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BACKGROUND An electrocardiogram (ECG)-based artificial intelli-
gence (AI) algorithm has shown good performance in detecting hy-
pertrophic cardiomyopathy (HCM). However, its application in
routine clinical practice may be challenging owing to the low dis-
ease prevalence and potentially high false-positive rates.

OBJECTIVE Identify clinical characteristics associated with true-
and false-positive HCM AI-ECG results to improve its clinical appli-
cation.

METHODS We reviewed the records of the 200 patients with high-
est HCM AI-ECG scores in January 2021 at our institution. Logistic
regression was used to create a clinical variable–based “Candidacy
for HCM Detection (HCM-DETECT)” score, differentiating true-
positive from false-positive AI-ECG results. We validated the HCM-
DETECT score in an independent cohort of 200 patients with the
highest AI-ECG scores from January 2022.

RESULTS In the 2021 cohort (median age 71 [interquartile range
58–80] years, 48% female), the rates of true-positive, false-posi-
tive, and indeterminate AI-ECG results for HCM detection were
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36%, 48%, and 16%, respectively. In the 2022 cohort, the rates
were 26%, 47%, and 27%, respectively. The HCM-DETECT score
included age, coronary artery disease, prior pacemaker, and prior
cardiac valve surgery, and had an area under the receiver operating
characteristic curve of 0.81 (95% confidence interval 0.73–0.87) for
differentiating true- vs false-positive AI results. When the 2022
cohort was limited to HCM detection candidates identified with
the HCM-DETECT score, the false-positive AI-ECG rate was reduced
from 47% to 13.5%.

CONCLUSION Application of a clinical score (HCM-DETECT) in tan-
dem with an AI-ECG model improved HCM detection yield, reducing
the false-positive rate of AI-ECG more than 3-fold.

KEYWORDS Electrocardiography; Artificial intelligence; Hypertro-
phic cardiomyopathy; Diagnostic performance; Echocardiography

(Cardiovascular Digital Health Journal 2022;3:289–296) © 2022
Heart Rhythm Society. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
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Introduction
Hypertrophic cardiomyopathy (HCM) is the most common
genetic cardiomyopathy and is characterized by abnormal
myocardium hypertrophy, frequently involving the septum.
It affects 1 in 500 to 1 in 200 persons in the general popula-
tion and is among the most common reasons for sudden car-
diac death in the young.1,2 Cardiac imaging is essential for
the diagnosis,3 but importantly, more than 90% of patients
with HCM present with electrocardiogram (ECG) changes.4,5
However, 12-lead ECG changes associated with HCM, such
as high QRS amplitudes and T-wave inversions, are often
nonspecific.6

A completely automated deep learning artificial intelli-
gence (AI) algorithm for the detection of HCM (HCM AI-
ECG) from a standard ECG has shown promising results.7

However, the clinical application of this algorithm could be
challenging owing to the low disease prevalence and poten-
tially high false-positive rate when applied to unselected pa-
tients, particularly patients undergoing ECG for other clinical
indications during routine care. Furthermore, the HCM AI-
ECG algorithm, which was derived using a convolutional
neural network (CNN), may be hard to implement because
C BY-NC-ND https://doi.org/10.1016/j.cvdhj.2022.10.002
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KEY FINDINGS

� An electrocardiogram (ECG)-based artificial intelligence
(AI) algorithm for detecting hypertrophic cardiomyop-
athy (HCM) may result in high false-positive rates
when applied to unselected patients in clinical practice,
potentially owing to the relatively low disease preva-
lence.

� A newly derived clinical variable–based score (HCM-
DETECT score) including age, coronary artery disease,
prior pacemaker, and prior cardiac valve surgery can
help identify patients with a high AI-ECG score in
whom HCM is likely.

� Application of the clinical HCM-DETECT score in tandem
with the AI-ECG model improved HCM detection yield by
reducing the false-positive rate of AI-ECG more than 3-
fold.
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the features identified by the model are not readily apparent to
a human interpreter. As such, clinicians cannot identify po-
tential false-positive results based on the ECG or model
output alone. Although these models are powerful, imple-
menting these approaches has met some resistance owing
to their limited interpretability.8

This study aimed to simulate the application of the HCM
AI-ECG algorithm in existing samples of patients from real-
world clinical practice and to identify potential patient char-
acteristics associated with true- and false-positive AI results.
This approach would create a clinical stratification scheme to
identify patients in whom the HCM AI-ECG algorithm is
likely to have a high diagnostic yield and result in targeted
downstream cardiac imaging to confirm or refute the HCM
diagnosis.
Methods
Study design
In this observational cohort study, we identified a cohort of
20,677 patients who had at least one 12-lead ECG for any
indication in routine clinical practice at any Mayo Clinic en-
terprise site in the United States in January 2021. A separate,
nonoverlapping cohort of 15,147 patients with an ECG in
routine practice in January 2022 was also identified. The
HCM AI-ECG algorithm was applied to each of these
ECGs stored in Mayo Clinic’s digital data vault. The medical
records of the 200 patients with the highest HCM AI-ECG
scores in each cohort were reviewed in detail by 1 investi-
gator (M.M.), including clinical notes and cardiac imaging,
to determine whether they had one of the following:

(1) Definite HCM (group A): HCM diagnosis was known
and was clearly documented in the medical record before
or after the index ECG.

(2) Possible HCM (group B): HCM diagnosis was possible
based on available clinical and imaging information,
but the diagnosis had not been established in the patient’s
record.

(3) Likely non-HCM (group C): The patient had a well-
characterized cardiovascular comorbidity that can mimic
HCM features, such as hypertensive heart disease or
aortic stenosis with left ventricular hypertrophy.

(4) Indeterminate (group D): Insufficient information avail-
able in the medical record to make a designation into
one of groups A-C.

The Mayo Clinic institutional review board approved the
study, and all participants had provided a general informed
consent for use of their data in research.

ECG acquisition and AI analysis
Resting 12-lead ECG data for each subject were collected
from the local ECG database (MUSE data management sys-
tem; GEHealthcare, Chicago, IL), acquired at a sampling rate
of 500 Hz using a GE Marquette ECG machine (GE Mar-
quette, Milwaukee, WI). The previously validated HCM
AI-ECG score was calculated for all ECGs, as described pre-
viously.7 In brief, after converting ECGs to a matrix of 12
separate ECG leads, the AI CNN was developed using a
Keras framework with a Tensorflow backend (Google,
Mountain View, CA), performing convolutions across all
12 leads. The CNN model was trained in 1 dataset and vali-
dated in a separate dataset. An AI score threshold of 11%, re-
flecting probability of HCM, was found to offer the best
combination of sensitivity and specificity (Youden index).
Thus, patients with ECGs where the AI-ECG algorithm re-
ports a higher than 11% probability of HCM are considered
AI-positive for HCM. For the purpose of this study, the
following measures were also documented from the auto-
mated ECG interpretation: heart rate, PR duration, QRS dura-
tion, QTc duration, and QRS axis.

Data collection
All patients received clinical care atMayoClinic, and informa-
tion on clinical variables was collected with chart review of the
entire available electronic health record. All input clinical vari-
ables of interest were labeled as “yes” or “no” for each patient
in our dataset, without any missing data. The following base-
line characteristics were collected: age, sex, race, HCM diag-
nosis status (groups A–D), coronary artery disease (CAD),
hypertension, diabetes mellitus type 2, cardiovascular comor-
bidities, end-stage renal disease status, presence of pacemaker,
implantable cardioverter-defibrillator, history of myectomy,
coronary artery bypass graft (CABG) surgery, and cardiac
valve surgery. For the variables to be included as input for
the prediction score (all the above except HCM status), we
only considered information known at the time of the index
ECG in both cohorts, and we did not consider information
that became known after the index ECG for each patient.

The clinical notes and the interpretation statements of
available echocardiographic and cardiac magnetic resonance
imaging (MRI) reports were reviewed to determine HCM
diagnosis status. In equivocal cases, the primary imaging
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studies were also reviewed. Left ventricular ejection fraction
and septum and posterior left ventricular wall thickness were
collected from the report of the echocardiogram or MRI
closest to the index ECG.
Statistical analysis
Baseline characteristicswere described usingmedian and inter-
quartile range, or absolute numbers and percentages for contin-
uous and categorical variables, respectively. Univariable
logistic regression was used to identify clinical comorbidities
that differed between definite/possible HCM (groups A1B,
true-positive) from likely non-HCM (group C, false-positive)
in the January 2021 cohort, and the odds ratio was calculated.
Group D was excluded from statistical analyses owing to the
uncertainty regarding HCM status in that group. Variables
with statistically significant associations with the definite/
possible vs likely non-HCM result were then included in a
“Candidacy for HCM Detection (HCM-DETECT)” score that
was derived using stepwise forward logistic regression for
differentiating definite/possible HCM (group A1B) from
likely non-HCM (group C). The final score ranges from 0 to
1 and represents the likelihood of an ECG belonging to a defi-
nite/possible HCM case. A higher score indicates that the sub-
ject may be a good candidate for application of AI-ECG for
HCM determination. The adjusted odds ratio was calculated
for each variable in the HCM-DETECT score. The area under
the receiver operating characteristic curve (AUC) was boot-
strapped 2000 times to obtain the 95% confidence intervals
(CI). The Youden index9 was used to determine the cut-off of
the score that optimized the diagnostic yield. The performance
of the HCM-DETECT score in distinguishing definite/possible
HCMvs likely non-HCMAI resultswas subsequently tested in
the independent January 2022 cohort, and sensitivity, speci-
ficity, positive predictive value, negative predictive value,
areaunder theprecision-recall curve, andAUCwere calculated.
A P value,.05 was considered statistically significant. Statis-
tical analysis was performed in R (version 4.2.0; R Foundation
for Statistical Computing, Vienna, Austria).
Results
Baseline characteristics of the January 2021 (derivation) and
January 2022 (testing) cohorts are presented in Table 1 and
Table 2, respectively. Among the January 2021 patients (n
5 200, age 71 [interquartile range 58–80] years, 48%
female), 67 (34%) were definite HCM cases, 4 (2%) possible
HCM cases, 96 (48%) likely non-HCM cases, and 33 (16%)
indeterminate.

In the January 2021 cohort, univariable logistic regression
identified history of CABG surgery, cardiac valve surgery,
presence of pacemaker, hypertension, CAD, and age to be
inversely associated with definite or possible HCM status,
as shown in Table 1. The presence of implantable
cardioverter-defibrillator and history of myectomywere posi-
tively associated with a definite HCM adjudication. Race and
end-stage renal disease were not statistically significant (re-
sults not shown). Because hypertension was very commonly
present as a diagnosis and we were unable to consistently
adjudicate from the medical record whether it was severe
or uncontrolled (ie, potentially resulting in hypertensive heart
disease as an HCM mimicker), we did not include that clin-
ical variable in the stepwise logistic regression. Since myec-
tomy is a surgical procedure for HCM, and patients who have
undergone myectomy have definite HCM, it was not
included in the stepwise logistic regression either.

The final logistic regression–based HCM-DETECT score
included pacemaker, age, cardiac valve surgery, and CAD.
The HCM-DETECT score had an AUC of 0.81 (95% CI
0.73–0.87) in the January 2021 derivation cohort. A binary
cut point was established at the Youden index such that a
HCM-DETECT score ,0.40 classified patients as likely
non-HCM (poor targets for HCM AI-ECG implementation).
At that operating point, the HCM-DETECT score’s sensitivity
and specificity were 89% and 70%, respectively, in the deriva-
tion cohort. Table 3 shows that the adjusted odds ratios for the
4 variables in the HCM-DETECT score are less than 1, indi-
cating their association with the probability of not having
HCM (ie, a false-positive AI-ECG adjudication).

In the testing cohort of 200 patients from January 2022
(age 69 [58–79] years, 42% female), manual chart review
adjudicated each case as definite HCM (41/200, 21%),
possible HCM (10/200, 5%), likely non-HCM (94/200,
47%), and indeterminate (55/200, 27%).

Applying the HCM-DETECT score to the 200 patients of
the January 2022 cohort identified 90 (45%) as having a low
clinical probability of HCM (poor candidates for HCM im-
plementation) and 110 (55%) with a high probability of
HCM. After exclusion of the patients with indeterminate
HCM status (n 5 55, insufficient data to adjudicate), in the
remaining 145 patients the HCM-DETECT score identified
76 (52%) as having a low clinical probability of HCM
(poor candidates for HCM implementation), and 69 (48%)
patients with a high clinical probability of HCM for further
evaluation. Among these 69 patients, 35 (51%) were definite
HCM cases, 7 (10%) were possible HCM cases, and 27
(39%) were likely non-HCM cases. Based on these adjudica-
tions, the HCM-DETECT score had sensitivity of 85%, spec-
ificity of 78%, positive predictive value of 65%, negative
predictive value of 91%, area under the precision-recall curve
0.66, and AUC 0.84 (95% CI 0.77–0.90) to distinguish def-
inite/possible HCM from likely non-HCM in the January
2022 cohort, as shown in the receiver operating characteristic
curve in Figure 1. From the starting 200 patients in the
January 2022 cohort, application of the HCM-DETECT
score resulted in 35 (17.5%) definite HCM, 7 (3.5%) possible
HCM, 27 (13.5%) likely non-HCM, and 41 (20.5%) indeter-
minate cases, as shown in Figure 2.
Discussion
This study demonstrates that a clinical risk score can facilitate
the application of an AI-ECG model to unselected patients in
routine clinical practice by excluding patients who would not
benefit from further HCM evaluation and reducing the false-



Table 1 Patient characteristics in the January 2021 (derivation) cohort

All
Definite HCM
(group A)

Possible HCM
(group B)

Definite/possible
HCM
(group A1B)

Likely
non-HCM (group C)

Indeterminate
(group D)

P value
(group A1B
vs croup C)

Odds ratio
(95% CI)
(group A1B
vs group C)

N (%) 200 (100) 67 (34) 4 (2) 71 (36) 96 (48) 33 (16)
Clinical characteristics and comorbidities
Known HCM 67 (34) 67 (100) 0 (0) 67 (94) 0 (0) 0 (0) ,.001* 2.61 (2.49–2.74)*
Age, y 71 (58–80) 63 (50–74) 63 (56–67) 63 (50–73) 75 (67–82) 72 (62–82) ,.001* 0.99 (0.98–0.99)*
Female sex 95 (47.5) 36 (54) 1 (25) 37 (52) 42 (44) 16 (48) .29 1.09 (0.93–1.27)*
CAD 76 (38) 14 (21) 1 (25) 15 (21) 44 (46) 17 (52) ,.001* 0.77 (0.66–0.90)*
Hypertension 137 (68.5) 32 (48) 3 (75) 35 (49) 74 (77) 28 (84) ,.001* 0.74 (0.63–0.87)*
DM type 2 50 (25) 10 (15) 3 (75) 13 (18) 24 (25) 13 (39) .31 0.91 (0.76–1.09)
Pacemaker 49 (25) 6 (9) 0 (0) 6 (8) 43 (45) 0 (0) ,.001* 0.65 (0.56–0.76)*
ICD 35 (18) 21 (31) 0 (0) 21 (30) 14 (16) 0 (0) .02* 1.25 (1.04–1.5)*
Myectomy 28 (14) 27 (10) 0 (0) 27 (38) 1 (0) 0 (0) ,.001* 1.91 (1.6–2.3)*
CABG 28 (14) 4 (6) 1 (25) 5 (7) 20 (21) 3 (9) .01* 0.77 (0.62–0.95)*
Cardiac valve surgery 31 (16) 6 (9) 0 (0) 6 (8) 25 (26) 0 (0) .004* 0.75 (0.62–0.91)*
Echocardiographic measures
EF, % 64 (55–69) 69 (65–72) 70.5 (67–73.5) 69 (65–72) 60 (47–65) 55 (43–65) ,.001* 1.02 (1.01–1.02)*
Septum, mm 13 (11–17) 17 (13–20) 18 (16–19) 17 (14–20) 13 (11–14) 12 (10–13) ,.001* 1.05 (1.03–1.07)*
Posterior wall, mm 12.0 (10.0–13.0) 12 (10–14) 13.5 (12.5–14.5) 12 (10–14) 12 (10–13) 10 (9–12.5) .10 1.03 (0.99–1.06)
ECG measures
HR, min-1 64 (58–72) 61 (57–69.5) 71.5 (64–82) 62 (57–70) 66 (60–73) 65 (55–73) .2 1.00 (0.99–1.00)
PR, ms 182 (160–212) 178 (158–203) 146 (137–155.5) 174 (153–201) 190 (170–222) 174 (157–204.5) .04* 0.99 (0.99–0.99)*
QRS duration, ms 119 (100–154) 114 (96–148) 103 (92–114) 114 (95–147) 139 (108–163) 106 (88–116) .001* 0.99 (0.99–0.99)*
QTc, ms 474.5 (454–506) 473 (445–504.5) 483.5 (474.5–490) 474 (446–503) 481 (459–512) 468 (442–486) .09 0.99 (0.99–1.00)
QRS axis, -7 (-37 to 42) -7 (-34 to 39) 5.5 (-14 to 28) -6 (-34 to 39) -17.5 (-52.5 to 43) 4 (-12 to 32) .71 1.00 (0.99–1.00)

Group A1B is compared to group C using univariable logistic regression.
Continuous data are given as number, n (%), or median (interquartile range), and compared between definite/possible HCM (group A1B) and likely non-HCM (group C) using univariable logistic regression.
Data marked with an asterisk (*) represents a significance level of .05.
CABG5 coronary artery bypass grafting; CAD5 coronary artery disease; DM5 diabetes mellitus type 2; ECG5 electrocardiogram; EF5 ejection fraction; HCM5 hypertrophic cardiomyopathy; HR5 heart rate; ICD

5 implantable cardioverter-defibrillator.
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Table 2 Patient characteristics in the January 2022 (testing) cohort

All
Definite HCM
(group A)

Possible HCM
(group B)

Definite/possible HCM
(group A1B)

Likely non-HCM
(group C)

Indeterminate
(group D)

N (%) 200 (100) 41 (21) 10 (5) 51 (26) 94 (47) 55 (27)
Known HCM 41 (21) 41 (100) 0 (0) 41 (80) 0 (0) 0 (0)
Age, y 69 (58–79) 59 (48–69) 74 (66–79) 63 (49–72) 75 (63–83) 68 (58–75)
Female sex 84 (42) 12 (29) 5 (50) 17 (33) 44 (47) 23 (42)
CAD 81 (41) 8 (20) 6 (60) 14 (27) 45 (48) 22 (40)
Hypertension 146 (73) 19 (46) 9 (90) 28 (55) 75 (80) 43 (78)
DM type 2 49 (25) 4 (10) 5 (50) 9 (18) 25 (27) 15 (27)
Pacemaker 60 (30) 3 (7) 0 (0) 3 (6) 57 (31) 0 (0)
ICD 21 (11) 8 (20) 0 (0) 8 (17) 13 (14) 0 (0)
Myectomy 4 (2) 4 (10) 0 (0) 4 (8) 0 (0) 0 (0)
CABG 34 (17) 3 (7) 2 (20) 5 (10) 23 (21) 6 (11)
Cardiac valve surgery 34 (17) 0 (0) 1 (10) 1 (2) 26 (26) 7 (13)
EF, % 60 (51.5–65) 68 (65–71.5) 58 (56–64) 67 (61–70) 56 (44–62) 60 (51–65)
Septum, mm 12 (11–15) 17 (14–19.5) 14.5 (14–15) 16 (14–18) 12 (10–14) 11 (10–12)
Posterior wall, mm 11(10.00–13.00) 12 (11–16) 13.5 (12–15) 13 (11–15) 11 (10–13) 11 (10–11)
HR, min-1 66 (60–74) 64 (60–73) 69 (59–75) 64 (60–73.5) 69 (61–75) 65 (58–74)
PR duration, ms 176 (152–202) 175 (156–202.5) 171(160.5–186.5) 174 (153–198.5) 178 (164–208) 161 (143–194)
QRS duration, ms 126 (102–166) 104 (94–124) 104 (90.5–121) 104 (94–124) 166 (134–186) 110 (96–130)
QTc time, ms 492 (458–520) 456 (441–478) 470 (461–486) 461 (442–483.5) 511 (492–534) 465 (444–502)
QRS axis, -11 (-52 to 27) 12 (-19 to 48) -2.5 (-19 to 12.5) 9 (-21 to 46) -145 (-69 to 0) 0 (-20 to 48)

CABG 5 coronary artery bypass grafting; CAD 5 coronary artery disease; DM 5 diabetes mellitus type 2; EF 5 ejection fraction; HCM 5 hypertrophic car-
diomyopathy; HR 5 heart rate; ICD 5 implantable cardioverter-defibrillator.

Table 3 Clinical variables in the HCM-DETECT score based on the
stepwise forward logistic regression in the January 2021 cohort, and
their adjusted odds ratio for association with definite/possible
hypertrophic cardiomyopathy status

Variable Odds ratio P value

Pacemaker 0.12 (0.05–0.34) ,.001
Age 0.97 (0.95–0.99) .017
Cardiac valve surgery 0.34 (0.12–0.99) .043
CAD 0.45 (0.20–1.0) .048

CAD 5 coronary artery disease.
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positive AI-ECG detection rate (47% with AI-ECG alone vs
13.5%with AI-ECG plus HCM-DETECT score). These find-
ings could guide the application of AI-ECG and other AI
tools with limited direct interpretability to clinical medicine
by allowing clinicians to target efforts to the higher-yield pa-
tients.

The estimated prevalence of diagnosed HCM is approxi-
mately 1 in 500 to 1 in 200, but the number of undiagnosed
cases is unknown and difficult to estimate.10 Widespread
application of AI-ECG to the general population would be
the only way to identify all previously undetected cases,
but this is too costly and impractical, since echocardiography
and MRI are the gold-standard methods for the detection of
HCM. It has previously been reported that AI-ECG can be
effective in cardiovascular disease management.11 Still, it re-
mains uncertain how to optimally deploy this tool to identify
new HCM cases among patients undergoing ECG in routine
clinical practice. Indeed, the HCM AI-ECG could be applied
to larger patient groups for detection of previously unknown
or missed HCM given its comparatively low cost and ease of
data collection. However, given the low prevalence of HCM,
this approach is likely to generate a substantial number of
false-positive cases.

We propose that the HCM-DETECT model should be
applied at the time of an ECG in tandem with the AI-ECG
model using clinical data available at that time. We anticipate
that by improving the yield of AI-ECG implementation by
using 2 models in tandem to exclude patients who would
not benefit from AI-ECG implementation, we could create
a system to evaluate ideal candidates and reduce false-
positive rates. Figure 3 shows a representation of the concept
of the tandem deep learning and logistic regression models
for ECG-based HCM detection in a clinical practice setting.
We acknowledge that there is an undetermined group in our
study where this tandem approach could not be applied. Pa-
tients were designated as indeterminate based on insufficient
medical record information to adjudicate them as HCM or
non-HCM. This would not apply to a prospective implemen-
tation of the tandem approach in clinical practice where a pa-
tient would be recommended to have or not to have
confirmatory cardiac imaging based on the AI-ECG and
HCM-DETECT score results.

This study identified clinical comorbidities associated
with a true-positive and false-positive HCM AI-ECG score.
When the HCM AI-ECG score was derived, ECGs with
left bundle branch block (LBBB) or pacing were excluded.7

Both LBBB and ventricular pacing increase the QRS dura-
tion, and can hinder ST-T-segment analysis. Complete
bundle branch block is uncommon in HCM except in those
with prior septal reduction interventions.12 For instance,
septal myectomy often results in LBBB and alcohol septal
ablation can result in right bundle branch block.12 Fine-



Figure 1 Area under the receiver operating characteristic curve (AUC) for
the HCM-DETECT score in the testing cohort based on 145 patients with
determinable hypertrophic cardiomyopathy status.
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tuning of the algorithm with training specifically to distin-
guish abnormalities such as LBBB in HCM vs non-HCM
may be required. Similarities in ECG manifestations in pa-
tients with HCM and patients who had undergone cardiac
surgery or had cardiac pacing may explain the association
of those clinical features with probability for false-positive
AI-ECG result. Furthermore, ST-T changes may present after
myocardial infarction,13 and CAD and CABG were more
prevalent among likely non-HCM cases in the January
2021 (derivation) cohort. ST-T changes are present in most
patients with HCM,14 which could possibly mimic ischemic
Figure 2 Flow charts of the hypertrophic cardiomyopathy (HCM) artificial intel
patients as definite HCM, possible HCM, likely non-HCM, and indeterminate alon
changes. Aging is associated with various ECG changes,
including QRS widening, left ventricular hypertrophy
patterns, and left axis deviation,15 also potentially mimicking
ECG changes seen in HCM.12 The findings in the current
study generated insights into the HCM AI-ECG model that
could be used for model adjustments and improvements.
To further improve HCM detection in clinical practice, the
ECG could potentially be used in tandem with information
from the electronic health record and with different imaging
modalities including AI-enhanced MRI, when that becomes
more widely available. The studied models are based on pa-
tients receiving routine clinical care. However, improving the
accuracy of detection of HCM has important implications
also in other groups, such as young athletes. The use of the
HCM AI-ECG algorithm in the pre-participation screening
setting is under investigation.
Study limitations
Our HCM status adjudication relied on medical record re-
view. In some instances, the lack of incomplete clinical infor-
mation reporting in the patient’s record could impact the
accuracy of the adjudication process. Longer follow-up and
more comprehensive and uniform diagnostic testing would
be helpful but is not practical in an analysis of patients
receiving routine clinical care for indications other than
HCM. Not all patients had readily available cardiac imaging
data, resulting in several cases being considered indetermi-
nate. In the current study, we investigated an older population
compared to the derivation cohort, which could affect the per-
formance of the AI-ECG model, which appears to perform
best in younger subgroups of patients.7,16 Besides the comor-
bidities investigated in the current study, other potential clin-
ical comorbidities may affect the HCM AI-ECG score. The
ligence (AI) electrocardiography score in the January 2022 cohort stratifying
e (A), and in tandem with the HCM-DETECT score (B).



Figure 3 A representation of the concept of the tandem deep learning and logistic regression models for electrocardiography (ECG)-based hypertrophic car-
diomyopathy (HCM) detection in routine clinical practice.
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current study included patients at the top end of AI-ECG-
predicted scores for HCM and cannot fully inform about
the optimal AI score threshold above which patients should
undergo HCM-DETECT assessment in clinical practice.
That threshold is likely to differ across different health sys-
tems and remains to be defined in prospective implementa-
tion studies. Lastly, false-negative AI-ECG results were not
evaluated in the current study, and such future studies are
justified. However, given the high sensitivity of the algorithm
and relatively low prevalence of HCM in most general
clinical practices, the overall impact of false-negative AI-
ECG results should be expected to be low.
Conclusion
Our study demonstrates a paradigm for AI-ECG implementa-
tion in routine clinical practice. AI-ECG could identify a
large sample of patients in terms of probability of HCM
and a second model derived from simple clinical data could
narrow the results to the best AI-ECG evaluation candidates.
The false-positive rate of AI-ECG was cut by two-thirds
when a tandem AI-ECG and clinical score approach was
used. This model may provide a framework for applying
AI-ECG for HCM detection to patients undergoing ECG
for any clinical indication during routine care.
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