l of nuclease-free water to the
PCR mixture. The Human Microbiome Project Mock Community HM-
782D (100,000 copies per organism per �l; BEI Resources, ATCC, Manas-
sas, VA, USA), extraction kit controls, and PCR reagent-only controls and
positive controls (DNA extracted from Pseudomonas aeruginosa strain
PA0579) were amplified and sequenced by the same methods as were used
for samples.

A separate mock community sample was sequenced using an Illumina
HiSeq. For this sample, the solution produced from the first round of PCR
was diluted 1:100 in nuclease-free water before being used in the second
round of PCR. This was carried out to ascertain the effect on PCR bias of
placing different concentrations of DNA into the second PCR round.

Bioinformatic and statistical analysis. Primers were removed using
Cutadapt (31). Sequences which contained more than one base error per
10 primer bases were removed from further analysis. The following steps
were carried out in mothur (32) and were based upon a protocol devel-
oped for MiSeq by the mothur creators (30). Forward and reverse reads
were aligned to form one continuous DNA sequence; any sequences
which failed to align were discarded. Sequences which contained ambig-
uous bases, were less than 369 bp in length, or contained homopolymers
of greater than 9 bp were also discarded. Chimeras were identified and
removed using UCHIME (33). Sequences were aligned to the SILVA ref-
erence alignment (34) and were classified using mothur’s Bayesian classi-
fier against the Greengenes database (35), which was trimmed to the
V2-V3 hypervariable region of the 16S rRNA gene to improve classifica-

tion depth (36). Sequences identified as not originating from bacteria
were removed from further analysis. Operational taxonomic units
(OTUs) were clustered into phylotypes using a database-dependent ap-
proach and then subsampled.

Distance matrices were created using Yue and Clayton theta values
(37). Analysis of molecular variance (AMOVA) (38) was used to deter-
mine significant differences between the bacterial compositions of
groups. Principal-coordinate analysis (PCoA) graphs were constructed to
visualize similarities between samples. The inverse Simpson index was
used to quantify diversity. Where data were nonparametric, the Friedman
test was used to identify significant differences in diversity, using Minitab
16 for Windows (Minitab, Coventry, United Kingdom). All other statis-
tical tests were carried out within mothur. Metastats (39) was used to
identify OTUs which were different between groups. Good’s coverage
(40) was used to estimate sample coverage, and the Chao 1 index was used
to calculate richness. Indicator OTUs (OTUs which are indicative of a
particular group of samples) were identified using the indicator metric
within mothur (41). Repeated-measures analyses of variance (ANOVAs)
were carried out using the Vegan package in R (42–44).

qPCR. qPCRs were performed using the LightCycler 480 SYBR green
I master mix (Roche Applied Science, Indianapolis, IN, USA), 1 �l of
extracted DNA solution, and the 16S rRNA gene qPCR primers UniF340
(5=-ACTCCTACGGGAGGCAGCAGT-3=) and UniR514 (5=-ATTACCG
CGGCTGCTGGC-3=) at a final concentration of 0.4 �M.

The qPCR run consisted of a preincubation step of 50°C (ramp rate,
4.80°C/s for 2 min) and then 95°C (ramp rate, 4.80°C/s for 10 s) and an
amplification step consisting of 45 cycles of 95°C (ramp rate, 4.80°C/s for

FIG 2 Locations of brushings within sheep lungs. Protected specimen brushings were performed in the sections of the lung labeled A1 to A9 and A13 to A19 in
one sheep at one time point.
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30 s) and then 63°C (ramp rate, 2.50°C/s for 30 s). This was followed by a
melting cycle consisting of 95°C (ramp rate, 4.80°C/s for 5 s) and then
65°C (ramp rate, 4.80°C/s for 1 min), followed by 97°C (ramp rate,
0.11°C/s; acquisition mode, continuous).

Negative controls consisted of both water and extraction kit reagent
controls. For water controls, 1 �l of nuclease-free water was added to the
qPCR mixture. For extraction kit controls, DNA extractions were carried
out using the Mo Bio PowerSoil DNA isolation kit (Carlsbad, CA, USA)
by following the same protocol as was used to extract DNA from samples,
except that no sample was added, meaning that any bacterial DNA in the
final elution must have been derived from the extraction kit reagents.
Then, 1 �l of this elution was added to the qPCR mixture.

In order for us to compare the quantities of bacterial DNA found in
bronchoscope wash and brushing samples, it was necessary to use a unit of
measurement which could be applied to both sample types. Bacterial
DNA concentrations are therefore reported as the 16S copy numbers pres-
ent per microliter of eluent produced from samples by the Mo Bio Power-
Soil DNA isolation kit. Statistical analysis was carried out in Minitab 16
for Windows. When data were nonparametric, the Mann-Whitney U test
was used to statistically compare groups.

Nucleotide sequence accession numbers. The unassembled reads,
with primers removed, are publicly available through the NCBI Sequence
Read Archive (SRA) under the BioProject accession no. PRJNA298882.

RESULTS
Quality control and adequacy of sequencing. After DNA se-
quences were constructed from the forward and reverse reads gen-
erated by sequencing, various quality control steps were per-
formed to decrease the number of artifacts and poor-quality
sequences used in subsequent analyses.

For the MiSeq runs, these steps resulted in a 15% loss of se-
quences (sequencing error rate � 0.39%). On average, samples
contained 205,625 � 27,232 (mean � standard error of the mean
[SEM]) sequences and a total of 925 bacterial OTUs were identi-
fied (see Data Set S1 in the supplemental material). Sequences
were assigned to OTUs based on their taxonomic classifications.
Each OTU does not necessarily represent an individual bacterial
species but instead represents the lowest taxonomic level to which
its bacterial sequences could be assigned. For example, 77.4% of
reads could be identified to the genus level, while 31.1% could be
assigned to the species level. If two species from the same genus
could be assigned only to the genus level, then both were binned
into the same OTU.

For the HiSeq run, samples contained on average 233,505 �
69,735 (mean � SEM) sequences, and the sequencing error rate
was 0.39%. Six hundred thirty-three OTUs were identified (see
Data Set S2 in the supplemental material), and the total reduction
in sequence numbers due to quality control was 5%.

Good’s coverage estimate values exceeded 97% for all samples.
This indicates that at least 97% of the bacteria present in our
original samples were likely to have been identified, demonstrat-
ing that the depth of sequencing was adequate.

Of the 20 bacteria contained in the mock community, all could
be taxonomically identified down to genus level, except that Ba-
cillus cereus, Escherichia coli, and Listeria monocytogenes could be
identified only to the family level. This indicates that the primers
were able to amplify a wide diversity of bacteria. While the pro-
portions of bacterial DNA were different from the proportions
anticipated if no PCR bias was present (Table 2), this was less
apparent in the sample which had been diluted 1:100 after the first
round of PCR. In the undiluted mock community, the propor-
tions of bacterial orders differed from the expected proportions by

an average of 9.48% (SEM, 2.24%; range, 0.99% to 19.48%),
whereas the orders in the diluted mock community differed on
average by 4.33% (SEM, 1.12%; range, 0.29% to 12.71%). This
diluted mock community may be more comparable to the kind of
biases we found in our samples, as the undiluted mock commu-
nity contained a far higher concentration of template DNA
(2,000,000 16S copies per �l) than our samples did on average
(13,133 16S copies per �l).

We assumed that PCR bias could reasonably be expected to
apply equally across all samples and, therefore, that any statistical
tests between samples should still be valid. The two bacterial spe-
cies most overrepresented in the undiluted mock community
(Deinococcus radiodurans and Helicobacter pylori) are not com-
monly associated with the respiratory tract, and bacteria from
these genera were very rare within our data set.

Longitudinal study in 6 sheep over 3 months. To examine the
spatial, longitudinal, and interindividual variations of the sheep
lung microbiota, lung brushing samples were taken from 3 spa-
tially disparate lung locations (right apical [RA], right caudal dia-
phragmatic [RCD], and left caudal diaphragmatic [LCD]) in 6
sheep at 3 time points (baseline, 1 month, and 3 months). Esti-
mates of total bacterial yield from qPCR analysis indicated that
sheep lung brushing samples contained an average of 13,133 �
894 (mean � SEM) 16S copy numbers/�l (range, 1,032 to 37,627
16S copy numbers/�l). Bronchoscope wash control samples con-
tained significantly lower bacterial 16S rRNA gene concentrations
than lung brushing samples (Mann-Whitney U test, P � 0.0001),
containing an average of 1,471 � 279 (mean � SEM) 16S copy
numbers/�l (range, 397 to 4,792 16S copy numbers/�l) (Fig. 3).
The qPCR-negative water controls were found to contain 190,
479, and 739 16S copy numbers/�l, and the extraction kit controls
were found to contain 347 and 511 16S copy numbers/�l.

After sequencing and subsampling, bacterial communities iso-
lated from the extraction kit and 16S PCR-negative controls were
found to cluster separately from those found in sheep lung brush-
ing samples (AMOVA, P � 0.001). Extraction kit controls were
included from two different lots. The most abundant OTUs found
in the first extraction kit control were Corynebacterium (36%),
Enterobacteriaceae (13%), Mycobacterium llatzerense (7%), and
Staphylococcus haemolyticus (5%). The most predominant OTUs
in the second extraction kit control were Aerococcus (13%), Derm-
abacteraceae (11%), Micrococcus (10%), Enhydrobacter (9%), and
Leuconostoc (7.2%). The predominant bacterial order present in
both extraction kit controls was Actinomycetales (50.1% and
40.5%, respectively).

The bacteria isolated from lung brushing samples predomi-
nantly belonged to the orders Bacillales (26%), Actinomycetales
(21%), Clostridiales (11%) and Lactobacillales (9%), while com-
mon genera included Staphylococcus (16%), Corynebacterium
(9%), Jeotgalicoccus (5%), and Streptococcus (5%).

The underlying changes in bacterial OTUs between sampling
points were examined. The bacterial communities found in lung
brushing samples clustered significantly by time point (AMOVA,
P � 0.001) (Fig. 4). The OTUs causing this clustering were iden-
tified by applying Metastats (see Tables S3 and S4 in the supple-
mental material). The largest difference observed between the first
and second time points was an 11% increase in the abundance of
an OTU identified as Corynebacterium. This is also the most abun-
dant OTU in one of our extraction kit controls. OTU 12, Myco-
bacterium llatzerense, was also significantly more abundant at the
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1-month time point and was the third-most-abundant OTU in
the same extraction kit control. It therefore is likely that our time
points were affected to different degrees by reagent contamination
and that the analysis of segments over time is not possible. How-
ever, all samples taken in the same sheep at the same time point
were processed using the same extraction kit; therefore, an analy-
sis of spatial variability could be performed.

Visual perceptions of community structure indicated that, in
some sheep, samples taken from separate lung sites differed ap-
preciably, whereas in other sheep, there appeared relative concor-
dance between such samples (see the example shown in Fig. 5). A
full visual summary of the results can be found in Fig. S2 in the
supplemental material. There were no significant differences be-
tween the levels of diversity of communities located at different
lung sites (inverse Simpson index, Friedman test, P � 0.5).

Sheep clustered separately by the compositions of their lung
bacterial communities at the baseline time point (AMOVA, P �
0.001) and at the 3-month time point (AMOVA, P � 0.045), in-
dicating that samples taken from within the same sheep were more
similar to one another than to samples taken from other sheep. At
the 1-month time point, sheep did not cluster in this manner
(AMOVA, P � 0.394), though this is likely due to the presence of
contamination causing a homogenization of our 1-month sam-

ples. Pairwise comparisons of samples showed no significant re-
sults. The similarity of samples to one another can be visualized
using PCoA graphs (Fig. 6).

Spatial variability of the lung microbiota in an individual
sheep. The observed variability between spatially disparate lung
sites in some sheep prompted enquiry as to the consistency of
bacterial communities sampled from sites in close spatial apposi-
tion.

Further samples were derived by systematically sampling mul-
tiple sites of the lungs of an individual animal at one time point.
While the 3-month experiment did not include a control for every
lot of extraction kit used, emerging literature and opinion within
the field have since indicated the value of using the same extrac-
tion kit for all samples. This strategy, therefore, was adopted for
these latter samples, which were all processed at the same time.

The extraction kit control was mainly composed of one OTU
(OTU 18: 79%), which was also present in our brushing samples
(mean � SEM, 51.1% � 3.3%). We felt confident in removing this
OTU from all of our samples prior to analysis, as it could be iden-
tified to the species level (Methylobacterium komagatae) and was
considered highly unlikely to be found within the sheep lung. No
further OTUs were removed before analysis.

Lung brushing samples contained on average 2,116 16S copy

TABLE 2 Proportions of DNA sequence reads belonging to bacterial members of a mock community

Taxonomy (order or genus)

Expected
proportion of
reads (%)

Actual proportion of
reads (%)

Mock community speciesUndiluted 1:100 dilution

Order
Deinococcales 5 24.48 7.65 Deinococcus radiodurans
Campylobacterales 5 22.05 12.65 Helicobacter pylori
Bacteroidales 5 19.59 10.91 Bacteroides vulgatus
Bacillales 20 8.60 22.40 Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus,

Staphylococcus epidermidis
Lactobacillales 25 5.10 12.29 Enterococcus faecalis, Lactobacillus gasseri, Streptococcus agalactiae,

Streptococcus mutans, Streptococcus pneumoniae
Clostridiales 5 4.01 7.86 Clostridium beijerinckii
Rhodobacterales 5 3.92 5.29 Rhodobacter sphaeroides
Pseudomonadales 10 3.42 5.97 Acinetobacter baumannii, Pseudomonas aeruginosa
Enterobacteriales 5 3.33 5.52 Escherichia coli
Neisseriales 5 2.17 3.49 Neisseria meningitidis
Actinomycetales 10 1.27 2.92 Actinomyces odontolyticus, Propionibacterium acnes
Other/unclassified 0 2.03 3.08

Genusa

Deinococcus 5 24.33 7.61 Deinococcus radiodurans
Helicobacter 5 22.04 12.65 Helicobacter pylori
Bacteroides 5 19.59 10.90 Bacteroides vulgatus
Rhodobacter 5 3.91 5.29 Rhodobacter sphaeroides
Clostridium 5 3.73 7.59 Clostridium beijerinckii
Staphylococcus 10 3.04 7.58 Staphylococcus aureus, Staphylococcus epidermidis
Lactobacillus 5 2.77 6.59 Lactobacillus gasseri
Pseudomonas 5 2.33 3.70 Pseudomonas aeruginosa
Neisseria 5 2.15 3.27 Neisseria meningitidis
Enterococcus 5 1.40 2.63 Enterococcus faecalis
Acinetobacter 5 0.97 1.62 Acinetobacter baumannii
Propionibacterium 5 0.76 1.77 Propionibacterium acnes
Actinomyces 5 0.48 1.12 Actinomyces odontolyticus
Streptococcus 15 0.47 1.63 Streptococcus agalactiae, Streptococcus mutans, Streptococcus pneumoniae
Other/unclassified 0 12.03 26.05

a The species Bacillus cereus, Escherichia coli, and Listeria monocytogenes could not be classified to the genus level.
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numbers per �l (SEM, 365 copy numbers per microliter), while
the throat swab and extraction kit control contained 42,480 and 43
16S copy numbers per microliter, respectively. The richness and
diversity of the lung samples (Chao, 103.77 � 7.32; inverse Simp-
son index, 14.24 � 2.14) were found to be far lower than in the
throat swab (Chao, 257.038; inverse Simpson index, 9.19). Sample
A1, taken from the ventral aspect of the trachea just caudal to
the bifurcation with the right apical lobe segmental bronchus, had
the second-highest richness (Chao, 155.024) and diversity (in-
verse Simpson index, 8.713). However, sample A2, which was
taken at the same level as sample A1 but from the dorsal aspect of
the trachea, had much lower richness (Chao, 76.038) and diversity
(inverse Simpson index, 4.925).

The compositions of the communities taken from the respira-
tory tract showed some variation, even between paired samples
located very close to one another (Fig. 7). Subtracheal samples
paired to their most proximate neighbor did not cluster together
significantly when OTUs were defined at the lowest taxonomic
depth (AMOVA, P � 0.30). However, paired samples did cluster
significantly by the bacterial orders which they contained
(AMOVA, P � 0.046). Subtracheal samples also clustered signif-
icantly (by order) based upon the depth in the lung from which
samples were taken (AMOVA, P � 0.033) (Fig. 8) (lung depth in
this context refers to increasing distance from the glottis, pro-
gressing in a caudal direction). An indicator OTU for the group
which included the samples A4, A5, A14, and A15 was found to be
OTU 4, Pseudomonadales (P � 0.042). The most abundant bacte-
rial orders identified from brushings were Clostridiales (25.8%),

FIG 3 qPCR of lung brushing and control specimens. The bronchoscope
channel was flushed with 7.5 ml of PBS, and the wash was collected (wash
control, n � 18) prior to protected specimen brushing being performed on the
lungs of sheep (lung brushings, n � 54). DNA was extracted from wash control
and lung brushing specimens, and the quantity of bacterial DNA was calcu-
lated using 16S rRNA gene qPCR. Lung brushing specimens were found to
contain significantly higher quantities of bacterial DNA than did wash controls
(Mann-Whitney U test, P � 0.0001). Negative controls consisted of either
water (n � 3) or extraction kit (n � 2) controls. Boxes, interquartile ranges;
diamonds, outliers.

FIG 4 Clustering of time points by lung microbiota composition. A PCoA graph shows the similarities between bacterial communities sampled from three sheep
lung segments in six sheep at three time points. Samples were found to cluster significantly by the time point at which they were taken (AMOVA, P � 0.001).
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Pseudomonadales (18.3%), and Actinomycetales (16.0%), while
the throat swab was dominated by Pasteurellales (36.5%) and
Pseudomonadales (15.1%). The extraction kit control was pre-
dominantly composed of Actinomycetales (31.1%) and Pseu-
domonadales (31.0%).

As the Pasteurellales order contains several species which are
known to act as sheep lung pathogens and which display regional
patterns of infection, we felt it would be interesting to investigate
where OTUs belonging to this order were found within the respi-
ratory tract (Table 3). By far, the largest proportion of these OTUs

was found in the throat swab and in one of the tracheal brushing
samples (sample A1).

DISCUSSION

In order to better understand the variability present in the sheep
lung microbiotas, we compared the lung bacterial communities of
six sheep at three different lung sites over a duration of 3 months.
To further explore the extent of spatial variability, we also took 17
samples from the respiratory tract of one sheep.

Previously, the bacteria in healthy domestic sheep lungs had

FIG 5 Bacterial communities found in three separate lung segments within two sheep. Protected specimen brushings were performed on the lungs of sheep at
three different lung segments (RA, RCD, and LCD) at day 0. Sheep A (2S066) had highly different bacterial communities at each lung segment, whereas sheep B
(2D644) had similar bacterial communities at all three lung sites.

FIG 6 Clustering of individuals by lung microbiota composition. PCoA graphs show the similarities between the bacterial communities extracted from protected
specimen brushing samples taken from sheep lungs at three time points (baseline [0 days], 1 month, and 3 months). Samples were taken from three separate lung
segments (RA, RCD, and LCD). Samples from within the same sheep were found to cluster significantly at baseline (AMOVA, P � 0.001) and at 3 months
(AMOVA, P � 0.045) but not at 1 month. This is likely to be due to the presence of contaminants originating from the extraction kits in the 1-month samples.
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been investigated by culture-based methods, which seemed to in-
dicate that bacterial colonization of the sheep lung was rare or did
not occur in all sheep (11, 12, 14). In contrast, using non-culture-
based methods, we have found that all of the sampled sites in our
seven sheep harbored diverse communities of bacteria, although
in far smaller numbers than is generally found in other niches,
such as the gut or upper respiratory tract.

Bacteria belonging to genera previously isolated from goat and
sheep lungs (11, 12) were found in our samples. These included
Corynebacterium, Bacillus, Enterococcus, Klebsiella, Mannheimia,
Micrococcus, Moraxella, Pasteurella, Pseudomonas, Staphylococcus,
and Streptococcus. Of the most common genera observed within
our animals, Staphylococcus, Streptococcus, and Corynebacterium
are commonly isolated from the upper respiratory tracts and skin
of many animals, whereas Jeotgalicoccus is a less well-known genus
(45) which has not been found to make up a substantial part of the
lung microbiota communities in any previous studies. However, it
has been isolated from the small intestinal mucosa of calves (46),

the canine oral cavity (47), aerosol samples from a poultry house
(48, 49), cattle teats (50), lamb meat (51), the rumen of cattle (52),
and aerosol samples near a dairy (53).

The most common bacterial orders found in the sheep lung
during the 3-month study were Bacillales, Actinomycetales, and
Clostridiales. This agrees with the findings of a previous study
carried out by our group, which examined the sheep lung micro-
biota before and after infection with Pseudomonas aeruginosa (17).
Pseudomonadales (mainly Pseudomonas) was also commonly
found in the lungs during our single-sheep study, while the throat
swab from this study was dominated by Pasteurellales and Pseu-
domonadales.

Coinfection with Bordetella parapertussis or Mycoplasma ovi-
pneumoniae has been shown to lead to more-severe disease caused
by Mannheimia (Pasteurella) haemolytica (22–25). Mycoplasmas
were very rare within our data set, with only one sheep segment
containing reads from this genus at one time point. We did not
identify any OTUs as Bordetella; however, we did find an OTU

FIG 7 Diagram of the bacterial orders found in the sheep lung. Bacterial orders found in protected specimen brushing samples from the lung and trachea (A1
to A9 and A13 to A19), a throat swab, and an extraction kit control taken during a study of one sheep at one time point.
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designated Alcaligenaceae (the family to which Bordetella be-
longs), though this was uncommon and occurred in low abun-
dance. We identified several OTUs which were classified as
members of the Pasteurellaceae family, including Mannheimia,
Bibersteinia, and, less commonly, Aggregatibacter segnis, Haemo-
philus parainfluenzae, Bibersteinia trehalosi, and Actinobacillus
parahaemolyticus. All of these microbes have previously been iso-
lated from the lungs or upper respiratory tract (54–58). Despite
the fact that disease caused by members of this family is often
located in the apical and cardiac lobes (12, 19), we observed mem-
bers of this family to be present across the lung.

The composition of the lung microbiota found in our sheep
shows some differences from that previously identified in hu-
mans, where Bacteroidales are found in higher numbers and there
are generally fewer members of the Actinomycetales and Clostridi-

ales orders (2, 9, 59). Segal et al. identified various bacterial taxa
that were commonly found in high relative abundance in human
lungs (1). These included taxa which were found in all of our sheep
samples in high relative abundance (Streptococcus, Staphylococcus,
Corynebacterium), taxa which were found in the majority of our
samples but in lower abundances (Propionibacterium, Pseudomo-
nas), and taxa which were found only sporadically in our samples
and were usually in low abundance (Stenotrophomonas, Prevotella,
Veillonella, Fusobacterium, Porphyromonas).

Such differences may at least in part reflect the different sur-
roundings in which sheep live, as well as behavioral or physiolog-
ical features, such as rumination. A study using buccal swabs to
identify bacteria originating from the rumen suggested that, as the
time between regurgitation and sampling increases, the orally as-
sociated bacterial populations in the buccal cavity increase and the

FIG 8 Clustering of lung brushing samples by depth within the lung. A PCoA graph shows the similarity of samples taken at different lung depths based upon
the bacterial orders present. Lung depths are represented by color and correspond to different distances from the glottis, progressing in a caudal direction.
Adjacent pairs of samples are represented by the same symbol and color. For the exact location of each sampling site, see Fig. 2. Subtracheal samples (�A3)
clustered significantly by lung depth (AMOVA, P � 0.033), as did paired samples (AMOVA, P � 0.046).

TABLE 3 Abundances of the OTUs within the Pasteurellaceae family found in different locations of the sheep respiratory tract

Specimen type, location, or sample

% of organisms that were in:

OTU 5, Mannheimia OTU 6, Pasteurellaceae OTU 7, Bibersteinia OTU 9, Bibersteinia trehalosi

Throat swab 23.7 10.1 1.8 0.7

Trachea
A1 5.5 4.5 28.4 5.3
A2 0 0.03 0 0.01

Left lung
A3 0 3.04 0.01 0.03
A4 1.2 0.006 0 0
A5 0 0.2 0.006 0
A6 0 0 0 0
A7 0.7 1.4 0.006 0.006
A8 0 0 0.8 0
A9 0.006 0.02 0.2 0

Right lung
A13 0.9 0 0 0.006
A14 0.006 0.3 0 0
A15 0 0.6 0.006 0.006
A16 2.3 0.6 0.006 0
A17 0.10 0 1.3 0.01
A18 0 0.02 0.01 0
A19 3.2 0 1.3 0
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rumen-associated bacteria decrease, potentially contributing to
interanimal variation (58). In future studies, it may be useful to
take rumen and upper respiratory tract samples alongside lung
samples to explore whether the variations between these sites and
the lung are related.

Regardless of the highlighted differences between sheep and
human lung microbiotas, there is a pressing need to understand
the mechanisms that underlie the spatial and temporal variability
of microbiota in the mammalian lung. These fundamental studies
are difficult to facilitate in healthy human subjects as a conse-
quence of the invasive nature of the repeated sampling protocol as
well as the difficulty of controlling for the influence of environ-
mental and/or lifestyle factors. Large-animal models can, how-
ever, play an important role in filling this need. Indeed, the phys-
iological and immunological similarities between sheep and
human lungs (60, 61) have contributed to the widespread use of
sheep as translational models for human lung research (26, 27),
including for asthma (62–65), the delivery of drugs via the upper
respiratory tract (66–68), emphysema (69–71), pulmonary hyper-
tension (72–74), physical lung injury (75–78), lung infection (28,
79–81), respiratory distress syndromes (82–85), asbestosis (86–
88), and lung cancer (89, 90).

In our study, we examined the variability of the lung microbi-
ota in sheep. Bacterial populations were often different between
lung segments and between individuals, which confirms our pre-
vious observations (17). There was more similarity between sam-
ples from the same sheep at the baseline and 3-month time points
than between samples taken from different sheep, but this was not
found to be the case at the 1-month time point. Lung sample
clustering by individuals has previously been identified in humans
(9) and sheep (17).

Clearly, large differences can exist in the microbiota sampled
from different lung segments at the same time point. This spatial
variability of lung microbial populations can be observed in P.
aeruginosa infections in cystic fibrosis patient lungs (91). The
mechanisms underlying such observations have yet to be eluci-
dated; however, possible candidate influences may include re-
gional variability of physiological parameters, such as gas concen-
trations, osmolality, temperature, pH, and blood flow (92–96),
which may lead to the creation of microhabitats providing a selec-
tive advantage to certain bacteria (97). It has previously been dem-
onstrated that differences in pH can lead to changes in the colonic
microbiota (98) and that temperature combined with humidity
can lead to changes in the composition of the skin microbiota
(99).

A longitudinal analysis of the lung microbiota at specific lung
sites in healthy individuals has not previously been reported. Our
goal was to define the variability of the lung microbiota over time
and to detect whether there was a sheep lung microbiota “signa-
ture” which remains stable. Unfortunately, at the time of carrying
out this study, the extent of the variability of bacterial DNA found
within different lots of extraction kits was not yet known (100).
While we, therefore, did include some extraction kit controls for
our longitudinal study, we did not include controls for all lots
which were used. Samples from different time points were also
processed at different times. Due to our small sample sizes and the
fact that samples clustered significantly by time point, we do not
feel that accurate conclusions can be drawn about the temporal
stability of the microbiota from our data. However, all samples
taken from the same time point in the same sheep were processed

at the same time. Therefore, we can be confident that the spatial
variability that we observed within animals was not due to our
methodology.

In some individuals, samples taken from different lung seg-
ments were found to be highly different from one another,
whereas in others, the lung microbiota appeared to be quite stable
across the lung sites. Another finding was the disappearance of the
significantly separate clustering of sheep samples at the 1-month
time point. This was correlated with an increase in the proportions
of several OTUs found in sheep lungs, the most noticeable in-
crease arising from an OTU classified as Corynebacterium, which
was also the most abundant OTU in samples from one of our
extraction kit controls. It is likely that the disappearance of signif-
icant clustering by individual at the 1-month time point is due to
the increased presence of contamination in our samples.

OTUs that were identified in both samples and negative PCR
and extraction kit controls were not removed from the analysis for
the 3-month sheep study. The reason for this decision was that a
number of bacteria commonly associated with the upper and
lower respiratory tracts were present in these controls, including
the genera Streptococcus and Pseudomonas, and it was judged that
their removal would merely introduce another source of bias.

Equally, any specific a priori manipulation based around as-
sumptions gleaned from the human literature regarding microbi-
ota in the upper and lower respiratory tract are potentially ill ad-
vised. Indeed, it has been demonstrated that the microbes found
in the lungs of animals often match those found in their bedding
and hay (101). It is therefore not possible to dismiss environmen-
tal microorganisms as being due only to the contamination of
samples.

In our spatial-variation study, one OTU was removed before
analysis, as we felt confident that its presence was due to contam-
ination of our extraction kit. Clustering of organisms in lung
brushing samples by the lung depth from which they were taken
was observed when OTUs were defined by bacterial order. Micro-
organisms in samples paired with their proximate neighbors were
also found to cluster significantly separately from those in brush-
ing samples taken elsewhere in the lung, but this may just be due to
the fact that these samples were taken from the same lung depth.
Certainly, further research to explore the relationship between
lung depth and community composition appears warranted.

After sequencing a mock community of bacteria which con-
tained equimolar concentrations of each bacterial species, we did
find some bias present, with some bacterial species being overrep-
resented or underrepresented. These biases, which may be caused
by various factors, including primer mismatching, PCR cycle
number, and the bioinformatic pipeline used, are quite common
in 16S sequencing (102–105). We also sequenced a 1:100 dilution
of the same mock community and found that the apparent biases
were far smaller. As the concentration of bacterial DNA in our
samples was far lower than that of the undiluted mock com-
munity, we feel that the 1:100 dilution is likely to better repre-
sent the biases which may be present in our samples, as it is
closer to their bacterial DNA concentrations. We believe that
this vindicates our choice of DNA amplification strategy, in-
cluding the use of nested PCR.

It may not be possible to claim that the bacterial abundances
identified via 16S sequencing quantitatively represent the relative
abundances of bacteria in the sample. Indeed, this is made even
more difficult, as different bacterial taxa contain different copy
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numbers of the 16S rRNA gene (106). However, it seems logical to
assume that, if the same methodology is used for all samples
within a study, then the biases present will be the same for all
samples, and therefore, comparisons between groups or claims
about the types of microbes present in samples would still be valid.

In conclusion, we observed variability in sheep lung microbio-
tas both between and within individuals. In some animals, differ-
ent lung segments contained highly different bacterial communi-
ties, whereas other animals showed similar communities at all
lung sites. While spatial variation was observed to occur over both
large and small distances across the lung, samples taken at the
same lung depth clustered together separately from those taken at
different lung depths. Further studies are needed to explore the
stability of the healthy lung microbiota over time.
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