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In order to survive after birth, mammalian infants need a caretaker, usually the mother.
Several behavioral strategies have evolved to guarantee the transition from a period of
intense caregiving to offspring independence. Here, we examine a selection of literature
on the genetic, epigenetic, physiological, and behavioral factors relating to development
and mother–infant interactions. We intend to show the utility of comparisons between
rodent and human models for deepening knowledge regarding this key relationship. Par-
ticular attention is paid to the following factors: the distinct developmental stages of the
mother–pup relationship as relating to behavior; examples of key genetic components of
mammalian mother–infant interactions, specifically those coding for the hormones oxytocin
and vasopressin; and the possible functions of gene imprinting in mediating interactions
between genetics and environment in the mother–infant relationship. As early mother–
infant attachment seems to establish the basic parameters for later social interactions,
ongoing investigations in this area are essential. We propose the importance of interdisci-
plinary collaboration in order to better understand the network of genes, gene regulation,
neuropeptide action, physiological processes, and feedback loops essential to understand
the complex behaviors of mother–infant interaction.

Keywords: mother–infant attachment, oxytocin receptor gene, innate behavior, social behaviors, behavior
synchrony

INTRODUCTION
A social interaction is a dynamic process, composed not of a single
set of behaviors at a given moment, but rather of the relationship
of a series of behaviors over time. The exchange of informa-
tion between subjects progressively modifies them. Due to its
fundamental role in development, the effects of mother–infant
interaction last throughout life.

In this review, we examine research on behavioral strategies
that have evolved to guarantee the transition from intense care-
giving to offspring independence. Infants display preference for
social stimuli, suggesting evolutionary pressure in favor of these
stimuli. In humans, the mechanisms involved in mother–infant
attachment are still insufficiently understood. Nevertheless, a few
areas of research are offering promising insight into the deter-
mination of this complex interaction. First, we examine studies
that demonstrate olfactory stimuli from the mother to be crucial
for infant latching and suckling, a determining factor in mother–
infant attachment, feeding, and infant survival (1). Next we offer
case studies on the genetic basis of two neurotransmitters, oxy-
tocin (OXT) and vasopressin, which facilitate social recognition by
acting on several brain regions, such as the olfactory bulb. In pla-
cental mammalians, both OXT and vasopressin are highly involved
in key social interactions, including social recognition, pair bond-
ing, and parental behavior. Finally, we consider the possible role
of imprinting of candidate genes in determining features of the
mother–infant interaction. These fundamental early-life physio-
logical, genetic, and epigenetic processes suggest why, in many
ways, mother–infant attachment establishes basic parameters for
later social interactions.

THE ACTORS: MOTHER AND INFANT
In rodents and humans, mother–pup interaction involves two
essential types of actors: the mother and the infant, or several
infants at the same time. Many other elements may be involved
and/or affect this interaction: the father, the environment, sib-
lings, and predators (2). However, here we focus on mother and
infant. This particular relationship involves two organisms in dif-
ferent developmental stages. In this sense, it is an asymmetric
relationship.

Moreover, this interaction occurs over time and is constantly
adjusted, especially due to the fact that one organism – the infant –
changes dramatically over the course of the relationship. Mother-
hood also involves behavioral changes, such as long-term memory
of mothering mediated by OXT (3) and selectively reduced stress
responses (4, 5) and anxiety (6).

Animal models have been developed to analyze the effects of
maternal deprivation on the development of offspring (1, 7). Due
to the complexity of the neuroendocrine and behavioral pecu-
liarities of this relationship (8), the alteration of one element can
induce changes of several orders, many of them not directly related
to the original disturbance. Two changing organisms interact in a
complex and balanced dynamic (9). Attempts to replace a missing
mother or to repair an affection poor childhood (10) are rather dif-
ficult. This difficulty probably depends on the fact that there are at
least two organisms that are necessarily changed by the interaction.

A mother–infant interaction is unique and depends on many
factors (11). For instance, even in large litters, as in rats, moth-
ers show different maternal behaviors toward male and female
offspring (12). There are several elements that should be taken
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into consideration: the genetic background of the mother and the
infant; the past experiences of the mother and the prenatal envi-
ronment of the infant; the neuroendocrine profile of mother and
infant; the stress copying style of the mother; and the environ-
ment (social and resource availability), among others. To consider
such a wide variety of factors is a challenging task. As such, it
is essential for the neuroscientist to collaborate with geneticists
and physiologists in order to understand the origins of relevant
psychopathologies (13).

TIME: LIFECYCLES AND THE DEVELOPMENT OF THE
MOTHER–INFANT INTERACTION
The mother–infant interaction depends upon several elements
to establish attachment: the product of genes such as hormones
and/or neurotransmitters (e.g., OXT, vasopressin, serotonin, nora-
drenaline), cytokines (14), opioids (15, 16), and dopamine (17), as
well as epigenetic (18) and environmental factors (19). In mam-
mals, the uterus is the first site of mother–infant interaction (20,
21). In both rodents and humans, pregnant females undergo phys-
iological and behavioral changes to support gestation (22); and
several studies have shown that the infant responds to the mother
from within the uterus (23, 24). During the neonatal period,
mother–infant attachment develops and filial bonds form (25,
26). This period seems crucial for behavioral development and the
establishment of the infant’s stress coping style (27). The mother’s
behavior conveys important information about the environment
in which the newborn will live (28), through sensory stimulation
of pups by the mother (29). Additionally, the mother–infant inter-
action involves the behavior of the mother in synchrony with that
of the infant (30). Predictability of mother’s behavior and thus a
secure attachment is crucial for the neurocognitive development
of offspring (31).

Consistent demonstrations in rats have shown that mother–
infant interaction is based on infant learning processes, expressed
by increased CREB phosphorylation (19) and the development of
a memory of the mother (4). This is a simple mechanism involving
the noradrenergic activity of the locus coeruleus on the olfactory
bulb, where the memory of the mother begins (32). Two aspects
seem important: the physiology of the locus coeruleus, whose
activity is less inhibited by its noradrenergic inhibitory autorecep-
tors during infancy than later in life; and plastic changes induced
by the learning process. Environmental stimuli (odor and varying
forms of body contact with the mother) act on the neural system
of the infant, which is particularly receptive and prepared to react
to those stimuli; the system has a very low threshold during this
specific period. All of these interactions exert long-lasting impact
on the development of the infant.

ORIGINS OF THE MOTHER–INFANT INTERACTION: NATURE
VERSUS NURTURE
The innateness of behaviors is controversial. Some authors suggest
that behaviors presented by an individual early in life are essen-
tially based on the genome and are innate (2, 33, 34). The behaviors
would be already “wired” and triggered by specific stimuli, during
sensitive period (35). However, consistent studies have shown that
mother–infant interaction involves learning mechanisms (4, 11,
36). Physical contact is crucial to establish bonding. In rats, the

mother’s licking induces olfactory memory that would be the basic
mechanism of the mother–infant interaction. This interaction is
by its nature dynamic and induces permanent reorganizations of
the neuroendocrine systems and behaviors of both mother and
offspring. Moreover, the system is open to the environment and
can be affected by environmental stimuli in several ways, inducing
short-term and/or long-term changes (37).

For the mother–infant interaction, it seems plasticity is not
exclusively related to specific learning periods, as in other func-
tions. For comparison, we might look at the classic neurophysio-
logical example of ocular dominance columns in the visual system
(38). These columns exist in rudimentary form at birth, but need
to be stimulated by specific stimuli during a set period to fully
develop their function. In the case of the mother–infant interac-
tion, we would predict that plasticity is not time-limited as in the
development of ocular dominance columns, but rather is cumu-
lative. The constant learning processes that occur over time in the
mother–infant relationship provoke related plastic changes. Thus
the development of this interaction and the consequent attach-
ment would not be an all-or-nothing phenomenon. Nevertheless,
there are periods of greater impact, such as birth and the initial
contact directly following birth.

In order to conceptualize the origins of the mother–infant inter-
action, let us consider an analogy between that interaction and
the rhythmic activity of locomotion. Although these two behav-
iors are very different in complexity, it is interesting to imagine a
similar basic working model. In this model, for locomotion, the
output of a hierarchical neural system is the result of the activity
of several circuits working in coordination. This system could be
triggered by specific environmental stimuli. The generation and
fine control of locomotion involves a basic central pattern gen-
erator in the spinal cord modulated by several other hierarchical
disposed structures (39). In the case of the mother–infant interac-
tion, this model would imply that several“layers”of interconnected
neuroendocrine structures are the basis for behavior. The central
pattern generator would first need to be properly triggered and
then modulated by the interaction that it generates. Feedback is
essential in social behaviors; the interaction generated by a behav-
ior can be modulated by the response of the partner. However,
in its very early stage, a supposed innate “central pattern gener-
ator” would require feed-forward action. Based on this model of
the development of the mother–infant interaction, the functional
characteristics of the infant locus coeruleus during the period after
birth would be an innate system, prepared to be stimulated by the
mother.

Animals are born with the capacity to develop complex behav-
iors (40), but not with behaviors per se: an infant must build them.
The constructive nature of this process is analogous to those of
other systems; for instance, in cognitive functions, an animal builds
internally a unique sensation of a particular stimulus.

ROLE OF GENES
It is well known that behavioral traits such as parent–infant bond-
ing are the product of a sophisticated combination of genetic,
environmental, and epigenetic factors. The adequate interplay of
these elements, both over the course of the evolutionary trajectory
of a species, and during the development and life of an individual,
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ensures a behavioral repertoire sufficient for survival and repro-
ductive success. Identifying the contribution of genetic factors is
the starting point for understanding the formation and expression
of a particular phenotype. Although there is still much to learn
regarding the genes implicated in specific mammalian behavioral
phenotypes, a number of them have been characterized. This is
the case of the genes for the OXT and arginine vasopressin (AVP)
nonapeptides, which act as hormones and neurotransmitters.

It has been proposed that OXT and AVP-like genes origi-
nated due to a tandem duplication of an ancestral gene ~500
million years. This event would explain the presence of at least
one homolog in jawed vertebrates (41), although many aspects of
the origin and evolution of these genes remain unknown (42). In
humans, OXT and AVP are located on the same chromosome, at
20p13, but with opposite orientation (43).

In placental mammalians, OXT and AVP nonapeptides differ
by two amino acids at positions 3 and 8 (OXT: Cys–Tyr–Ile–
Gln–Asn–Cys–Pro–Leu–Gly, and AVP: Cys–Tyr–Phe–Gln–Asn–
Cys–Pro–Arg–Gly) and play an important role during lactation,
uterine contractions, offspring care, stress-response, and other
reproductive and social behavioral traits (41, 44, 45).

Although they boast a wide spectrum of activity, OXT and AVP
are best known for their contribution to the regulation of social
behaviors. Pedersen and Prange (46) were pioneers in showing
that artificial administration of OXT promoted maternal nur-
turing in virgin and steroid-primed female rats, indicating that
this hormone plays a specific role in the mother–pup interaction.
Other authors replicated and extended this initial study in several
other mammalian species, including humans [(45) and references
therein]. For example, Bosch (47) showed that the OXT and AVP
systems are key factors regulating maternal aggression and anxiety
in rodents, while Apter-Levi et al. (48) found that both OXT and
AVP are associated with human maternal and paternal behaviors
in distinct, sometimes overlapping, ways.

Both nonapeptides are highly conserved in placental mam-
malians, with a few rare exceptions. For example, Lee et al. (49)
showed that five New World monkey species had fixed a T > C
mutation changing leucine to proline at position 8 of OXT. Other
authors described an AVP mutation leading to a substitution of
arginine for lysine at position 8 in opossums and pigs, but the phe-
notypic consequences of these changes remain unknown (42, 50).
It is noteworthy that changes at amino acid chain position 8 char-
acterize some non-placental AVP/OXT-like nonapeptides such as
mesotocin in marsupials (51, 52).

The oxytocin receptor (OXTR) and the three AVP receptors
(A2, V1a, and V1b) are encoded by the OXTR, AVPA2, AVPR1a,
and AVPR1b genes located on human chromosomes 3, X, 12, and 1,
respectively. These receptors, which use G-proteins as transducer
signals across the cell membranes, have seven transmembrane
domains, four extracellular, and four intracellular domains. Both
OXT and AVP can bind to each one of the four above-indicated
receptors, but not with the same affinity, since the most important
binding sites differ slightly among the four receptors (53, 54).

Oxytocin and AVP are produced in greatest quantity in the
hypothalamus, but their activity outside of the brain depends on
their interaction with the receptors produced in various organs
and tissues. For instance, the presence of OXTR in the uterus and

mammary glands guarantee uterine contraction and milk ejection
(42, 55). Hammock and Levitt (56), on the other hand, showed
that OXTR is also found in several tissues of the mouse embryo,
such as the adrenal glands, brown adipose tissue, and the oronasal
cavity.

In contrast to the observed OXT and AVP gene conservation,
hundreds of mutations in the OXTR,AVPR2,AVPR1a, and AVPR1b
genes have been reported in placental mammalians. For instance,
in pigs, AVPR1a and AVPR1b mutations have been associated
with stress and aggressive behavior through their connection with
ACTH, an important component of the hypothalamic–pituitary–
adrenal (HPA) axis (57, 58). In humans, polymorphisms in these
receptor genes have also been linked to attachment, generosity, and
pair bonding behaviors (59).

These examples illustrate that variations in candidate genes can
be related to some intra and inter-specific mammalian behaviors.
As seen above, however, other non-genetic factors have important
roles in determining behavioral phenotype; this may be the case
for the differential care of offspring between father and mother.
Although males and females can have the same alleles in genes
related to pup-care behaviors, only ~10% of mammalian species
show significant male parental care, the majority of which are pri-
mates, carnivores, and rodents (60). This suggests that some social
behavior candidate genes, located on autosomal chromosomes,
can be subject to the imprinting process, an epigenetic phenom-
enon where changes in gene function can be heritable despite the
fact that no alteration in the DNA sequence is detected. If genetic
variation in key peptides and their receptors is understood as a
first step, the imprinting of genes can be understood as a second
step in determining the features of the mother–infant interaction.
Below, we will see some examples of imprinted genes.

IMPRINTED GENES
The term “imprinted genes” refers to genes in which either the
maternal or paternal copy is exclusively expressed. Previous study
(61) presented evidence that the imprinted gene PEG3 is involved
in sexual behavior and it would also be related to maternal care.
More recently, Garfield et al. (62) showed that the imprinted
gene GRB10 influences, in mice, distinct physiological processes,
fetal growth, and adult social behavior, due to actions of the two
parental alleles in different tissues. An evolutionary explanation
for this parent-of-origin-dependent gene expression is the “con-
flict hypothesis.” A good example of evidence for this hypothesis,
which will also help illustrate the meaning of imprinted genes,
is the case of insulin-like growth factor (IGF2) and its receptor
(IGF2R). As it is an imprinted gene, organisms that predominantly
express the paternal allele of IGF2 show high levels of offspring
resource extraction from the mother. However, if selection favors
high expression of the maternally inherited allele of IGF2R, the
offspring would show low levels of resource extraction from the
mother (63). Thus, the balance of these imprinted genes would
define a very initial and essential relationship pattern between
mother and offspring interaction regarding nurturing.

Nevertheless, the likelihood of epigenetic influence on
imprinted genes raises the question of the importance of environ-
mental intervention in determining behavior. In rats and humans,
several studies have shown that changes in the expression of
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candidate genes due to epigenetic mechanisms are connected with
early parental care. Furthermore, McGowan et al. (64) suggested
that the epigenetic response to maternal care in rats does not
involve a single candidate gene, but rather includes changes in the
expression of hundreds of additional genes. It is possible to spec-
ulate that the same happens with other placental mammalians,
including humans.

In conclusion, early-life interactions clearly mold the neural
basis for social behaviors (65), and sociability is perhaps the most
important natural evolutionary force for mammalian species (66).
In this context, it can be assumed that interactions with the mother
are essential, not only in quantity, but perhaps most importantly in
quality. A crucial question that emerges, among many, is whether it
is possible to predict the consequences of the absence of a mother
for her offspring, since several studies have indicated a genetic
basis for animal behavior.
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