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Abstract

Background

The gut microbiome may play a role in inflammation associated with type 2 diabetes (T2D)

development. This cross-sectional study examined its relation with glycemic status within a

subset of the Multiethnic Cohort (MEC) and estimated the association of circulating bacterial

endotoxin (measured as plasma lipopolysaccharide-binding protein (LBP)) with T2D, which

may be mediated by C-reactive protein (CRP).

Methods

In 2013–16, cohort members from five ethnic groups completed clinic visits, questionnaires,

and stool and blood collections. Participants with self-reported T2D and/or taking medication

were considered T2D cases. Those with fasting glucose >125 and 100–125 mg/dL were

classified as undiagnosed (UT2D) and pre-diabetes (PT2D) cases, respectively. We char-

acterized the gut microbiome through 16S rRNA gene sequencing and measured plasma

LBP and CRP by standard assays. Linear regression was applied to estimate associations

of the gut microbiome community structure and LBP with T2D status adjusting for relevant

confounders.

Results

Among 1,702 participants (59.9–77.4 years), 735 (43%) were normoglycemic (NG), 506

(30%) PT2D, 154 (9%) UT2D, and 307 (18%) T2D. The Shannon diversity index decreased

(ptrend = 0.05), while endotoxin, measured as LBP, increased (ptrend = 0.0003) from NG to

T2D. Of 10 phyla, Actinobacteria (ptrend = 0.007), Firmicutes (ptrend = 0.003), and Synergis-

tetes (ptrend = 0.02) were inversely associated and Lentisphaerae (ptrend = 0.01) was

positively associated with T2D status. Clostridium sensu stricto 1, Lachnospira, and Peptos-

treptococcaceae were less, while Escherichia-Shigella and Lachnospiraceae were more

abundant among T2D patients, but the associations with Actinobacteria, Clostridium sensu
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stricto 1, and Escherichia-Shigella may be due metformin use. PT2D/UT2D values were

closer to NG than T2D. No indication was detected that CRP mediated the association of

LBP with T2D.

Conclusions

T2D but not PT2D/UT2D status was associated with lower abundance of SCFA-producing

genera and a higher abundance of gram-negative endotoxin-producing bacteria suggesting

that the gut microbiome may contribute to chronic systemic inflammation and T2D through

bacterial translocation.

Introduction

A role of the gut microbiome in glycemic control and type 2 diabetes (T2D) has emerged in

recent years through several plausible biological mechanisms [1]. These potential mechanisms

include adverse effects in the gut, transfer of lipopolysaccharide (LPS) into systemic circula-

tion, either through “leaky” tight junctions or via chylomicron uptake, with subsequent sys-

temic inflammation that can be assessed by circulating C-reactive protein (CRP) levels [2]. In

contrast, gut bacterial production of short chain fatty acids (SCFA), including acetate and

butyrate, in response to dietary fiber intake may prevent T2D through appetite control and

energy homeostasis [3]. Additionally, butyrate has been shown to impact gut hypoxia by mito-

chondrial beta-oxidation and by interacting with HIF-1 alpha, a transcription factor, to main-

tain tight junctions [4, 5]. Substantial epidemiologic evidence also supports a relation between

the gut microbiome and T2D. In several studies, individuals with T2D showed a lower abun-

dance of butyrate-producing bacteria from the phylum Firmicutes and were more likely to

host opportunistic pathogens [6–8]. For example, among 145 European women with T2D [9],

Roseburia and Faecalibacterium prausnitzii, both known to produce butyrate and linked to

improved insulin sensitivity, were identified as highly discriminant for T2D status. In addition,

alpha diversity was lower among T2D patients than in individuals with normal glucose status,

both in a Chinese study [6] and in a report from Mexico [10]. Interestingly, changes in the

abundance and the function of gut microbiota after prescribing metformin for T2D treatment

have been reported [3, 10, 11].

Taking advantage of a diverse population with a wide range of body weights and variation

in glucose metabolism within the Adiposity Phenotype Study (APS), a sub-study of the Multi-

ethnic Cohort (MEC), the current analysis addresses the hypothesis that individuals with

abnormal glycemic status show different patterns of gut microbiome composition than nor-

moglycemic persons. To evaluate a possible biologic mechanism [12], the possible role of CRP

as a mediator of the association between lipopolysaccharide-binding protein (LBP) and T2D

status was examined.

Materials and methods

Study population

This cross-sectional analysis was conducted within a subset of the MEC, which recruited more

than 215,000 men and women aged 45–75 years at the time of cohort entry in 1993–1996. Five

ethnic groups (white, African American, Native Hawaiian, Japanese American, and Latino)

living in Hawai’i and Los Angeles were targeted to examine diet, lifestyle factors, genetics, and
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cancer risk and completed a 26-page questionnaire by mail [13]. During 2013–2016, 1,861

MEC participants aged 58–74 years of the same five ethnic groups and living in the catchment

area of the study clinics were recruited into the APS, a cross-sectional study of the determi-

nants of body fat amount and distribution [14]. The following exclusion criteria were applied:

reported body mass index (BMI) outside the target range (18.5–40 kg/m2), current or recent

(<2 years) smoking, soft or metal implants (other than knee or hip replacement) or amputa-

tions, claustrophobia, insulin treatment, thyroid medication, or other serious health condi-

tions. Individuals with weight change of>9 kg or undergoing treatments or procedures that

were likely to affect adiposity or biomarkers of interest, e.g., antibiotics, colonoscopy, chemo-

therapy, radiation of abdomen/pelvis, corticosteroids, weight loss drugs, estrogen/androgen

receptor blockers, were deferred for 6 months, at which time their eligibility was reconsidered.

Individuals with a T2D diagnosis requiring insulin were not eligible due to its possible effect

on body fat distribution [15]. Through mailed invitations and screening telephone calls, eligi-

ble participants were enrolled within 60 sex/ethnicity/BMI strata (Table 1). The participation

Table 1. Characteristics of the study population at clinic visit, APS, 2013–2016a.

Characteristic All NGb PT2D UT2D T2D pc

N (%) 1702 (100) 735 (43) 506 (30) 154 (9) 307 (18)

Area, % Hawai‘i 1085 38.8 35.7 11.1 14.4

Los Angeles 617 50.9 19.3 5.3 24.5 <0.0001

Sex, % Men 844 37.2 33.2 9.8 19.8

Women 858 49.1 26.3 8.3 16.3 <0.0001

Ethnicity, % White 383 47.5 37.1 9.4 6.0

African American 272 53.7 20.2 5.9 20.2

Native Hawaiian 277 38.3 32.5 10.1 19.1

Japanese American 423 31.4 36.2 13.5 18.9

Latino 347 48.4 19.0 4.9 27.7 <0.0001

Age at clinic visit, yrs 69.2±2.7 69.2±2.7 68.9±2.7 68.9±2.7 69.7±2.8 0.08

Fasting hours, hrs 13.9±2.1 14.1±2.2 13.6±2.1 13.3±2.1 14.1±2.1 <0.0001

Healthy Eating Index-2010 72.4±10.6 73.8±10.4 71.4±11.0 71.6±10.8 71.3±9.9 0.0001

BMI, kg/m2 27.9±4.8 27.2±4.7 27.9±4.8 28.0±4.8 29.6±4.7 <0.0001

DXA total body fat, kg 25.4±8.7 25.2±8.7 24.5±8.6 24.6±9.2 27.8±8.4 0.0002

Alcohol intake, % <1 drink/mo 880 42.2 28.5 8.9 20.4

<1 drink/d 539 46.5 28.6 9.1 15.8

�1 drink/d 283 39.9 35.7 9.6 14.8 0.06

Physical activity, % <0.5 h/d 340 37.7 31.5 7.6 23.2

0.5 to <1 h/d 377 42.2 26.0 10.6 21.2

1 to <1.5 h/d 360 48.3 26.7 9.7 15.3

�1.5 h/d 625 43.8 32.8 8.5 14.9 0.004

Biomarkers CRP, mg/L 1.85±2.61 1.79±2.60 1.88±2.52 1.76±2.52 2.00±2.80 0.31

LBP, μg/mL 22.7±8.2 21.9±8.4 22.7±7.8 22.9±8.5 24.6±7.9 <0.0001

Glucose, mg/dL 108±29 88±9 110±7 141±22 137±41 <0.0001

Insulin, μU/mL 7.12±4.79 5.95±4.04 7.27±4.59 8.78±5.85 8.86±5.36 <0.0001

HOMA-IR 1.98±1.69 1.30±0.90 1.98±1.28 3.12±2.31 3.06±2.39 <0.0001

aMeans ± standard deviations are shown unless otherwise indicated.
bNG = Normoglycemic; PT2D = Prediabetes (fasting glucose FG 100–125 mg/dL); UT2D = Undiagnosed T2D (FG >125 mg/dL); T2D = Self-reported T2D and/or

taking diabetes medication.
cp-value of difference calculated from general linear models for continuous and chi-square tests for categorical variables.

https://doi.org/10.1371/journal.pone.0250855.t001
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rate was 15.6% out of the 13,884 contacted, excluding the 4,455 persons who were willing but

ineligible. Although the sample cannot be considered a fully representative sample of the

cohort, the goal was to look at biological relations expected to be unrelated to reasons for par-

ticipation. The University of Hawaii Biomedical Institutional Review Board (CHS# 17200) and

the University of Southern California Biomedical Institutional Review Board (#HS-12-00623)

approved the study protocols and all participants provided signed informed.

Data collection

In addition to questions about demographics, medical conditions, physical activity, and other

lifestyle factors, all participants completed a quantitative food frequency questionnaire

(QFFQ) containing over 180 food items [13]. As an overall assessment of diet quality, scores

(0–100) were computed from the QFFQ data according to the Healthy Eating Index-2010

(HEI-2010), which reflects the 2010 Dietary Guidelines for Americans. Higher scores indicate

better adherence to federal dietary guidelines [16]. As described in detail previously, APS par-

ticipants visited study clinics to take part in anthropometric measurements, dual energy X-ray

absorptiometry (DXA) and abdominal MRI imaging, fasting blood sample collection, and

questionnaires [15].

Microbiome analysis

Stool samples were collected in RNAlater1 and kept in the participants’ home freezer until the

clinic visit when they were stored at -80˚C. In a short questionnaire, participants reported anti-

biotic use during the past year. The samples were shipped on dry ice to the Fred Hutchinson

Cancer Research Center for analysis [17]. DNA was extracted and amplified for the V1-V3

region of the 16S rRNA genes, and amplicons were sequenced on the MiSeq platform (Illumina,

San Diego, CA). To classify bacterial taxonomy, sequences were processed using QIIME v.1.8

[18] and SILVA 1.32, as previously described [17]. The filtering strategy for operational taxo-

nomic units (OTUs) included parameters in QIIME to exclude low abundant sequences, single-

tons, and chimeras and final filtering at the genera level, in which we removed genera which

appeared in<10% of the samples [19]. More specifically, sequences were joined with the fastq-

join method, using min_overlap = 15 and perc_max_diff = 12, then filtered with split_librar-

ies_fastq.py with q parameter set to 25, and defaults otherwise. The Nelson two step method

was used for OTU generation at 97% similarity using the SILVA database (release 132, clustered

at the 97% similarity level) for the closed reference OTU picking step [20]. The OTU table was

filtered using the QIIME script filter_otus_from_otu_table.py with—min_count_fraction set to

0.00005 [21]. An additional filtering step set entries in the OTU table to zero if the number of

observations was less than 10 per-sample, per-OTU. Additional OTU entries were filtered out if

they were detected as chimeras using QIIME’s identify_chimeric_seqs.py script with method

blast_fragments [22–24]. Sequences were aligned to the Silva 16S rRNA gene reference using

the NAST algorithm [23] and classified using MOTHUR’s naive Bayes classifier trained against

the SILVA database [25]. The mean number of reads per sample was 34,148 (range: 9,152–

169,013). Beta diversity was calculated using the Bray-Curtis distance metric on relative percent

OTUs to adjust for differences in sequencing depth. ComBat-adjustment [26] to correct values

across laboratory batches and centered log-ratio transformation (CLR) to account for their

compositional nature [27] was applied to all phylum and genus variables.

Lab assays

Venous blood (40 mL) was collected after an overnight fast (>8 hours), processed in the MEC

laboratories in Hawaii and Los Angeles, and stored at -80˚C until shipment for assays at the
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UH Cancer Center Analytical Biochemistry Shared Resource [28]. Samples were arranged into

batches so that each batch included approximately equal numbers of men and women of each

ethnic group and ~10% blind quality control duplicates. Insulin was assessed in serum using

ELISA (EMD Millipore) and glucose by Cobas Mira Plus Chemistry autoanalyzer (Randox

Laboratories). The Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was cal-

culated as (fasting insulin (mU/L) × fasting glucose (mg/dL))/405. Plasma LBP was analyzed

using ELISA (Cell Sciences; within and between batch variation coefficients of variation (CV):

4.3% and 11%, respectively; ICC 0.61–0.68). Serum high-sensitivity CRP was analyzed on a

Cobas MiraPlus clinical chemistry analyzer (Roche Diagnostics, Indianapolis, IN) (Core Lab

Supplies).

Classification of glycemic status

Following the American Diabetes Association [29], participants with fasting glucose <100 mg/

dL were classified as normoglycemic (NG), those with 100–125 mg/dL as prediabetes (PT2D),

those with FG>125 mg/dL as undiagnosed diabetes (UT2D), and those with self-reported

T2D or diabetes medication as T2D cases. As only 283 participants had Hb1Ac values, they

were not used for classification.

Statistical analysis

The SAS 9.4 (Cary, NC) package was used to perform all data analyses. Of the 1,861 APS par-

ticipants, 78 were missing microbiome data, 34 did not have sufficient information to classify

their T2D status, 34 had invalid dietary data, 21 did not have DXA information, and 6 were

missing LBP values (some overlapping). After these exclusions, the final dataset for analysis

had 1,702 observations.

Descriptive analyses assessed the differences across the four categories of NG, PT2D,

UT2D, and T2D using chi-square tests for categorical and general linear models for continu-

ous variables. To evaluate the association of microbiome characteristics with glycemic status as

defined by the four categories, general multiple linear models were used to compute means for

each glycemic category adjusted for age, sex, ethnicity, smoking status, alcohol use, physical

activity, HEI-2010, DXA total body fat, antibiotic use, and 16S rRNA gene sequencing batch

[30]. P-values of trend (ptrend) across the four levels of glycemic status coded as discrete catego-

ries (0 = NG, 1 = PT2D, 2 = UT2D, and 3 = T2D) were computed by modeling glycemic status

a continuous variable (0, 1, 2, and 3). Independent variables that were tested in separate mod-

els included three alpha diversity measures, as well as the relative abundance of 10 phyla and

152 genera. Beta diversity across categories of glycemic status was assessed using perMA-

NOVA [31]. Bonferroni corrections were applied to the analysis of the 152 genera (0.05/

152 = 0.00033) to decrease the likelihood of chance associations.

To assess differences in microbiome characteristics by metformin treatment, we divided

the T2D group by medication use (no medication, other medication, and metformin) and

modeled the five significant genera across all groups. Finally, we computed adjusted means

and p-values (padj) between T2D cases taking metformin (N = 202) vs. no diabetes medication

(N = 67) with the same approach and covariates as above. The 38 participants who reported

metformin in combination with another diabetes drug were excluded from this analysis.

Spearman correlation (rs) coefficients were computed for the correlation between LBP and

CRP, the three diversity indices, all phyla, and the five significant genera considering a p-value

of 0.05 as significant. LBP was assessed in relation to the four categories of T2D status using

the same approach as described above. To examine if CRP, log-transformed to meet model

assumptions, mediates the relation between LBP on T2D development [32], mediation
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modelling was performed through a comparison of beta coefficients for the LBP models with-

out and with CRP.

Results

Among the 1,702 participants (Table 1), the numbers of men (844) and women (858) were

nearly equal; the mean age at clinic visit was 69.2±2.7 years. Overall, 307 participants (18%)

were classified as T2D, 154 (9%) as UT2D, 506 (30%) as PT2D, and 735 (43%) were normogly-

cemic (NG). The proportion of NG was lowest among Japanese Americans (31%), followed by

Native Hawaiians (38%), whites (47%), and Latinos (48%), and highest in African Americans

(54%). Diet quality as assessed by HEI-2010 scores was 73.8 for NG participants and approxi-

mately 2 points lower for the other categories (p<0.0001). BMI and total DXA body fat were

highest among T2D cases (29.6±4.7 kg/m2 and 27.8±8.4 kg).

As expected, fasting glucose and insulin levels increased across the continuum of glycemic

status. Similarly, CRP and LBP values were significantly higher for T2D than NG participants.

All three alpha diversity indices (Table 2) were inversely related to glycemic status across

categories (NG, PT2D, UT2D, T2D) and beta diversity was significantly different across glyce-

mic status (p<0.001; S1 Table). For alpha diversity, the respective means were 6.28, 6.27, 6.28,

and 6.17 (ptrend = 0.05) for the Shannon index and 18.2, 18.1, 18.4, and 17.6 (ptrend = 0.005) for

PD whole tree, but the association was not significant for Chao 1 (ptrend = 0.10). Of 10 phyla,

Table 2. Fecal microbial diversity and structure in relation to diabetes status, APS, 2013–2016a.

Characteristic Variable NGb PT2D UT2D T2D β ptrend
c

N (%) N = 1702 735 (43) 506 (30) 154 (9) 307 (18)

Diversity Shannon index 6.28 6.27 6.28 6.17 -0.031 0.05

PD whole tree 18.2 18.1 18.4 17.6 -0.172 0.005

Chao 1 661 660 669 647 -3.654 0.10

Phylad Actinobacteria -0.27 -0.30 -0.27 -0.54 -0.078 0.007

Bacteroidetes 4.20 4.24 4.10 4.12 -0.030 0.13

Cyanobacteria -0.65 -0.63 -0.63 -0.76 -0.029 0.44

Firmicutes 4.49 4.54 4.40 4.30 -0.061 0.003

Fusobacteria -2.29 -2.37 -2.64 -2.03 0.050 0.29

Lentisphaerae -1.35 -1.29 -1.21 -1.05 0.096 0.01

Proteobacteria 0.68 0.59 0.61 0.90 0.060 0.08

Synergistetes -1.17 -1.21 -1.36 -1.46 -0.098 0.02

Tenericutes -2.09 -2.20 -1.79 -2.02 0.044 0.36

Verrucomicrobia -1.55 -1.37 -1.21 -1.47 0.046 0.31

Generad, e Clostridium sensu stricto 1 -0.35 -0.43 -0.42 -0.89 -0.160 <0.0001

Escherichia-Shigella 0.24 0.17 0.30 1.30 0.313 <0.0001

Lachnospira 0.22 0.26 0.25 -0.23 -0.128 0.0003

Lachnospiraceae; uncultured 1.77 1.72 1.78 2.00 0.069 0.0003

Peptostreptococcaceae; uncultured -0.47 -0.43 -0.26 -1.13 -0.176 <0.0001

aObtained through general linear regression adjusted for age, sex, ethnicity, smoking status, physical activity, alcohol intake, DXA total body fat, antibiotic use, batch

group, and HEI-2010.
bNG = Normoglycemic; PT2D = Prediabetes (fasting glucose FG 100–125 mg/dL); UT2D = Undiagnosed T2D (FG >125 mg/dL); T2D = Self-reported T2D and/or

taking diabetes medication.
cP-value obtained from general linear model with diabetes status as continuous variable.
dComBat-adjusted bacterial abundance variables after centered log-ratio transformation are shown.
eFive of 152 genera with significant trend after Bonferroni adjustment (0.05/152 = 0.00033).

https://doi.org/10.1371/journal.pone.0250855.t002
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Actinobacteria (ptrend = 0.007), Firmicutes (ptrend = 0.003), and Synergistetes (ptrend = 0.02)

were inversely related with T2D status while Lentisphaerae was positively associated (ptrend =

0.01). Of the 152 genera, only five (four Firmicutes and one Proteobacteria) were significantly

associated with T2D status after Bonferroni adjustment (ptrend�0.00033). Clostridium sensu

stricto 1 expressed as mean CLR values (-0.35, -0.43, -0.42, -0.89; ptrend<0.0001), Lachnospira
(0.22, 0.26, 0.25, -0.23; ptrend = 0.0003), and Peptostreptococcaceae uncultured (-0.47, -0.43,

-0.26, -1.13; ptrend<0.0001) were lower, while Escherichia-Shigella (0.24, 0.17, 0.30, 1.30;

ptrend<0.0001) and Lachnospiraceae uncultured (1.77, 1.72, 1.78, 2.00; ptrend = 0.0003) were

more common among T2D than NG participants. In general, individuals with PT2D and

UT2D status had values closer to those in the NG than in the T2D category. Splitting the T2D

group by medication use (S1 Fig) indicated that metformin users had the most extreme values

for the abundance of the five significant genera while those on no and other medications were

closer to the UT2D group.

Of the 307 participants with T2D (self-report or medication), 202 participants stated that

metformin was their sole medication while 67 individuals did not report any diabetes medica-

tion (Table 3). Patients taking metformin had lower alpha diversity indices than those who did

not: Shannon index (5.78 vs. 6.11; padj = 0.002), PD whole tree (16.7 vs. 18.0; padj = 0.001), and

Chao 1 (612 vs. 648; padj = 0.02).

Among the phyla, only Actinobacteria (-0.99 vs. -0.26) showed a significant inverse associa-

tion with metformin use (padj = 0.005). Given the lower abundance of Actinobacteria among

metformin users, we examined the eight individual genera within this phylum. Of these, only

Bifidobacterium (padj = 0.03) and Collinsella (padj = 0.004) were less abundant in participants

reporting metformin use. Of the five genera associated with T2D status, only Escherichia-Shi-
gella (1.08 among metformin users vs. -0.36; padj<0.0001) met a Bonferroni-corrected signifi-

cance level. Otherwise, Lachnospiraceae uncultured (2.46 vs. 2.16; padj = 0.002) were higher in

individuals taking metformin, while Clostridium sensu stricto 1 (-0.72 vs. -0.23; padj = 0.04),

Lachnospira (-0.39 vs. 0.08; padj = 0.03), and Peptostreptococcaceae uncultured (-1.79 vs. -1.15;

padj = 0.002) were lower. CRP levels between T2D patients taking and not taking metformin

were not statistically significantly different (2.00 vs. 1.93; padj = 0.85).

LBP was significantly correlated to CRP (rs = 0.37; p<0.0001), two phyla: Lentisphaerae (rs

= 0.05; p = 0.05) and Proteobacteria (rs = 0.06; p = 0.02), two genera: Escherichia-Shigella (rs =

0.06; p = 0.01) and Peptostreptococcaceae; uncultured (rs = -0.05; p = 0.04), but not to any of

the diversity indices. Mean LBP levels were associated with T2D status across glycemic status

categories (23.2, 24.2, 24.3, 25.4.0 μg/mL for NG, PT2D, UT2D, T2D) with a significant trend

across categories (ptrend<0.0001). When CRP was included in the LBP model to test its role as

a potential mediator between LBP and T2D status, the respective regression coefficients with-

out and with CRP in the LBP model were 0.0133 and 0.0144, which provides no indication of

CRP mediation on the relationship between LBP and T2D status.

Discussion

This cross-sectional analysis detected a number of noteworthy associations between character-

istics of the gut microbiome and T2D status. When we compared the alpha diversity indices

along a "continuum" from NG to PT2D, UT2D and T2D, the observed decline was expected

according to our hypothesis. Compared to NG participants, the abundance of Actinobacteria

and Firmicutes, including three genera from this phylum, was lower in T2D cases. One genus

each from the phyla Firmicutes and Proteobacteria were significantly more abundant in T2D

cases than the other groups. The 10% higher LBP levels among T2D cases than NG participants

might offer a biologic mechanism by which differences in the gut microbiome adversely affect
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metabolic status, although the minor difference may not be clinically relevant. This analysis

did not find evidence for a mediation effect of CRP between LBP and glycemic status, but

other pathways may explain how LBP may be linked to T2D etiology. Among T2D patients

not taking metformin, alpha diversity was higher and the abundance of Actinobacteria includ-

ing the genera Bifidobacterium and Collinsella was lower than in those taking metformin rais-

ing the question whether the associations of specific bacteria with T2D might be induced by

medication.

The significant inverse association of alpha diversity with T2D and metformin use after

adjusting for total adiposity are in agreement with previous reports of lower alpha diversity

levels related to the development of glucose intolerance [6, 7, 33]. Lower alpha diversity has

been described from studies in China [6], Germany [34], Pakistan [35], and Mexico [10]

Table 3. Fecal microbial diversity and structure by metformin use, APS members with T2D, 2013–2016a.

Characteristic Variable Metformin padj
b

Yes No

Numberc 202 67

Diversity Shannon index 5.78 6.11 0.002

PD whole tree 16.7 18.0 0.001

Chao 1 612 648 0.02

Phylad Actinobacteria -0.99 -0.26 0.0005

Bacteroidetes 4.24 4.01 0.10

Cyanobacteria -0.93 -0.78 0.57

Firmicutes 4.19 4.22 0.25

Fusobacteria -1.67 -1.66 0.96

Lentisphaerae -0.55 -0.70 0.56

Proteobacteria 0.81 0.40 0.05

Synergistetes -1.34 -1.46 0.68

Tenericutes -2.44 -2.00 0.18

Verrucomicrobia -1.34 -1.76 0.20

Genera in Actinobacteria Adlercreutzia -1.00 -1.18 0.29

Bifidobacterium -1.44 -0.93 0.03

Collinsella 0.62 1.38 0.004

Coriobacteriales Incertae Sedis; uncultured -0.81 -0.95 0.45

Eggerthella -0.69 -0.72 0.87

Enterorhabdus -0.76 -0.41 0.12

Senegalimassilia -0.78 -0.73 0.76

Slackia -0.64 -0.51 0.47

Generad, e Clostridium sensu stricto 1 -0.72 -0.23 0.04

Escherichia-Shigella 1.08 -0.36 <0.0001

Lachnospira -0.39 0.08 0.03

Lachnospiraceae; uncultured 2.46 2.16 0.02

Peptostreptococcaceae; uncultured -1.79 -1.15 0.002

aAdjusted means obtained through general linear regression adjusted for age, sex, ethnicity, smoking status, physical activity, alcohol intake, DXA total body fat,

antibiotic use, batch group, and HEI-2010.
bP-value of difference by metformin use obtained from general linear models.
cN = 38 reporting other diabetes medication were excluded.
dComBat-adjusted bacterial abundance variables were used after centered log-ratio transformation.
eFive of 152 genera with significant trend after Bonferroni adjustment (0.05/152 = 0.00033).

https://doi.org/10.1371/journal.pone.0250855.t003
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where values were only low for untreated T2D cases and those on metformin but not for those

with polypharmacy therapy. However, null findings [7, 8, 36, 37] and positive relations with

T2D [38, 39] were also reported for alpha diversity. In terms of diversity, metformin users in

our study had a less favorable gut microbiome profile than participants reporting T2D and no

medication. These findings do not agree with previous reports, possibly due to confounding

by different medications taken and the fact that the UT2D groups was untreated. The higher

alpha diversity in UT2D than T2D participants is probably a result of metformin treatment.

Interestingly, a report from Mexico [10] indicated that the gut microbiome in T2D patients

taking metformin was more similar to those taking no medication than patients taking many

medications.

Given that Firmicutes is the phylum with the greatest number of genera in the gut and that

it encompasses a broad range of metabolic diversity, the inverse association of four genera

from this phylum with T2D status in our study is not a surprise. Three previous reports agree

with lower abundance of Firmicutes by T2D status: a study from Denmark [8], one from

Mexico [10], and one from Nigeria [39], while a higher abundance was reported from Pakistan

[35] for obese individuals with T2D and from India [38] with elevated abundance primarily

seen in undiagnosed T2D cases. Many of the other analyses reported on individual members

within the class of anaerobic Clostridiales of the phylum Firmicutes and observed significantly

higher [9, 35] or lower [7, 8, 39, 40] abundance among T2D cases. For example, among 145

European women with normal, impaired or diabetic glucose control [9], the metagenomic

clusters (MGCs) most significantly enriched in T2D women were Clostridiales as well as Lacto-
bacillus gasseri and Streptococcus mutans [41]. Twenty-one MGCs were significantly depleted

in T2D, including Roseburia, Clostridiales, Eubacterium eligens, Coriobacteriaceae, and Bacter-
oides intestinalis [42]. Many of these organisms are associated with dietary fiber metabolism

and butyrate production, such as Roseburia [43]. When obesity and treated T2D cases were

investigated among a German population [34], obesity was associated with more alterations in

microbiome composition, individual taxa, and functions than T2D status.

In our study, bacteria that ferment fiber to SCFA appear to be depleted in T2D but not in

PT2D and UT2D. Bacteria-derived butyrate, a SCFA, helps to maintain physiologic hypoxia in

the colon through several mechanisms including mitochondrial beta-oxidation in gut epithe-

lium and interaction with hypoxia inducible factor 1 (HIF1A) which regulates oxygen poten-

tial to maintain tight junctions and gut epithelial integrity [4, 5]. Disruption of these pathways

may affect host health. Possible explanations for the variable trend in the abundance of buty-

rate-producing bacteria in our study are the influence of metformin or other medications on

the gut microbiome [44, 45] or confounding by obesity [7, 9, 45]. As shown recently, a health-

supporting eating pattern was associated with the presence of Lachnospira in the Malmo off-

spring study [46] probably due to its ability to ferment diverse plant polysaccharides to SCFAs.

The significant inverse associations of T2D status with three genera of the phylum Firmicutes

are in agreement with this hypothesis. Clostridium sensu stricto 1 [47], one of the most impor-

tant anaerobes in the gut, Lachnospira, and Peptostreptococcaceae all belong to the order

Clostridiales, which metabolize carbohydrates and amino acids to produce butyrate through

fermentation [47–50].

Metabolic endotoxemia is a persistent, low-grade, systemic inflammation associated with

obesity and metabolic disease [51–53]. Greater abundance of gram-negative, endotoxin-pro-

ducing bacteria in the Escherichia-Shigella group (which includes E. coli) [7, 34, 38] and other

Proteobacteria [8, 39] among T2D patients have been reported previously. Here, we found a

combination of a positive trend in LBP (a biomarker for endotoxin), endotoxin-producing

bacteria from the Escherichia/Shigella group and a reduction in butyrate-producing genera.

Metabolic endotoxemia may be enhanced when the endotoxin produced by the Escherichia-
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Shigella group is translocated across the weakened gut epithelium into circulation, forms com-

plexes with LBP and TLR4, and triggers an inflammation cascade through the NFkB pathway

[51, 53–55]. As has been shown previously [56], gram-negative bacteria may mediate systemic

inflammation in obesity. Our data support the idea that this mechanism may operate across a

gradient of metabolic sequelae and the T2D disease gradient [51–53, 57, 58].

We found that two Actinobacteria, Collinsella, and Bifidobacteria, were significantly

reduced in metformin users. Collinsella, a member of the Coriobacteriaceae family has been

positively associated with insulin, C-peptide and HOMA-IR [59]. Our data supports other

studies that suggest members of the family Coriobacteriaceae may be markers of obesity associ-

ated with altered lipid and bile acid metabolism in metabolic syndrome [6, 33]. For example,

strains of Collinsella are involved in bile acid transformations via hydroxysteroid dehydroge-

nase activity, which is altered in T2D [60]. The phylum Actinobacteria [38, 39] or specific gen-

era, such as Bifidobacterium [36] or Eggerthella, a member of the Coriobacteriaceae family [7],

were enriched among T2D cases in previous reports.

An emerging hypothesis suggests that part of the glucose-lowering effect of metformin is

related to the gut microbiome and that metformin even decreases colorectal cancer risk

among patients with T2D [61]. Early work showed that in contrast to oral dosing, the efficacy

of metformin to control hyperglycemia was reduced when administered intravenously and

suggested that the intestine was an important site of action for metformin [62]. Taking metfor-

min was associated with a change in the composition of the fecal microbiome in subjects with

T2D [45], including enrichment in Escherichia and reduction in Intestinibacter (Family Peptos-
treptococcaceae) [11, 45]. We also found that the microbiome of participants taking metformin

was enriched in Escherichia-Shigella and depleted in an uncultured member of the Peptostrep-
tococcaceae. In persons with T2D, enrichment of Escherichia is often associated with inflam-

mation or metabolic endotoxemia, whereas metformin users show no increase in systemic

inflammation [63], a finding that was corroborated in our study. Recent studies suggest that

metformin reduces systemic inflammation by improving gut mucosal integrity via the promo-

tion of the expression and assembly of tight junctions in an AMPK-dependent way [64, 65].

This mechanism may also impact Map3 kinase activation, a prognostic marker altered in CRC

[66].

The current analysis has a number of strengths: foremost, the multiethnic population with

a relatively high prevalence of T2D and a wide range of BMI; the established and routinely

used microbiome analysis; and the detailed information collected about study participants

including DXA measures and biomarkers. On the other hand, the one-time measurement of

FG without HbA1c assessment limited our ability to classify participants with undiagnosed

T2D. As detailed information on the duration and severity of T2D was not available, misclassi-

fication of the three categories may have occurred. The cross-sectional design does not allow

for a causal interpretation, i.e., the differences in the gut microbiome characteristics may be

the result of existing glucose abnormalities or T2D and not contribute to the development of

T2D. Our study represents one of the largest studies of gut microbiome and diabetes although

the number of T2D patients not taking metformin was quite small and limited our ability to

draw conclusions from the comparison for patients not taking metformin. Indeed, as the

majority of T2D patients were taking metformin and as indicated by the patterns after dividing

the T2D group by medication use (S1 Fig), it appears possible that the differences in microbial

composition by T2D status were driven by metformin. However, the number of T2D patients

not taking metformin was very small. Differences to other studies may include geographic dif-

ferences in the prevalence of bacteria structure [67]. However, the adjustment by ethnic group

are expected to control for area, as African Americans and Latinos represent California and

the other three groups Hawaii. Varying sequencing methods for 16S rRNA gene analysis and
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metagenomics may have also led to contradictory findings across reports [6–10, 34–36, 40,

68]. Our study would benefit from metagenomic functional gene sequencing and metabolic

modeling analysis to understand the association between microbial and host metabolism as

functionality may mirror genera identified using 16S rRNA gene analysis. Although ComBat-

adjustment was applied to account for batch effects, some residual in prevalence and abun-

dance of bacteria was probably not corrected. For example, for the 100% prevalent Bacteroides,
this adjustment method is appropriate but, for less prevalent bacteria like Faecalitalea, it is less

effective as ComBat does not have a zero inflated aspect to the model.

In this analysis from a multiethnic study, participants with T2D showed lower alpha diver-

sity, a lower abundance of bacteria capable of fermenting plant polysaccharides, and higher

levels of gram-negative endotoxin-producing bacteria. These findings support the hypothesis

that a less favorable pattern of microbiome community structure in the gut due to dietary and

other exposures may contribute to T2D through endotoxin binding to toll-like receptors via

LBP and activation of the NFkB pathway associated with chronic systemic inflammation.

Alternatively, individuals with abnormal glucose metabolism may experience disturbed micro-

biome patterns due to their condition. This question of causality can only be clarified using a

longitudinal study design where the microbiome and metabolites are analyzed repeatedly

before and after onset of T2D [69]. If the microbiome can be confirmed as a contributor to dis-

ease development, an integrated analysis approach of combining the microbiome with other

risk factors would be indicated to develop future prevention strategies.
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S1 Table. perMANOVA of beta diversity of the microbiome by diabetes status using Bray-

Curtis distance metric.
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S1 Fig. Beta diversity of the microbiome color-coded by diabetes category: Bray Curtis dis-
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