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A systems biology approach uncovers cell-specific
gene regulatory effects of genetic associations in
multiple sclerosis

International Multiple Sclerosis Genetics Consortium

Genome-wide association studies (GWAS) have identified more than 50,000 unigue asso-
ciations with common human traits. While this represents a substantial step forward,
establishing the biology underlying these associations has proven extremely difficult. Even
determining which cell types and which particular gene(s) are relevant continues to be a
challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple
sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls
and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan
immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes.
Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intra-
individual and cell-specific susceptibility pathways that offer a biological interpretation of the
individual genetic risk to MS. This approach could be adopted in any other complex trait for
which genome-wide data is available.
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ranslating Genome-wide association studies (GWAS) dis-

coveries into functionally relevant biology has proven to be

highly challenging. The extensive linkage disequilibrium
(LD) which typically flanks common variants means that most
GWAS identified SNPs are likely to be tags for functionally
relevant variation rather than exerting any meaningful effects
themselves. Furthermore, since the vast majority of associations
identified by GWAS map to non-coding regulatory regions it is
likely that the underlying functionally relevant variants only exert
pertinent effects on gene expression in particular tissues!~4.
Fortunately, better powered studies, have increased the number of
associations identified enabling biological meaning to be inves-
tigated in aggregate (i.e. pathway analysis). In its simplest form,
genes lying closest to the most strongly associated (lead) SNP
identified for each association can be grouped into pathways or
specific functional memberships via the use of pre-assembled
controlled vocabularies (Gene ontology, KEGG, etc)>-8. This
approach can be enhanced by using protein interaction networks
to more rigorously assess which of the candidate genes encode
proteins that physically interact in any particular pathway®. Using
this refined approach, we and others have been able to show that
MS-associated genes are indeed more likely to interact in protein
spacel0-12, Furthermore, this analysis can be extended to include
association signals below the genome-wide threshold of sig-
nificance and thereby nominate new additional potentially
meaningful associations! 11314, However, the networks of genes/
proteins identified by these approaches are not cell- or tissue-
specific, thus limiting the usefulness and interpretability of this
information.

With the completion of efforts like the Encyclopedia of DNA
elements (ENCODE) and the Roadmap Epigenomics Project
(REP) a wealth of information on regulatory elements is now
available from hundreds of cell types and dozens of different
tissues!>16, raising the possibility of applying network-based
approaches in a cell-specific manner. We reasoned this approach
would likely be highly informative in diseases like multiple
sclerosis (MS) where substantial numbers of associated variants
have been identified. MS is an autoimmune disease of the central
nervous system (CNS) and leads to a neurodegenerative process.
Our recent GWAS meta-analysis and follow-up study have
revealed a total of 233 genome-wide significant associations and a
further 416 variants potentially associated with MS!”.

Here we develop a framework to interpret such associations in
the context of cell-specific protein networks to identify the most
likely process(es) affected by the non-MHC associations as a
whole. This approach involves (1) selecting independently asso-
ciated signals in extended haplotypic blocks; (2) identifying the
genomic regulatory processes likely to be altered by the poly-
morphisms in these blocks in a cell-specific manner; (3) com-
puting a cell-specific gene score for genes in each associated locus;
(4) building cell-specific gene/protein networks; (5) Interpreting
the biological processes most likely affected for each of the cell
types studied. We demonstrate this approach in the latest GWAS
meta-analysis in MS involving a total of 47,351 cases and 68,284
controls. Furthermore, we use genotype-level data from a subset
of 2370 cases and 412 controls to identify cell-specific intra-
individual risk pathways. These individualized scores can be used
as a global risk measure in subsequent associations with more
detailed phenotypes.

Results

Predicted regulatory effects (PRE) of MS-associated variants.
We integrated genetic association signals from the latest genetic
analysis of MS!7 with cell specific information on regulatory
elements available from the ENCODE and Epigenomics

Roadmap projects (REP) to identify cell-specific networks likely
affected by the susceptibility variants (Fig. la, Supplementary
Fig. 1). We included all genome-wide (GW) significant single
nucleotide polymorphisms (SNPs) together with their proxies
selected at differing LD thresholds (r? > 0.5 was used for the main
analysis).

All regulatory information retrieved for each MS-associated
region was compiled for each cell type in a single master
table (Supplementary Data 1). This catalogue contains all of the
available regulatory features that potentially modulate the
expression of each of the genes mapping to each associated
region in a cell-specific manner. We next used this information to
build a cell-specific, genetic regulatory network that constituted
the basis of a gene prioritization scheme within each associated
region (Fig. 1b). Specifically, each gene within a given locus
received a score (PRE) that does not depend solely on the closest
SNP, but that is equal to the weighted sum of all regulatory
features potentially affected by variation at nearby associated
SNPs (See Methods). Figure 1c shows a heat map representation
of the PREs for all genes (n=2,444) implicated by the GW
significant MS associations for each of the main cell/tissue types
(Individual PREs for each cell/tissue and GWAS statistical
confidence are listed in Supplementary Data 2-28). Two GW
significant regions (10 and 21) are shown in larger detail as
representative examples (Fig. 1c). Because it integrates actual
regulatory information for each associated SNP and those in LD,
this approach can prioritize the most likely genes affected by the
same association signals in each cell type analyzed (Supplemen-
tary Data 29). In the example, the PREs at the top of Fig. lc
highlight the lead variant defining Region 10 (rs6670198, Chr 1)
and those in LD which are likely to affect the expression of
FAM213B and TNFRSFI4 in all immune cells (B, T and
monocytes -M-). These SNPs would have almost no effect at all
in the CNS and lungs (L), as MS-associated variants are unlikely
to alter their expression in those tissues. For comparison, a simple
proximity approach would have just implicated the FAM213B
gene, which, while being of biological interest, may describe an
incomplete scenario. Interestingly, TNFRSFI14 (a member of the
TNF receptor superfamily) encodes a protein involved in signal
transduction pathways that activate both inflammatory and
inhibitory T-cell immune responses due to its particular ability
to interact with multiple ligands in distinct configurations!8.

Another example is provided by region 21, defined by the lead
SNP rs6032662 mapping to chromosome 20. rs6032662 maps
midway between NCOAS5, a tumor suppressor gene, and CDA40,
which encodes a well-known member of the TNF-receptor
superfamily. This receptor is essential in mediating a broad
variety of immune and inflammatory responses including T cell
activation, T cell-dependent immunoglobulin class switching,
memory B cell development, and germinal center formation!®.
While its expression is highest among antigen presenting cells
(including those derived from dendritic cells and monocyte/
macrophages) its PRE score is low in the M set (Fig. lc),
indicating that, of the cells studied, MS-associated variants only
regulate its expression in B cells. Altogether, these results show
that this approach is a useful strategy to prioritize genes within
association regions.

Protein connectivity among products of MS-associated loci.
Previous studies have shown that the proteins encoded by genes
affected by genetic association signals are more likely to interact,
in part because they often participate in the same biological
pathways®20-22. Thus, we evaluated (for each cell/tissue) how
many of the gene products in MS-risk loci predicted to be posi-
tively regulated (ie. PRE>25th percentile or PRE-25) also
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Fig. 1 Overall strategy and computation of the predicted regulatory effect (PRE) in MS-associated loci. a GWAS signals were integrated with cell-specific
regulatory information to compute PRE at both population and individual level. In a second stage, genes with high PRE at each of the cell types analyzed
were identified in a human protein interactome (PPI) and sub-networks of enriched genes (proteins) were extracted. b Each MS-associated SNP and those
in LD were used as query in RegulomeDB. For each SNP, the all regulatory features were annotated and classified according to type and cell of origin. A
graph connecting every queried SNP (crosses), the regulatory feature (diamonds), and the target gene (circles) was created and the number of
experiments supporting a particular regulatory feature was used as weight (numbers next to SNP). Finally, a PRE score was computed for each gene by
summing up weights from all incoming regulatory signals for each of the cell types analyzed. ¢ Heatmap represents the PRE of all genes under GW MS-
associated loci for cells of interest. Rows represent genes, and columns denote cell types. Colors indicate positive (red), neutral (white) and negative (blue)
PRE values. Two representative regions are highlighted. Region 10 (associated SNP: rs6670198, green box) highlights immune-specific (B, T, and M)
regulation of FAM213B and TNFRSF14. In contrast, region 21 (associated SNP rs6032662, blue box), shows high PRE only for CD40 in B cells. C: CNS; L: lung;
T: T cells; M: monocytes; B: B cells. This analysis represents all SNPs with an r2>0.5 of the main GW effect

interacted in a human protein network containing 15,783 pro-
teins and 455,321 interactions (See methods) (Fig. 2 shows a
schematic of this approach). In addition to the total number of
interactions we also computed other relevant network metrics
such as the size of the largest connected component -LCC- and
the number of connections —edges- among nodes within the LCC.
These metrics, if statistically significant, are often good indicators
of true biological networks. We found that, for all immune cell
types analyzed, the above network metrics among GW associated
gene products always exceeded those from 10,000 randomly
generated, size-matched networks. Specifically, network metrics
among the gene products of GW associated loci were statistically
significant for T cells, B cells and monocytes (Fig. 3). The number
of interactions among genes related to the CNS were not sig-
nificantly different than expected. One factor likely affecting this
result is that in contrast to immune cells (for which PREs were
computed on a cell-specific manner) computations for CNS are
the result of 25 different cell types/anatomical regions. This could
potentially smooth the overall estimate of PREs as the various cell
types within the CNS could be under different regulatory control.

The three significant networks (Fig. 3a—c) shared several of their
genes, thus constituting a core module (Fig. 3d). The molecular
functions of most of these genes belonged to the binding (36%)
and catalytic activity (33%) categories. Other functions were
receptor (13%), signal transduction (6%), and structural molecule
(10%). A PANTHER analysis revealed these genes belong to JAK/
STAT, IFNgamma, interleukin, and integrin signaling pathways,
among others. Altogether, our analyses suggest that susceptibility
to MS stems from a core of processes that can be active in any of
several immune-related cell types. These findings are in agree-
ment with the “omnigenic” model of inheritance of complex
diseases, posing that gene regulatory networks are sufficiently
interconnected such that all genes expressed in disease-relevant
cells are liable to affect the functions of core disease-related
genes?3.

As predicted by the omnigenic model, we noted that several
genes were only present in some cell types but not others. For
example, CD28 was only present in the T cell network, ELMOI in
B cells and MERTK in the monocyte/macrophage lineage. CD28
is located on the surface of T cells and provides a required
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Fig. 2 Network connectivity analysis. The PRE of genes were loaded as attributes in a protein interactome. In the central panel, genes with a PRE above the
95th percentile of their respective cell-specific distributions are visualized (M: monocyte, green; T: T cells, red; B: B cells, blue, C: CNS, yellow). For each cell
type, the number of edges in the sub-network composed of interacting proteins with PRE above the threshold was analyzed. In this example, the CNS sub-
network is composed of 109 nodes and 71 edges. Ten thousand random networks with the same number of nodes (i.e. 109) were generated and the
distribution of edges was plotted along with the number of edges of the relevant sub-network (i.e. 71). A p-value was computed to evaluate the probability
that this number of edges was seen by chance
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Fig. 3 Cell-specific gene sub-networks of GW associated regions (2> 0.5). Graphs correspond to the largest connected component in each cell/tissue
bucket. Nodes represent proteins and edges represent interactions. For each cell type the PRE is proportional to the color intensity (dark: high; light: low).
Genes/proteins are organized according to their cellular distribution. The histogram next to each sub-network shows the distribution of the number of
edges of 10,000 randomly generated networks. The red arrows denote the number of edges observed in the corresponding sub-network and the p-value,
the probability of observing a more extreme number of edges in a randomly generated network. a B cells; b T cells; € monocytes. An asterisk is placed next
to genes/proteins exclusively observed in that cell type. d shows an aggregate (common) module present in all three cell types. A pie chart describes the
GO: molecular functions assigned to these genes and a table describes the nine PANTHER pathways that were significantly enriched

co-stimulatory signal to trigger their activation after engagement
of the MHC-antigen-T cell receptor trimolecular complex?*
ELMOI1 encodes a cytoplasmic adaptor protein that interacts with
DOCK family guanine nucleotide exchange factors to promote
activation of the small GTPase RAC, thus enabling lymphocyte
migration?®. The MERTK gene encodes a receptor tyrosine kinase

that transduces signals from the extracellular matrix into the
cytoplasm regulating many physiological processes including cell
survival, migration, differentiation, and phagocytosis of apoptotic
cells (efferocytosis). Specifically, MERTK plays several important
roles in normal macrophage physiology, including regulation of
cytokine secretion and clearance of apoptotic cells?®. These

4 NATURE COMMUNICATIONS | (2019)10:2236 | https://doi.org/10.1038/541467-019-09773-y | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

observations suggest that, in addition to the core susceptibility
module, at least part of the risk is cell type-specific.

We next performed a sensitivity analysis by testing separately
GW, statistically replicated (SR), and non-replicated (NR) effects
(see Methods) SNP sets at three different LD cut-offs (2> 0.1, r2
>0.5, and 72> 0.8) and three PRE thresholds (PRE-10, PRE-25
and PRE-50) (Supplementary Data 30). As anticipated, although
the most significant network metrics were seen in the analysis
based on GW signals (Supplementary Fig. 2, panel A), some
significant network metrics were also seen in the analysis based
on the SR SNPs (Supplementary Fig. 2, panel B). This confirms
that in well powered studies variants with evidence for association
just short of GW significance may still represent real effects'4. In
contrast, the connectivity of networks obtained with SNPs from
the NR set was usually not significantly higher than that of
random networks (Supplementary Fig. 2, panel C). As expected,
including the wider range of SNPs implicated by relaxing the LD
threshold down to 72> 0.1 resulted in less significant network
metrics, suggesting that including less robust proxies introduced
more noise than signal.

Individualized PRE correlate with gene expression. The detailed
mapping of regulatory information for each SNP suggests that
if PRE are computed for a given cell type in a single individual
based on the carriage of relevant risk alleles, these values
should capture a non-negligible proportion of the variance in
gene expression in that cell type. To test this hypothesis, we
interrogated the expression of the entire transcriptome of FACS-
sorted CD4™ T cells, and CD14+ monocytes from 25 MS patients
by RNAseq and then assessed the correlation of their genotype
dependent PRE and their actual gene expression in each cell
type separately. Our results showed that the correlation observed
was in all cases significantly higher than what would be expected
by chance if these metrics were independent. Furthermore, the
computed correlations were always higher for the matching
cell type (CD4/CD8 expression with T cells PRE and CDI14
expression with monocytes PRE) (Table 1). The average corre-
lation between RNA expression and PRE within the same cell
type was 0.331 (CD4 vs. T cells, p <1073, linear regression),
0.324 (CD8 vs. T cells, p < 10739, linear regression), and 0.246
(CD14 vs. monocytes, p < 10739, linear regression), representing
a significantly higher than expected value for each cell type.
Correlations between PRE and RNA expression of mismatched
cell types were significantly lower. These results suggest that the
computation of PRE can be applied to single patients and indi-
vidual scores can be generated for each of them.

We then used the genotype-level data from one of the GWAS
datasets (UCSF, Supplementary Data 31), composed of 2370
patients and 412 controls, to compute cell-specific risk scores for
each individual using the same pipeline used for the population-
level data. Rather than considering all 200 associations, this

Table 1 Correlation between regulatory potential and cell
specific global gene expression

PRE CD4 r (p-value) CD8 r (p-value) CD14 r (p-value)
Monocyte  0.225 (p<107390)  0.218 (p<10—3'4)  0.246 (p <10—300)
T-cell 0.331 (p<107390)  0.324 (p<10—300) (0.253 (p<10—300)
B-cell 0.204 (p<10-248)  0.204 (p<10—247)  0.219 (p<10-287)
CNS 0.108 (p<10=75)  0.112 (p<10-82) 0.120 (p<10-93)
Lung 0.117 (p<10-86) 0122 (p<10-9%)  0.133 (p<10-12)

Bold values indicate the corresponding cell type for the RNAseq results (e.g. CD14 RNAseq data
corresponds to monocytes, and CD4 and CD8 corresponds to T cells)

personalized approach takes into account the specific risk alleles
present in each individual and thus enables exploration of subject
heterogeneity in a biological context and in a cell specific manner.
Hierarchical clustering of subjects and heatmap visualizations of
the PRE of genes under regions 9, 49, and 53 (r > 0.5) for all cell
types in this subset of cases and controls are shown as an example
(Fig. 4). The heterogeneity across individuals in the PRE of a
given gene can be readily seen for all cell types. As expected for
common variants, cases and controls (denoted by red and green
horizontal bars in the leftmost column) do not cluster separately
within any single association region. This analysis provides a
visual representation of which genes are most likely affected by
common variants associated with the disease in those individuals,
in a cell-specific manner. The PRE for most genes in each
heatmap show ample variability across individuals, highlighting
genetic differences in their susceptibility to MS at this locus.
These maps also reveal which genes are most likely to be affected
in each cell type by these common alleles. For example, while
associated variants near the gene EOMES (region 9) potentially
modulate its expression in T cells, this gene is less regulated in B
cells and monocytes and strongly silenced in CNS (Fig. 4a). This
is consistent with its function as a critical transcription factor in T
cell differentiation?7-28. Interestingly, higher PRE of these variants
are observed for Th2 cells than for any of the other subsets
analyzed. Previous reports revealed that EOMES expression limits
FOXP3 induction, thus effectively reducing Treg populations®’.
Genomic variation at this locus resulting in dysregulated EOMES
expression in T cells and NK cells might be a critical mediator of
the risk to MS3°.

Another interesting example is the high PRE observed for the
gene CD40 (region 21) preferentially in B cells for most subjects
(Fig. 4b, pink boxes). This finding is consistent with the critical
role of CD40 in B cell development and maturation, and
indicates that MS risk affecting B cell biology is higher in some
subjects than others. Furthermore, individuals carrying the risk
variants within CD40 (rs4810485*T) have been reported to
express lower levels of CD40 in the surface of their B cells and
lower IL-10 levels3!. This could carry therapeutic implications
considering the prominent role of B cell depletion therapy in
this disease3233. Another signal revealing B cell involvement in
MS risk is the high PRE of all members of the Fc receptor-like
(FCRL) gene family in region 53 (Fig. 4c, yellow boxes)
preferentially in B cells for most subjects, consistent with the
function of these gene family as regulators of proliferation in B
cells and phagocytosis34.

Intra-individual risk networks are more connected in MS.
Finally, we integrated individual risk regulatory scores with a
global protein interactome to compute intra individual, cell spe-
cific risk networks. We hypothesize that these networks would
provide a step forward in the description of aggregate persona-
lized risk scores by representing risk in a biologically relevant
manner3>3%, Furthermore, building risk profiles with pathway
and cell specific information describes more accurately the biol-
ogy potentially affected by risk variants inherited by a particular
individual. We also hypothesized that similarly to what we
observed for cases and controls at the population level, more
interactions among proteins encoded by risk loci would be
observed for cases than for controls. This was indeed the case, as
we observed statistically significant differences between cases and
controls for the three main cell types tested (the CNS was not
significant as shown in Fig. 5a and Supplementary Fig. 3) (Sup-
plementary Data 32). The largest number of intra-individual
interactions among gene products with high PRE was observed in
monocytes, followed by T cells, B cells and the CNS (Fig. 5a
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Fig. 4 Individualized PRE computations for three representative associated regions. Each row represents an individual (out of 2370 cases and 412 controls),
and each column represents a gene within the associated region. Region 9 (a) contains the gene EOMES (green boxes), region 21 includes CD40 (pink
boxes) (b) and region 53 (¢) the FC receptor-like cluster (yellow boxes). The leftmost column denotes subject status (red: cases; green: controls)

shows results for PRE-25). This is consistent with the larger
significance of these risk networks observed at the population
level (Fig. 3). Interestingly, PRE values correlate with the global
polygenic risk (Supplementary Fig. 4) but it uniquely enables
identification of high-risk and low-risk individuals in a cell-
specific manner. Figure 5b highlights four case:control pairs with
different risk profiles in each of the four main cell types/tissues
analyzed. For example, subject 201100870 (case) is at the 99th
percentile of the distribution of network edges for monocytes
(120 nodes and 271 edges). In contrast, subject 20020214 (con-
trol) is at the 1st percentile (61 nodes and 98 edges).

Another interesting observation emerging from this analysis is
that subjects at the extremes of the distribution of intra-individual
interactions (a proxy for their overall risk) can be identified for
each cell type. For example, subject 201327986 has 110 nodes and
190 edges in this subject’s B cell risk network (blue box),
corresponding to the 99t percentile of all cases (Fig. 6). In
contrast, the corresponding percentile of the number of edges in
his T, M and C (red/green/yellow) networks is substantially lower
(47th/49th/66th). In line with results observed at the population
level, individual CNS risk networks are consistently smaller and
less connected than those from B cells, T cells and monocytes.
Although CNS is still the least connected network in subject
201101897, with 118 edges in its CNS risk network (yellow box),
it ranks in the 99th percentile of all cases. In contrast the

percentile connectivity of T cell (51st), B cell (29th) and M (75th)
risk networks for this subject rank noticeably lower.

While the number of interactions (edges) among proteins
encoded by genes in associated loci was variable across cell
types, on average, more interactions were observed for cases than
for controls in all cell types studied. Supplementary Fig. 3 shows
the significance of testing different network parameters between
cases and controls across a wide range of conditions. Similar to
what we observed at the population level, significant effects
were also seen for loci with less than genome-wide evidence for
association, suggesting that some of those variants considered
less strongly significant, also confer risk.

In summary, this analysis underscores the notion that total MS
risk is not only carried by accumulation of risk alleles, but also by
how the genes and proteins affected by those polymorphisms
interact within each cell type. We anticipate this model could
apply to other common diseases.

Discussion

In this work, we provide evidence that integration of associated
variants from GWAS with regulatory information and protein
interactions, provide plausible models of disease pathogenesis.
This approach not only offers a data-driven solution to prioritize
which genes within a locus are most likely affected by the risk
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Fig. 5 Select case-control intra-individual MS-risk networks. a Number of edges in the largest connected component (LCC) of the network generated
among proteins (genes) with high PRE (>25th percentile) in 2370 patients and 412 healthy controls (GW_r? > 0.5). Each row represents a subject, each
column represents a cell type (B: B cell; T: T cell; M: monocyte; c: CNS). The leftmost column indicates subject status (red: cases; green: controls).

b Representative sub-networks from subjects at the extremes of the distribution for E-LCC for each cell type. For each network, the number of nodes (N),
edges (E), and percentile relative to all subjects (P) is indicated. The intensity of node color is proportional to the PRE of each gene in the corresponding

cell type

variant(s) but also provides an interpretable model of risk in a
cell/tissue specific manner. While the PRE scores computed here
are significantly correlated with actual gene expression from the
corresponding cells, the correlation is partial, thus underscoring a
potential limitation in our approach, and of available data.
However, the statistically significant results obtained for genes
and pathways known to be involved in MS further validates this
approach. Indeed, the models presented here are consistent with
MS genetic risk being driven by the long-term alteration of cel-
lular pathways primarily in monocytes, but also in the B and T
cell arms of the human adaptive immune response. The smaller
but not negligible contribution of CNS pathways to MS risk is in
agreement with our previous analysis!”, which identified the
monocyte/macrophage/microglia axis as a key player in directing
the autoimmune process to the CNS. However, an important
caveat, particularly affecting results for this compartment, must
be taken into account: for this analysis, the CNS group was
composed of a heterogeneous ensemble of purified primary cells,
established cell lines and dissected specimens from specific

anatomical regions as available in the ENCODE and REP data-
sets. Although all derived from CNS tissue, it is highly likely that
different regulatory mechanisms are at play in each cell type (in
some cases resulting in drastically different expression patterns),
thus somehow confounding the overall CNS signature computed
here. Thus, the detected effect of MS-associations which map to
the CNS could represent the lower boundary of a more wide-
spread phenomenon. A more detailed CNS-specific data set
containing genome-wide regulatory element information might
be needed to address this question in larger detail.

In the last few years, several post-GWAS pathway approaches
such as DEPICT?7, FUMA38 and PASCAL?? have been proposed
and utilized to interpret and integrate summary statistics into a
biologically meaningful model. While sharing some of the basic
characteristics of previous approaches, our method features a set
of unique properties, most notably the introduction of data-
driven regulatory effects of associated variants (and those in LD),
the ability to create cell-specific networks, and the computing of
individual disease burden maps (Supplementary Table 1). Given
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that each method produces a different output, it is not possible to
directly compare these approaches. However, the first and argu-
ably most important step in all these tools (including ours) is to
compute the SNP to gene values. A basic comparison of these
three tools shows that the exact same genes were prioritized for
almost half of all non-HLA associated loci (97/200). A closer look
revealed that our method was the only one that called at least one
gene per associated locus, and produced gene prioritization sets
with the least ambiguities (Supplementary Table 2 and Supple-
mentary Fig. 5).

Recent evidence has emerged that polygenic risk scores for
schizophrenia associate with therapeutic response to Lithium-
based therapies*’. Similar approaches are being tested for other
psychiatric, oncological and cardiovascular diseases*!=4>. The
observation that some risk variants only affect expression of a
given gene in one cell type but not in others, may at least in part,
underlie the observed clinical heterogeneity in the MS population.
Thus, when this approach is implemented at the individual level,
specific risk profiles can be built for each subject with MS. We

speculate that in the near future this information could also be
used as the basis to develop individualized risk scores, or to derive
personalized approaches to therapy. For example, a subject with
high B cell genetic risk may be a good candidate for B cell
depletion therapies, while a subject with a high T cell risk may
benefit the most from immunomodulatory drugs that target
T cell function or migration into the CNS.

This cell-specific pathway approach can be extended to any
set of SNPs of interest in any condition at both population
(summary) and individual (genotype) levels.

Methods

Predicted regulatory effects (PRE). Genome-wide regulatory elements from
ENCODE and REP were collected from regulomeDB*® (which contains more than
400 million genomic regulatory features collected from 400 cell and tissues; Sup-
plementary Table 3) for all non-MHC independent effects (SNPs)!”. Specifically,
single nucleotide polymorphisms (SNP) corresponding to all non-MHC GW (n =
200; Supplementary Data 33), SR (n = 416; Supplementary Data 34) and NR (n =
3695; Supplementary Data 35) were extracted for analysis GW, SR, and NR as
defined previously!”). The 200 GW effects were distributed in 156 unique regions

8 NATURE COMMUNICATIONS | (2019)10:2236 | https://doi.org/10.1038/541467-019-09773-y | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

(44 regions contained multiple independent effects). Similarly, the 416 SR effects
were distributed in 354 unique regions (62 regions contained multiple independent
effects) and the 3695 NR effects were distributed among 1,883 unique regions
(1812 regions contained multiple independent affects). Three sets of SNPs were
created for each region according to their r? with their corresponding main effect
(r2>0.8, r2>0.5, and r2>0.1).

A python tool was written to automatically fetch data from RegulomeDB for
these SNPs in all three lists (totaling 538,826 SNPs). Similarly, data for SNPs in
different levels of LD (r?> 0.8, r>> 0.5, and 2 > 0.1) with each primary effect were
also retrieved using chromosomal positions. The main analysis was performed
using 2> 0.5 whereas the other sets were only used for the sensitivity analysis. In
total, 538,826 SNPs were included in the analysis.

To investigate the effect of SNPs across different cell types and to assess which
gene has most potential of being regulated across various cell types, we grouped the
cell types present in ENCODE (Supplementary Table 4) and REP (Supplementary
Table 5) into four major cell types (buckets). Specifically, these were B cells, T cells,
CNS (central nervous system), and M (monocytes). T cell subsets (Th1, Th2, Th17,
and Treg) were also analyzed as a separate group. We also built a dataset from lung
(L, a cell type/tissue not considered to play a major role in MS susceptibility) as a
control. Cancer cell lines were excluded for this analysis.

Regulatory elements were grouped into two major classes: PEX (promoter/
enhancer/activator) and R (repressors/inactivators). Cell or tissue of origin was
recorded for each regulatory feature, and cell-specific information was grouped into
three main cell types (B cells, T cells, monocytes) and one tissue (CNS) that are of
interest in MS. In total, 25 brain regions were considered (15 from ENCODE and
10 from REP). In addition, T cell subsets deemed relevant in the pathogenesis of
MS (Thl, Th2, Th17, and Treg) were also analyzed separately. Primary cells and
cell lines from a tissue not known to be involved in MS (lung, L) were included as
control. In addition, eQTL data for T cells and monocytes from the IMMVAR
project’ were integrated into the PRE computations. The HTML data from the
scrapped output was parsed to populate data present in regulomeDB tables. A
master table was then compiled with each field of regulomeDB data for all
538,826 SNPs.

Multiple regulatory features were considered including protein binding,
transcription factor binding sites (TFBS), promoters, enhancers, insulators, histone
modifications, and DNAse hypersensitive regions (DHS). We classified these into
three broad groups representing promoter/enhancer/transcription (PEX), inert/
quiescent (ZQI), and repressor (R, Supplementary Table 6). We next computed
weighted SNP-based scores based on the genotype and number of risk alleles to
quantitate the regulatory influence of variation at each SNP. The weights were
counted as positive if there was evidence that the region promotes transcription
and as negative if there was evidence of repression. The weights were then
normalized by the total number of experiments conducted for each respective cell
type to remove bias against well-studied cell types. These weighted weights (WW)
were summed up across SNPs resulting in a sum of weighted weights (SWW, or
predicted regulatory effect -PRE-) per gene per region in each cell type. The WW
concept derives from the fact that the sum of the effects of neighboring SNP to a
given gene is weighted twice. The first time we weight the number of experiments
reported in ENCODE or REP for a given SNP-gene pair (e.g. we assign more value
to a relationship that has been reported in 10 independent experiments, to another
that has been reported just once). The second time, we weight the evidence
stemming from all SNPs nearby a gene (depending on the LD structure there could
be ~100 SNP near a given gene). A gene with a positive score indicates there is
evidence that the region containing the MS-associated SNP(s) is actively
influencing its transcription in that particular cell type and vice-versa.

All computations were performed in parallel using the 7400-core QB3 computer
cluster at UCSF.

Protein interaction network-based pathway analysis (PINBPA). An experi-
mentally determined human protein interactome consisting of 15,783 nodes and
455,321 edges was used for this part of the analysis?!. We loaded the network into
Cytoscape?® and created cell-specific sub-networks using gene expression values
from elsewhere. Specifically, we filtered interactions realized only by gene products
expressed in a given cell type, by using RNAseq expression profiles from Kitsak
et al.#9, Thus, for the T cell interactome, we only retrieved interactions between
proteins known to be expressed by any T cell subset present in Kitsak et al. In the
case of CNS, while gene expression data is sufficiently granular (profiles for dif-
ferent brain cell types and regions exist), epigenomic data for CNS cells/tissues in
ENCODE or REP is very sparse, thus we decided to merge all data into a single
CNS category.

Next, we loaded the gene-level PRE for each cell type as node attributes and
conducted a topological analysis by selecting the subnetwork corresponding to the
largest connected component of nodes with positive PRE (those with negative
scores are assumed not to be expressed, and thus not to be active players of the
interactome). To eliminate noise from very small or loosely unconnected networks,
only those with more than 15 nodes were considered. Sensitivity analysis was
performed by defining different thresholds on PRE values (10th, 25th, 50th
percentiles) and building networks with only proteins exceeding these thresholds
(Supplementary Fig S1). Individual network analysis was performed considering
differing sets of the potentially associated SNPs identified in our recently completed
meta-analysis; those SNP that showed statistically significant evidence of

replication and reached genome-wide significant in the final combined analysis
(GW), those that showed statistically significant evidence of replication but did not
reach genomewide significance in the final combined analysis (SR) and those
failing to show statistically significant evidence of replication (NR). For each cell
type, the number of nodes and edges of each subnetwork and that of its largest
connected component were computed. The statistical significances were computed
by comparison against a background distribution of 10,000 networks of equal size
sampled randomly from the same PPL

Cell-specific transcriptomes. This work was approved by the Institutional Review
Board at the University of California San Francisco (IRB# 10-00104). PBMCs were
obtained from 25 individuals by Ficoll method using Vacutainer CPT tube (BD
Biosciences). Subjects were consented according to institutional (UCSF) review
board (IRB) guidelines. Three different cell subsets (CD4* and CD8* T cells, CD14
+ monocyte) were sorted into RLT buffer using a MoFlo Astrios cell sorter
(Beckman Coulter). Helper T cells were defined as CD3+CD19~CD4™, cytotoxic
T-cell were CD3TCD19~CD87+, and monocytes were sorted as CD14+ cells. Total
RNA was isolated from sorted cell subsets using RNeasy Mini kit (Qiagen) and
assessed RNA quality using Agilent 2100 Bioanalyzer (Agilent Technologies). 3’
mRNA-Seq libraries for all cell subsets were prepared from 100 ng total RNA using
QuantSeq kit (Lexogen) according to the manufacturer’s instructions and
sequenced 50-bp single-end on the HiSeq 4000 (Illumina). Sequence reads were
mapped to the human genome reference (GRCh38) with Gencode annotation (r26)
using STAR aligner>’. Reads were normalized by median of ratios using the DEseq2
package!. The R function featureCounts was used to obtain gene-level read
counts?2,

We selected overlapping genes between RNA-Seq gene counts and PRE scores,
and Pearson’s correlation test was performed using the cor.test function in R. The
significance of the correlation was confirmed by permutation testing (n = 1000).

Data availability

All data generated or analysed during this study are included in this published article
(and its supplementary information files). RNA samples used in this work have been
utilized in its entirety and thus are not available. Raw RNAseq (fastq) files used in this
work have been deposited in the UCSF Data Share Server [https://doi.org/10.7272/
Q6HQ3X3M].
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