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Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease.
However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To
bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug
combinations. Among thesemodels, biomolecular network-basedmodel is outstanding because of its ability to reflect and illustrate
the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In
this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their
respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination
prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug
combination designing.

1. Introduction

Complex diseases such as cancer are often caused by a col-
lective of abnormalities of correlated genes or biology pro-
cesses. The traditional paradigm of “one gene, one drug,
one disease” has been challenged by the increasing rate of
drug failure and the huge costs of time and money in drug
development and research [1, 2]. What is worse, the recurrent
drug resistance has significantly reduced the efficacy of the
existing drugs [3, 4].

To tackle the problem of drug resistance and reduce
the great expenses of time and money in drug discovery,
researchers have made great efforts to discover synergistic
drug combinations. Synergistic drug combinationmeans that
the overall therapeutic effect of the combination is larger
than the sum of effects independently caused by individual
component [5]. Synergistic drug combination can decrease
the drug dosage but increase or maintain the same efficacy
to avoid toxicity, minimize, or slow down the development

of dug resistance [6]. Inspired by the great benefit of
synergistic drug combination, both in silico methods and
in vitro methods have been applied to screen synergistic
drug combinations. The most straightforward methods for
screening synergistic drug combination are in vitromethods.

There are three popular reference models in vitro meth-
ods, namely, the highest single agent (HSA) model [7], the
Loewe additivity model [8], and the Bliss independent model
[9]. The difference between these models is their definitions
of the noninteraction effect of a drug pair which means
the expected additive effect of a drug pair. Specifically, HSA
defined the noninteraction effect as the highest monotherapy
effect among the individual drug in drug combinations.
Loewe additivity model defines the noninteraction effect of a
drug pair as if single drug is combined with itself. In contrast,
Bliss independencemodel defines the noninteraction effect of
a drug pair as if two drugs work independently. In addition,
the integration of the HSA model and the Bliss indepen-
dence model, called zero interaction potency (ZIP), has
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been applied to large-scale dose-responsematrix experiments
[10]. More importantly, Chou proposed a popular algorithm
based on themedian-effect equationwhichwas encompassed
by several complex equations such as Michaelis-Menten,
Hill, Henderson-Hasselbalch, and Scatchard equations in
biochemistry and biophysics [11, 12]. The core concept of this
algorithm, combination index (CI), is an indicator evaluating
drug combination interaction effect. CI has been widely
used in identification of synergistic drug combination in
vitro, especially in validation of novel drug combinations
from various kinds of computational models. The in vitro
models mentioned above are all based on drug-treated
dose-response curve. Dose-response curve based model can
achieve good performance for low-throughput data and
be used to validate novel drug combinations. Nevertheless,
without involving any molecular level data such as drug-
treatment transcriptional expression profile, these models
may not help to discover the underlying mechanism of
drug synergy [13]. Besides, in vitro methods which screen
all possible combinations by experimental trials are time
and money consuming, and usually only a small number of
synergistic drug combinations can be identified.

To address this limitations of in vitro methods in identi-
fying synergistic drug combinations, in silicomethods based
on “omics” data have become more and more popular [14–
17]. With the explosion of “omics” data in recent years, high-
throughput data at various levels related to disease state and
drug-treatment have been accumulated rapidly. Also, in the
recent decades, protein interactions have been extensively
studied, forming comprehensive knowledge background of
molecular regulation pathways or networks. In addition,
taking the heterogeneity and redundancy of diseases into
account, researchers have come to realize that the under-
standing of mechanism of drug synergistic effect calls for
analysis of biology system in a network perspective [1, 18].
Network analysis involvesmathematics and computer science
into biology and can help to present relationship among
molecules in the perspective of network. What is more,
network analysis has an advantage of finding newly emerged
properties at a network level [19–23]. With the benefit of
network analysis, the researchers can make full use of high-
throughput data by modeling the interaction among drugs,
targets, and diseases, which can definitively promote the
discovery of the complex mechanism of drug synergy.

Inspired by the rapid development of biomolecular
network-based synergistic drug combination discovery, here
we present a brief review on the prediction models of syner-
gistic drug combination. All themodels are divided into three
classes according to the type of drug pairs used to train the
prediction model, namely, unsupervised learning prediction
models depending on hypothesis of drug synergy and unla-
beled drug pairs, semi-supervised learning predictionmodels
involving few labeled drug pairs, and many unlabeled drug
pairs in model training and supervised learning prediction
models using labeled drug pairs to train models. Labeled
drug pairs denote that effective drug combinations have
been approved by FDA or validated by experiments, while
unlabeled drug pairs denote drug pairs without synergistic
effect evidence. The general work flow of identification of

novel synergistic drug combinations based on biomolecular
network is shown in Figure 1.

2. Important Public Resources for
Network Construction in Predicting
Synergistic Drug Combinations

Recently, with the rapid development of next generation
sequencing (NGS) technologies and rapidly accumulation
of “omics” data [24], there are many useful databases and
analysis tools for predicting and screening synergistic drug
combinations. Table 1 includes the tools that can be used
to identify synergistic drug combinations in silico. Table 2
lists important databases containing many instances of drug
combinations for cancers aswell as other diseases. Table 3 lists
the popular biology network-related databases that can aid
the construction of molecular interaction network.

The Connectivity Map (CMap) collects a genome-wide
transcriptional expression data from cultured human cells
treated with various bioactive small molecules, providing
a bridge to connect drugs and genes [51]. Drug Com-
bination Database (DCDB) contains 1363 drug combi-
nations, providing an important source for model con-
struction and validation [35]. Here, we collected drug
combinations from DCDB with each individual compo-
nent of these drug combinations in CMap database (see
supplementary file in Supplementary Material available
online at http://dx.doi.org/10.1155/2016/8518945). With these
data, the performance of prediction models based on
compound/agent-treated transcriptional expression profile
can be evaluated without conducting experiments.

3. Principles of Identifying
Synergistic Drug Combinations Based on
Biomolecular Network

The therapy strategy of “one drug, one gene” is not always
successful to treat disease because cells can often find alterna-
tive ways to compensate the function after a gene or protein
is perturbed by drug treatment [52]. Thus to treat these
complex diseases, it is beneficial to consider the relationships
among drugs, disease-related genes, therapeutic targets, and
disease-specific signaling pathways as a system. Known drug
combinations provide us a useful resource for predicted novel
drug combinations. Taking the known drug combinations
into consideration, labeled drug combinations can be used
for supervised learningmethods.The underlying principle in
supervised models is that the more similarity to known drug
combinations for a novel drug combination, the more likely
it can become a synergistic drug combination. On the other
hand, unsupervised models use no labeled drug combination
to build and train model and mainly analyze the biologi-
cal networks perturbed by drug combinations. A network
presents the relationships (edges) of a set of entities (nodes).
These nodes and edges have various important attributes such
as degree, betweenness, and eigenvector centrality. Nodes can
denote molecules such as genes, proteins, and drugs. Edges
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Figure 1: The general work flow of identification of novel synergistic drug combinations based on biomolecular network.

connecting these nodes can represent the interactions such
as physical interactions and genetic regulatory interactions
[53]. Drug synergy has been reported to be a property
largely determined by network topology [54]. Therefore,
biomolecular network analysis should provide useful insight
into the mechanism of action of drug combinations.

4. Biomolecular Network-Based Unsupervised
Learning Models for Synergistic Drug
Combination Identification

Unsupervised learning models were mainly based on various
features of drugs, targets, drug-treated cellular response data,
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Table 2: Integrated drug combination databases.

Database URL
DCDB [35] http://www.cls.zju.edu.cn/dcdb/
TTD [36] http://bidd.nus.edu.sg/group/cjttd/
TCM [37] http://tcm.cmu.edu.tw/
ASDCD [38] http://asdcd.amss.ac.cn/

and functional networks following various hypotheses. Drug-
treated cellular response data can provide an insight of drug
mechanism of action [55]. Transcriptional expression profile
is one of the most common cellular response data used to
study the mechanism underlying a biological pathway [56]
and the biology response of a cell to a certain perturbation
[51, 57]. According to different hypotheses, several prediction
models have been built.

DrugComboRanker was built based on the hypothesis
that effective drug combinations can inhibit major modules
of disease signaling networks simultaneously and drugs often
have multiple active target genes or proteins [58]. Based on
transcriptional expression data from cell lines treated with
small molecule compounds in CMap, researchers built a drug
functional network and divided the network into numerous
drug network communities by a Bayesian nonnegativematrix
factorization method [59]. Besides they also constructed a
disease-specific signaling network utilizing patients’ genomic
profile and interactome data. Then they defined a synergy
score prioritizing the drug pairs that target on disease-specific
signaling network with similar function. Finally, all the drug
pairs were ranked in the descend order of the synergy score
and the top-ranked drug pairs will be more likely to be
synergistic.

Jin et al. built a model called enhanced Petri-net (EPN)
to predict the synergistic effect of pairwise drug combina-
tions from genome-wide transcriptional expression data by
applying Petri-net to identify drug targeted signaling network
[60]. They assumed that there existed at least one molecule
that shows the enhanced effect in the pairwise combination
compared with the summation of the effect generated by
the two drugs individually. They identified synergistic drug
combinations by comparing the drug effects from the tran-
scriptional expression data treated by pairwise combination
of drugs A and B with those from the corresponding two
transcriptional expression data treated by drugs A and B
separately.

Wu et al. utilized information of protein interactions,
protein-DNA interactions, and signaling pathways to con-
struct amolecular interaction network [61].Their assumption
was that a subnetwork or pathway would be affected in the
networked cellular system after a drug was administrated.
They built a model to detect the subnetwork perturbed
by drug combinations. Based on the molecular interaction
network, they defined an interaction score that indicated the
gap between drug efficacy effect and side effect. Drug com-
bination whose interaction score for certain subnetwork is
higher than that of any individual drug would be recognized
as effective drug combination.

Similarly, a model named pathway and pathway inter-
action (WWI) was based on the assumption that drugs
targeting one same pathway or related pathways will be
more likely to be synergistic drug combinations [62]. The
researchers built two networks, namely, a PPI network based
on information from HPRD [44] database and a WWI
network based on KEGG database. In WWI network, nodes
are the “Homo sapiens” pathways, and edges are pathway-
pathway interactions. Then for each drug pair they defined a
scorewhich indicated the connectivity of pathways perturbed
by the individual drug of drug combinations on the WWI
network and drug targets on the PPI network. Finally, all
the query drug pairs were ranked in descend order of the
score and the top-ranked ones would be more likely to be
synergetic.

Another group of unsupervised learning predictionmod-
els were built according to the DEARM Challenge data.
In 2012, the Dialogue on Reverse Engineering Assessment
and Methods (DREAM) consortium designed an open
competition for researchers all over the world to rank the
effect of all 91 pairwise combinations on OCI-LY3 human
diffuse large B-cell lymphoma (DLBCL) cell line from the
most synergistic to the most antagonistic [63]. This project
generated transcriptional expression data only for samples
treated by individual drug, dose-response curves for viability
of OCI-LY3 cells following perturbation with 14 distinct
compounds and baseline genetic profile of the OCI-LY3 cell
line. Among all the 31 groups taking part in the project, three
of them performed significantly better than random guess.
All of the three groups developed their models based on
their assumptions about drug synergy, such as assumption
that changes in gene expression after drug perturbations
could be used to predicted these drug interaction effect [55]
or the correlation of differential expression genes (DEGs)
after two drugs perturbations would reflect the possibility of
drug synergistic effect [64]. Although the final result of this
project wasmodest, the challenge gives us reasons to hope for
powerful methods to identify effective drug combinations in
the future [65].

Among all of those 31 groups participating in the project,
Drug-Induced Genomic Residual Effect (DIGRE) model
achieved the best performance on prediction of synergistic
drug combinations [66]. DIGRE was developed based on
the hypothesis that, for two drugs used sequentially, the
first drug would change the transcriptome of the treated
cell and thus modulate the effect of the other one. Firstly,
the researchers constructed a gene-gene interaction net-
work based on KEGG pathways. Based on the network,
DIGRE required transcriptional expression profiles and dose-
response curves provided by the DREAM Challenge as the
input data. Then drug similarity score of the drug pair was
computed by accounting for DEGs of each drug, including
common DEGs and upstream and downstream genes in the
selected pathways. Finally, all 91 drug pairs were ranked in
descend order based on the combinatorial effect score which
were computed based on corresponding drug response curve
and drug similarity score.

From above, we can see that drug-treated transcriptional
expression data is commonly used in unsupervised learning

http://www.cls.zju.edu.cn/dcdb/
http://bidd.nus.edu.sg/group/cjttd/
http://tcm.cmu.edu.tw/
http://asdcd.amss.ac.cn/
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Table 3: Important biology network-related databases.

Database URL Data type
STRING [39] http://string-db.org/ Protein-protein interactions
Reactome [40] http://www.reactome.org/ human biological processes
KEGG [41] http://www.genome.jp/kegg/ Pathway, disease, drug
BioGRID [42] https://wiki.thebiogrid.org/ PPI/genetic interaction
STITCH [43] http://stitch.embl.de/ Chemical-protein interaction
HPRD [44] http://hprd.org/ Protein-protein interaction (PPI)
DIP [45] http://dip.doe-mbi.ucla.edu/dip/Main.cgi PPI
IntAct [46] http://www.ebi.ac.uk/intact/ Molecular interaction
WikiPathways [47] http://www.wikipathways.org/index.php/WikiPathways Biological pathways
TRED [48] https://cb.utdallas.edu/cgi-bin/TRED/tred.cgi?process=home TF-gene interaction
InterDom [49] http://interdom.i2r.a-star.edu.sg/ Domain interaction
SignaLink [50] http://signalink.org/ Signaling pathways

prediction models because of its informative properties, such
as reflecting the mechanism of drug action underlying a
biological pathway. However, there is no standard rule to
process transcriptional expression data. Thus, selection of
significant differential expression genes is largely depended
on individual researchers and significant gene lists can be
quite diverse according to different algorithms. For models
based on transcriptional expression data, different networks
will be constructed by different researchers depending on
diverse processing methods of the same microarray data,
which can lead to difficulty in the final interpretation [31].

5. Biomolecular Network-Based Semi-
Supervised Learning Models for Synergistic
Drug Combination Identification

Traditional classifier uses only labeled data to train the
prediction model. However, it is both time and money con-
suming to collect labeled data by experts. Semi-supervised
learning solves this problem by using large amount of
unlabeled data together with a limited number of labeled
data [67]. To the best of our knowledge, the number of
approved drug combinations is still much less than drug
combinations without synergistic effect evidence, so semi-
supervised learning can solve this problem.

Sun et al. constructed a model called Ranking-system
of Anticancer Synergy (RACS) based on semi-supervised
learning which was used to rank drug pairs according to their
similarity to the labeled samples in a specified multifeature
space [68]. Firstly, they performed feature selection to iden-
tify significantly different features between labeled samples
and the unlabeled samples. Some interesting features had
been identified, such as drug target distance in PPI network
and the proportion of unrelated pathways regulated by the
targets of the two agents. Then all the drug pairs (i.e., labeled
and unlabeled samples) were represented by a vector of the
selected features (mentioned in the previous step). Finally,
they incorporated a manifold ranking algorithm with semi-
supervised learning method to enrich the labeled pairs at the
top of the drug pair list [69]. To evaluate the performance of

RACS in test dataset, the researchers applied RACS to data
provided by the above mentioned DREAMChallenge project
[49]. It impressively achieved greater progress than that of
the best model, DIGRE. However, despite the complexity of
the manifold ranking algorithm and some other complex
mathematics methods used in RACS, it also largely relied
on the known drug targets to calculate the average distance
between the target proteins of the two agents in the context
of PPI network. So far, a part of compound targets are still
unknown; thus this will limit the application of RACS in
synergistic drug combination identification.

Chen et al. developed an algorithm termed Network-
based Laplacian regularized Least Square Synergistic drug
combination prediction (NLLSS) based on their observation
that principal drugs which obtain synergistic effect with
similar adjuvant drugs are often similar [70], where principal
drug means that the drug in synergistic drug combination
shows activity in disease treatment and adjuvant drug means
drug in synergistic drug combination shows no effect on
disease treatment. NLLSS developed a classifier based on the
framework of Laplacian Regularized Least Square (LapRLS)
which is an popular semi-supervised learning algorithm [71].
Firstly, researchers computed drug similarity for principle
drugs and adjuvant drugs, depending on several integrated
information such as known synergistic drug combinations,
drug combinations without known synergistic evidences,
drug target interactions, and drug chemical structures.
Finally, a score used to assess synergistic probability of a drug
combination can be obtained depending on the result from
previous step.

As can be seen from above, RACS and NLLSS share
common features. Firstly, they both have a small number
of labeled data, such as 26 labeled data compared with 502
unlabeled data for RACS training set and 75 labeled data
compared with 4079 unlabeled data for NLLSS training set.
Secondly, they were developed based on known and complex
machine learning algorithms for manifold regularization
which is a technique for using the shape of a dataset to
constrain the functions that should be learned on that dataset
[71].

http://string-db.org/
http://www.reactome.org/
http://www.genome.jp/kegg/
https://wiki.thebiogrid.org/
http://stitch.embl.de/
http://hprd.org/
http://dip.doe-mbi.ucla.edu/dip/Main.cgi
http://www.ebi.ac.uk/intact/
http://www.wikipathways.org/index.php/WikiPathways
https://cb.utdallas.edu/cgi-bin/TRED/tred.cgi?process=home
http://interdom.i2r.a-star.edu.sg/
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6. Biomolecular Network-Based Supervised
Learning Models for Synergistic Drug
Combination Identification

Supervised learning is a machine learning algorithm of
inferring a function from training data. The training data
consists of a set of training samples which consist of an input
object and a relevant label. Then with the inferred function,
new sample can be labeled [72]. Thus with proper amount
of known synergistic drug combinations as a training set,
researchers can get a learned function by supervised learning
which can identify candidate synergistic drug combinations.

Zhao et al. developed a model based on features of
US Food and Drug Administration (FDA) approved drug
combinations including drug features such as drug target
proteins and corresponding downstream pathways, medi-
cal indication areas, therapeutic effects as represented in
the Anatomical Therapeutic Chemical (ATC) Classification
System, and side effects [13]. They performed 5-fold cross-
validation on the above mentioned drug combinations to
evaluate the performance of these features. Then the learned
model was revised after deleting two weakly predictive
features. Finally, drug pairs between marketed drugs from
FDA orange book were applied to evaluate the performance
of the model.

Xu et al. proposed amodel called Drug Combination Pre-
dictor (DCPred) [73]. With the effective drug combinations
collected from DCDB, they built a so-called drug-cocktail
network which contained 215 nodes (i.e., unique drug) and
239 edges (i.e., known synergistic effect). Their hypothesis
was that two drugs which shared large number of common
drugs in drug-cocktail network would be more likely to
be effective drug combinations. They found that, compared
with drugs in random combination network, drugs in drug-
cocktail network tended to have more therapeutic effects and
more interaction partners. Based on these two topological
features of drug combinations, they built a function which
required parameters such as number of common neighbors
of two drugs in drug-cocktail network and unique neighbors
of individual drug to predict the probability for a drug pair to
be an effective drug combination.

Similarly, Li et al. proposed another model called prob-
ability ensemble approach (PEA) based on drug-based simi-
larity features including drug chemical structure, ATC code,
target side effect, and target-based similarity features include
target sequence, target-target interaction in PPI, and Gene
Ontology (GO) semantic [74].The six features for every drug
pair were combined using a Bayesian network to calculate
a likelihood ratio (LR) which can be used to the estimate
of the similarity to known drug pair interaction [75]. A
raw score for a query drug pair was defined by summing
LRs to all the known drug pairs in each set (i.e., effective
drug combinations or undesirable drug-drug interactions),
which is further converted to 𝑝 value based on random
distribution. After performance evaluation of PEA using 10-
fold cross-validation scheme accompanied with the receiver
operating characteristic (ROC) curve analysis, integrative
analysis of side-beneficial effects for drug combinations,

external literature validation, and experimental validation,
tens of effective drug combinations were confirmed.

Chandrasekaran et al. developed a computational model
entitled INferring Drug Interactions using chemo-Genomics
and Orthology (INDIGO) which used chemogenomics data
to predict antibiotic drug combinations [76]. The core of
INDIGO is a machine learning algorithm called random
forest. To train INDIGO, the researchers firstly performed
experimental measurement of 105 interactions (𝐶2

15
= 105)

among 15 drugs. Then drug interaction data measuring syn-
ergistic and antagonistic effect together with chemogenomics
data were put into INDIGO as training data. INDIGO only
requires chemogenomics data of individual drugs to output
novel drug combinations.

The supervised learningmodels tend to take advantage of
drug property information like drug target, ATC code, and
chemical structure, while drug synergy is strongly context-
dependent, disease type [77] and drug dosages [60] can also
modulate the efficacy of drug combinations.Therefore, future
supervised learning models should take drug properties
as well as drug-treated information into consideration to
improve performance of prediction model.

7. Conclusions

With the explosive growth of high-throughput data, in silico
modeling for synergistic drug combination represents both
an opportunity and a challenge for medicine research. Com-
binedwith knowledge ofmathematics, computer science, and
biology, analysis of complex molecule interactions based on
biomolecular networks can greatly accelerate the discovery
of synergistic drug combinations [78]. To build a model with
great prediction performance, intricate mathematics method
is necessary to simulate the interactions betweenmolecules in
the complex biology system. For validation of the predicted
novel drug combinations, in vitro methods should be used
to get dose-response curves. Finally, either Chou-Talalay
method or reference models such as Loewe additivity model
and Bliss independent model can be used to determine the
effect of drug combination (i.e., synergistic, antagonistic or
additive).

Based on the review above, we can see that the number of
biomolecular network-based unsupervised learning models
is much bigger than that of semi-supervised learning or
supervised learning. The possible reason is that only small
number of drug combinations has been approved by reg-
ulatory agency, which limits the use of machine learning
methods such as semi-supervised learning method and
supervised learning method. Several significantly different
features between synergistic drug combinations and random
drug combinations have been identified.The average shortest
distance in PPI network of targets between synergistic drug
combinations is significantly smaller than that in random
drug combinations [68, 73, 79]. Also, dissimilarity of drug
chemical structure for individual drug in drug combination
is significantly associated with drug synergistic effect [80].

There are several limitations in effectively applying these
network-based models. Firstly, synergistic drug combination
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modeling utilizing high-throughput data based on biomolec-
ular network is in its infancy and most of these models have
not been fully validated in practice. Secondly, despite the
complexity of these prediction models, the massive noise
of high-throughput data at different levels from different
contributors can play an import role in model construction
and in turn lower the performance of the prediction model.
For instance, prediction models can perform very well in
one test set, while poor result may be achieved when the
model is applied to another test set. For example, Sun
et al. applied the transcriptional expression profiles and
target information of drug treatment on the human lung
adenocarcinoma cell line A549 to RACS [68]. Results showed
that only two drug combinations are synergetic ranked the
top 10%; however drug combinations ranked the first and
second are both antagonistic. Thirdly, networks such as PPI
network, gene-protein interaction network, and drug target
interaction network all have been considered inmodels men-
tioned above except metabolism network. Drug metabolism
processes such as drug absorption and transportation are
very important in disease treatment [81]. For example, one
of the most important reasons for drug resistance is the
overexpression of the P-glycoprotein (P-gp) [82], a drug efflux
protein expressed by ABCB1 which is from ATP-binding
cassette (ABC) family [83–85], and it has been reported that
inhibition of P-gp can enhance the drug efficacy [86–90].
Thus, we deduced that drugs inhibiting efflux genes (e.g.,
ABC family genes) or activating drug influx genes (e.g., solute
carrier transporter genes [91]) can make a contribution to
drug synergistic effect. However, few prediction models took
drug metabolism processes into consideration.

Future models for synergistic drug combination predic-
tion should pay more attention to incorporating comprehen-
sive information including disease signaling pathways and
drug targeting pathways as well as drugmetabolismprocesses
such as drug absorption, transportation, metabolism, and
clearance.
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