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ABSTRACT

Identification of microRNAs (miRNAs) is an important step toward understanding post-transcriptional gene regulation and
miRNA-related pathology. Difficulties in identifying miRNAs through experimental techniques combined with the huge amount
of data from new sequencing technologies have made in silico discrimination of bona fide miRNA precursors from non-miRNA
hairpin-like structures an important topic in bioinformatics. Among various techniques developed for this classification
problem, machine learning approaches have proved to be the most promising. However these approaches require the use of
training data, which is problematic due to an imbalance in the number of miRNAs (positive data) and non-miRNAs (negative
data), which leads to a degradation of their performance. In order to address this issue, we present an ensemble method that
uses a boosting technique with support vector machine components to deal with imbalanced training data. Classification is
performed following a feature selection on 187 novel and existing features. The algorithm, miRBoost, performed better in
comparison with state-of-the-art methods on imbalanced human and cross-species data. It also showed the highest ability
among the tested methods for discovering novel miRNA precursors. In addition, miRBoost was over 1400 times faster than the
second most accurate tool tested and was significantly faster than most of the other tools. miRBoost thus provides a good
compromise between prediction efficiency and execution time, making it highly suitable for use in genome-wide miRNA
precursor prediction. The software miRBoost is available on our web server http://EvryRNA.ibisc.univ-evry.fr.
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INTRODUCTION

MicroRNAs (miRNAs) are small single stranded noncoding
RNAs (21–22 nt) found in eukaryotic cells. MiRNAs function
by regulating gene expression either by translational inhibi-
tion or message degradation, and thus are key to many bio-
logical processes. Dysregulation of miRNAs is known to
cause a wide range of diseases (miR2Disease database Jiang
et al. 2009) such as hereditary progressive hearing loss (Men-
cía et al. 2009), growth and skeleton defects (de Pontual et al.
2011), various cancers (He et al. 2005; Mraz et al. 2009), heart
diseases (Thum et al. 2007), and Alzheimer’s disease (Maes
et al. 2009). Mature miRNAs are made from precursors
(pre-miRNAs) of ∼90 nt in length, characterized by a hair-
pin-like structure. More than 18,000 miRNAs have been dis-
covered in ∼140 species, of which >1500 are inHomo sapiens
(Kozomara and Griffiths-Jones 2011). However, recent stud-
ies reveal that a large number of miRNAs have yet to be dis-
covered (van Rooij 2011). The identification of novel

miRNAs from genomes is thus of key importance for both bi-
ological and medical sciences. Novel miRNAs are difficult to
detect in cells with experimental techniques due to their
small size and low abundance (Lagos-Quintana et al. 2001;
Lai et al. 2003). In silico prediction is therefore useful for
identifying potential pre-miRNAs, which can be subse-
quently validated experimentally. Several methods have
been recently developed to detect pre-miRNAs, including
comparative genomics, homology-based, and ab initio ap-
proaches. Comparative genomics approaches use multiple
alignments of sequences to compare genomes of related spe-
cies for detection of conserved pre-miRNAs. Such approach-
es are RNAmicro (Hertel and Stadler 2006), miRFinder
(Huang et al. 2007), miRSeeker (Lai et al. 2003), MiRScan
(Lim et al. 2003), and miRRim (Terai et al. 2007). Homolo-
gy-based methods exploit information from homologous
sequences and structures to identify new pre-miRNAs that
are homologous to existing ones, as proposed in ERPIN
(Legendre et al. 2004) and miRAlign (Wang et al. 2005).
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Nonetheless, it is unlikely that comparative genomics and ho-
mology-based methods would work efficiently when a new
candidate sequence without a known homolog or cross-spe-
cies sequence conservation is studied.

The ab initio approaches, which may help to avoid this
issue, can be classified into three categories. The first, con-
sidered as completely ab initio, searches for potential pre-
miRNAs occurring in genomes via intrinsic properties of
sequence and structure of pre-miRNAs, as in CID-miRNA
(Tyagi et al. 2008) and miRNAFold (Tempel and Tahi
2012). The second category predicts potential pre-miRNAs
considering additional information, for example, the posi-
tions or neighbors of a given sequence in a genomic se-
quence, as in miR-abela (Sewer et al. 2005) and MIReNA
(Mathelier and Carbone 2010). These two categories are ap-
plied as a rough filter for pre-miRNA candidates, which
might be subsequently refined using other techniques.

Following the primary filters for pre-miRNA candidates,
the third category classifies these as real or pseudo pre-
miRNAs. Among different techniques developed for this
classification problem, machine learning approaches have
demonstrated to be the most promising. Several machine
learning techniques have been applied to deal with the classi-
fication of pre-miRNAs, such as genetic programming
(miRPred, Brameier and Wiuf 2007), random forests
(MiPred, Jiang et al. 2007), random walk (miRank, Xu et al.
2008), Bayesian networks (BayesMiRNAfinder, Yousef et
al. 2006), kernel density estimator (mir-KDE, Chang et al.
2008), and hidden Markov models (CSHMM, Agarwal
et al. 2010; proMIR, Nam et al. 2005).

Besides these above-mentioned methods, support vector
machines (SVM) (Vapnik 1998) have been widely applied
for classification in bioinformatics, information retrieval,
computer vision, etc. The SVM defines a separating hyper-
plane that divides the space into two sides by maximizing
the margin or the distance from the hyperplane to the closest
samples. A number of computational tools using SVM have
been implemented to identify pre-miRNAs, such as: miPred
(Ng and Mishra 2007), miRPara (Wu et al. 2011), and trip-
let-SVM (Xue et al. 2005).

Nevertheless, as the number of determined non-miRNAs
is much higher than that of identified pre-miRNAs, we are
faced with an imbalance in the training data. The traditional
learning-based classifiers, such as standard SVM, which aim
to achieve the highest accuracy for the whole set of samples,
are not suitable to deal with imbalanced learning tasks as
they tend to classify all given samples into the more prevalent
class in the training data (Wu and Chang 2003). Hence, a ma-
jority of candidate sequences would be predicted as non-
miRNAs. Several kinds of modifications have been included
in SVM approaches to deal with imbalanced data sets. Morik
et al. (1999) presented an SVM model in which the cost fac-
tors for positive and negative examples were distinguished.
Lewis et al. (2004) described a thresholding strategy while
Li and Shawe-Taylor (2003) introduced an SVMwith uneven

margins. The parameter of uneven margins represents the ra-
tio of the negativemargins to the positivemargins of the SVM
classifier and is equal to 1 in the standard SVM. For an imbal-
anced data set with a few positive samples and many negative
ones, it would be beneficial to use larger margins for the pos-
itive ones than for the negative ones. Over-sampling and un-
der-sampling techniques have also been implemented in Ling
and Li (1998), Japkowicz (2000), and Chawla et al. (2002).
Certain ensemble methods, with no aims to treat this prob-
lem, showed a good performance in dealing with imbalanced
data, such as bagging (Breiman 1996) and boosting (Schapire
1990), in which boosting was empirically shown to perform
better when the data do not have much noise (Bauer and
Kohavi 1999; Opitz and Maclin 1999).
A few methods have been recently developed to overcome

the imbalance issue of pre-miRNAs, but all of them are un-
usable on large data sets because of their speed or their un-
availability. Such methods include microPred (Batuwita and
Palade 2009), MiRenSVM (Ding et al. 2010), mirExplorer
(Guan et al. 2011), HeteroMirPred (Lertampaiporn et al.
2013), and HuntMi (Gudys et al. 2013).
In this paper, we introduce miRBoost, which uses the

boosting method, combined with weakened SVM compo-
nent classifiers, for dealing with imbalanced training data
in ab initio pre-miRNA classification. The principle is to
have a sequence of SVM classifiers, where each classifier is ap-
plied on the subset of data that were not well classified. This
technique not only has shown good performance in classify-
ing imbalanced data, but is also advantageous in terms of ex-
ecution time.
miRBoost takes a set of sequence candidates as input and

classifies each of them as a pre-miRNA or not. The classifica-
tion of pre-miRNAs is based on a set of features or parameters
that characterize a given sequence. These features should not
only be distinctive for the classification task but should also
be independent between them. A feature that is irrelevant
to discrimination will reduce the predictive capability
(Dash and Liu 1997). Meanwhile, different features may pro-
vide a similar discriminative power and the removal of redun-
dancy in such a set of features may improve the performance
in terms of execution time as well as in prediction accuracy.
However, the selection of helpful features utilized for pre-
miRNA identification is still in question (Stepanowsky et al.
2012). In this study, we extracted appropriate features from
62 novel features that we developed and 125 existing ones
from the literature using search-based techniques that find
highly scored low-dimensional projections of the data.
We evaluated the method on human and cross-species

data. The positive data sets were taken frommiRBase (version
18) (Kozomara and Griffiths-Jones 2011), followed by a re-
finement. For the negative ones, firstly, we generated, from
exonic regions of protein-coding genes, sequences that could
be folded into hairpin-like structures and verify several pre-
miRNA characteristics. Secondly, we took the noncoding
RNAs that are not pre-miRNAs from different databases.
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The evaluation was conducted through a fivefold cross-vali-
dation and a prediction on novel pre-miRNA and non-
miRNA sequences. With the boosting technique, using the
appropriately selected features, our method has shown
favorable performance in comparison with state-of-the-art
tools, on both prediction results as well as on running
time. The software miRBoost is available on our web server
http://EvryRNA.ibisc.univ-evry.fr.
The paper is organized as follows. In the two next sections,

we present and discuss the results obtained with miRBoost
compared with several existing pre-miRNA classification
methods, in terms of classification performance, sensitivity
and specificity in predicting new pre-miRNAs, and execution
time. Then, we describe the materials and methods, includ-
ing the human and cross-species training and prediction
data sets we use, our feature selection process, and the algo-
rithm. The existing tools that we compared withmiRBoost are
detailed afterwards.

RESULTS

Experimental setup

We measure the performance of miRBoost on one data set
from human and one from cross-species. The data sets and
the feature selection process are described below in the
Materials and Methods.
miRBoost was compared with several existing computa-

tional tools of pre-miRNA classification in order to evaluate
its performance: CSHMM (Agarwal et al. 2010) and triplet-
SVM (Xue et al. 2005), which do not take into account the
imbalance problem; HeteroMirPred (Lertampaiporn et al.
2013), microPred (Batuwita and Palade 2009), MiPred
(Jiang et al. 2007), andmirExplorer (Guan et al. 2011), which
deal with imbalanced data; and MIReNA (Mathelier and
Carbone 2010), which does not apply machine learning tech-
niques for classification. These tools are described in more
detail in the Materials and Methods.
Wemainly used sensitivity, specificity and g-mean to mea-

sure the performance.We denote TP, FP, TN, FN as the num-
bers of true positive, false positive, true negative, and false
negative predictions, respectively. Sensitivity SE = TP/(TP +
FN)measures the fraction of pre-miRNAs correctly classified.
Specificity SP = TN/(TN + FP) measures the fraction of non-
miRNAs correctly classified. g-mean, which is usually used for
evaluating classifiers on imbalanced data, is the geometric
mean sensitivity and specificity

���������
SE × SP

√
. A high g-mean sig-

nifies a high value for both sensitivity and specificity simulta-
neously. Other measures are also reported in Supplemental
Data 1.

Classification performance

We conducted a fivefold cross-validation to evaluate the clas-
sification performance of miRBoost. miRBoost predicts each

of the five subsamples with the model trained on the combi-
nation of four remaining subsamples, using the features iden-
tified on this training set via our feature selection process, for
human and cross-species data, respectively. These cross-val-
idated results were compared to those obtained with other
existing pre-miRNA classification methods. As the cross-val-
idation requires the models built on the different data sub-
sets, we considered, for this comparison, CSHMM, triplet-
SVM, and microPred, the only machine learning methods
that allow retraining their model, and also MIReNA, which
is not based on machine learning.
ROC spaces for the classification results of miRBoost and

the existing tools on human and cross-species are given in
Figure 1. As shown, miRBoost gives the best compromise be-
tween sensitivity and specificity, i.e., the ability to simultane-
ously predict pre-miRNAs and reject non pre-miRNAs. In
both cases of human and cross-species, the score (1-specific-
ity, sensitivity) ofmiRBoost is always the closest to (0,1). This
is also proved by the highest g-mean of 0.90 and other mea-
sures achieved with miRBoost (see Supplemental Data 1).
microPred, which is the only method that manages to solve
the imbalanced data issue tested here, performs slightly better
in specificity and slightly worse in sensitivity in comparison
with miRBoost, yielding a lower g-mean for both data sets
(0.87 and 0.89). Meanwhile, CSHMM, triplet-SVM, and
MIReNA show considerably lower classification ability, with
g-mean from 0.69 to 0.87 for human, and from 0.64 to
0.86 for cross-species. A table giving the results obtained
with miRBoost and those tools, expressed in several other
measures, is provided in Supplemental Data 1.

Predictive sensitivity and specificity on new sequences

We evaluated the predictive sensitivity of miRBoost and the
other methods on 690 novel pre-miRNAs from the difference
ofmiRBase versions 19 and 20 and version 18, and the predic-
tive specificity on 8246 non-miRNA sequences (see “Data
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FIGURE 1. ROC space for cross-validated classification results of
miRBoost and the other methods on human and cross-species data.
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sets” section).We applied themodel trainedon thewhole data
set of cross-species for the prediction, with 18 features identi-
fied on this set through our feature selection process (see Pre-
miRNA Feature Selection). Similarly, themodels ofCSHMM,
triplet-SVM, and microPred were trained on that whole data
set. We also compared with MiPred, HeteroMirPred, and
mirExplorer, for which we used the provided models, as they
do not allow retraining of their models with other data. The
predicting results are given in Figure 2 and Supplemental
Data 1.

miRBoost predicts 610 (88.4%) sequences as pre-miRNAs
and rejects 7504 (91.0%) non-miRNA sequences. Our meth-
od provides the best equilibrium between sensitivity and
specificity, with a g-mean of 0.90, which is almost 7% higher
than the second best method, microPred. Most of the other
methods tested are far from producing a correct prediction.
CSHMM, triplet-SVM, MIReNA, and MiPred reject not
only most of non-miRNA sequences (89.0%–95.1%) but also
a large number of pre-miRNAs (50.4%–76.1%). Hetero
MirPred produces a fair equilibrium between sensitivity and
specificity, yet both are low, giving a g-mean of 0.70. Our re-
sults show that miRBoost can considerably prevail over the
other approaches in predicting novel pre-miRNAs.

Running time

Due to the ever-increasing amount of data coming from new
sequencing technologies, execution time has become an im-
portant factor in evaluating computational prediction tools.
In Table 1, we present the running time of miRBoost and
the other tools (except for mirExplorer, which could not be
installed on our Linux machine) for predicting the 690 novel
pre-miRNAs and the 8246 non-miRNA sequences consid-
ered above.

miRBoost is the only method that performs well the classi-
fication, when dealing with the imbalanced data issue, in a
reasonable amount of time (2 min 29 sec). This compares
with several hours for related methods such as microPred,
MiPred, and HeteroMirPred. Although microPred shows sim-

ilar results to miRBoost in classification ability, it takes over
1400 times longer than miRBoost to achieve this. miRBoost
is also 10 times faster than CSHMM. triplet-SVM and
MIReNA seem to be very rapid (three times faster than
miRBoost), yet their prediction performance is much lower
than that of miRBoost.
All experiments were performed on a Linux machine with

four six-core processors Intel Xeon X5680 of 3.33 GHz and
20 GB of RAM, except for mirExplorer, where the tests were
performed on a Windows machine with Core 2 Duo Intel
E8400 of 3.00 GHz and 4 GB of RAM. None of the programs
were executed in parallel mode.

Selected features

We carried out two different processes of feature selection.
First, feature sets were determined through the fivefold
cross-validation. We validated miRBoost on each of the five
subsamples with the features selected on the set of the four
others, on human and cross-species data, respectively. Sec-
ond, we selected upstream a feature set on each whole data
set of human and cross-species. Table 2 shows the number
of features selected in these cross-validated training sets and
whole data sets (see Supplemental Data 2 for more details).
We find eight common features for human among the

whole data set and the five training sets from the cross-vali-
dation process: maximum number of consecutive G’s in
the longest exact stem, folding free energy of the longest non-
exact stem, imbalance of G + A with regard to C + U in the
longest nonexact stem, maximum number of consecutive
C’s in the hairpin, maximum number of consecutive G’s in
the hairpin, folding free energy adjusted by the hairpin size,
average folding free energy of the exact stems, and size of
bulges. These features can be considered as the properties
that characterize human pre-miRNAs.
A similar conservation is observed in cross-species data

with 12 common features: folding free energy of the longest
nonexact stem, maximum number of consecutive G’s in
the longest nonexact stem, percentage of dinucleotides CC
and GA, maximum number of consecutive C’s in the hairpin,
maximum number of consecutive G’s in the hairpin, per-
centage of G–U pairs, folding free energy adjusted by the
hairpin size, percentage of paired U, average folding free en-
ergy of the exact stems, percentage of triplets unpaired–un-
paired A–paired (denoted as A••(), and size of bulges.
These 12 features are thus presumed characteristics for
cross-species pre-miRNAs.
As shown in Table 2, six features are common for the two

data sets: folding free energy of the longest nonexact stem,
maximum number of consecutive C’s in the hairpin, maxi-
mum number of consecutive G’s in the hairpin, folding
free energy adjusted by the hairpin size, average folding free
energy of the exact stems, and size of bulges. The feature se-
lection processes on the two data sets also show a good cor-
relation with >50% of features conserved in each pair of
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FIGURE 2. ROC space for prediction results ofmiRBoost and the other
methods on new data.
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corresponding training sets, illustrating the fitness of our
strategy in the selection of features.

DISCUSSION

Robustness regarding selected features

Classification performance is usually affected by the features
used for classification. To verify the robustness of miRBoost
regarding the selected features, we performed a cross valida-
tion using 14 features for human and 18 features for cross-
species, whichwere identified upstream. The results obtained,
compared with those obtained when the features were de-
termined through fivefold cross validation (as described in
“Classification Performance” section), are equivalent for
cross-species, and very slightly different for human (see Sup-
plemental Data 1). This indicates the robustness of miRBoost
with the selected features.

Consistent features

As shown in the Results, six features characterizing pre-
miRNAs are always selected and are common to all data
sets. Among these features, four belong to the 62 new features
that we have defined: maximum number of consecutive C’s
in the hairpin, maximum number of consecutive G’s in the
hairpin, folding free energy adjusted by the hairpin size,
and folding free energy of all exact stems over number of
paired nucleotides in the hairpin. The two other features
are related to the folding free energy of the longest nonexact
stem and the size of all bulges.
We analyzed the six features on the whole cross-species

data. 94.9% and 96.6% of pre-miRNAs contain from 2 to 5
(mostly 2–3) consecutive C’s and G’s in the hairpin, respec-
tively. These two features concern GC-content and low-com-
plexity regions, and may thus suggest related properties on
pre-miRNA composition. With regard to the folding free en-
ergy adjusted by the hairpin size, the average for pre-miRNAs

is −44.91 kcal/mol, which is much lower than the average of
−31.11 for non-miRNAs. For the folding free energy of all ex-
act stems, pre-miRNAs have an average of −0.8, whereas
non-miRNAs have −0.7, per base pair. In pre-miRNAs, the
folding free energy of the longest nonexact stem ranges
from −96.6 to −4.6 kcal/mol, with an average of −32.03.
This energy has a much higher average of −15.77 in non-
miRNAs, ranging from−77.2 to−4.0 kcal/mol. It is notewor-
thy that the values of those features must be moderate for a
valid pre-miRNA. If the folding free energy is too high or
there is no consecutive C’s and G’s in the hairpin, the second-
ary structure is thermodynamically unstable. On the con-
trary, if the folding free energy is too low or the hairpin
contains several consecutive C’s and G’s, the secondary struc-
ture is so stable that the RNA-induced silencing complex
(RISC) might hardly cleave the two complementary strains
of the hairpin to create the miRNA. Finally, 96.8% of pre-
miRNAs have a total bulge size of 0 or 1, which represents
the high symmetry between the two strands. It suggests that
pre-miRNAs should not contain large asymmetric bulges,
as the latter increase the folding free energy and degrade
the hairpin structure stability.
Here we can make two remarks. Firstly, those features are

not only restricted to the hairpin secondary structure, but
also related to the nucleotide composition, and thus show
that consecutive nucleotides such as microsatellites (short
tandem repeats) could be inappropriate for the pre-miRNA
structure. Secondly, folding free energies on the exact stems
and the longest nonexact stem, as well as size of the bulges,
which we initially exploited in miRNAFold (Tempel and
Tahi 2012), are confirmed in this work to be significantly im-
portant to the hairpin structure.

Effect of the boosting technique on miRBoost
performance

To show how the boosting technique improves the classifi-
cation results in dealing with imbalanced data, we tested

the standard SVM technique without
boosting. The SVM model was trained
on the whole cross-species data set. We
considered the 18 selected features for
cross-species mentioned above. The
model parameters were optimized with
the intrinsic cross-validation protocol
of LIBSVM (Chang and Lin 2011). We
obtained 0.79 in sensitivity and 0.98 in
specificity in the cross-validation, while

TABLE 1. Comparison of miRBoost and other existing tools running time in classifying 690 pre-miRNAs and 8246 non-miRNAs

Software miRBoost microPred HeteroMirPred MiPred CSHMM triplet-SVM MIReNA

Running time 2 min 29 sec 58 h 48 min 47 sec 19 h 25 min 21 sec 16 h 52 min 49 sec 22 min 13 sec 48 sec 44 sec

TABLE 2. Number of selected features for each training set

Species Train1 Train2 Train3 Train4 Train5 Whole Common

Human 19 15 15 12 11 14 8
Cross-species 20 17 21 19 19 18 12
Common 15 12 12 8 9 11 6

Traini, ith training set, i = 1,…,5 in cross-validation; Whole, whole training set; Common, a
set of common features between data sets.

miRBoost: microRNA precursor classification
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miRBoost, with the boosting technique, gives 0.84 in sensitiv-
ity and 0.97 in specificity. In the prediction of new sequences,
SVM reaches 0.78 in sensitivity and 0.97 in specificity, while
miRBoost produces 0.88 in sensitivity and 0.91 in specificity.
In both cases, g-mean from miRBoost (0.90) is always higher
than that from SVM (0.88 and 0.87).

As expected, despite the effort to correct the imbalance in
training data sets via optimized parameters, the standard
SVM technique tends to classify the sequences into the larger
negative data set. The result of this is that the number of pre-
dicted positive pre-miRNAs is lower than when using the
boosting technique for the training on imbalanced data.
The boosting technique therefore allows prediction of more
positive pre-miRNAs, but more importantly gives a better
compromise between sensitivity and specificity. This suggests
that beside our defined pre-miRNA features and feature se-
lection process, which contribute to the high performance
in discrimination between pre-miRNAs and non-miRNAs,
the performance of miRBoost is also improved with the
boosting method.

miRBoost performance in comparison with
the state-of-the-art methods

Here we show that miRBoost is a fast and accurate machine
learning-based computational approach for classifying pre-
miRNAs. Our method shows over 0.95 accuracy in the
cross-validation test, and over 0.88 sensitivity and 0.91 specif-
icity in predicting the novel sequences. Compared with
existing methods in the literature, miRBoost gives the
best compromise between sensitivity and specificity, with a
g-mean of 0.90, in addition to between prediction efficiency
and execution time. Furthermore, it is the only method deal-
ing with imbalanced data that has a fast execution time.
miRBoost takes ∼2.5 min, while the other methods (micro-
Pred, MiPred, HeteroMirPred) take several hours.

The two most rapid methods, triplet-SVM and MiReNA,
take less than a minute. Nevertheless, while the results ob-
tained in the cross-validation of these two tools are relatively
low, their performances in prediction of new sequences are
much worse than that of miRBoost. The rapidity of triplet-
SVM and MiReNA is principally due to the use of a filter,
which quickly rejects the sequences that do not satisfy some
constraints and thus rapidly classifies those sequences as neg-
ative samples. In miRBoost, most of the running time is for
quantifying the sequence features, i.e., computing numeric
feature values, which are necessary as the input to SVM clas-
sifiers. We try to fold every given sequence into a hairpin
structure with miRNAFold (Tempel and Tahi 2012), then
subsequently generate feature values for the classification
(see Pre-miRNA feature selection section), instead of using
foremost a filter as in triplet-SVM and MIReNA. Though
the use of such a filter can significantly reduce the execution
time, we prefer to keep it as pre-miRNA features to see how

our classification method is able to deal with different dis-
criminative levels of the features.

Prospectus

The performance ofmiRBoost could be improved with an en-
hancement on feature selection using boosting (Redpath and
Lebart 2005; Chen et al. 2010). With regard to the efficiency
of boosting, a study on the diversity of weakened SVM com-
ponent classifiers might provide an insight into the concept
of diversity and into the correlation between boosting and
diversity (Li et al. 2005). Furthermore, other types of SVM
that manage imbalanced data better (Akbani et al. 2004)
might also benefit from boosting in dealing with the imbal-
ance issue.
One of our future prospects is to integratemiRBoost to our

algorithm miRNAFold, which was previously developed for
identifying pre-miRNAs in genomes. miRNAFold is very
fast in comparison with the other tools in the literature (it
takes <30 sec to analyze a sequence of 1 Mb). It also shows
high sensitivity (>90%), but its specificity is unfortunately
low. An efficient integration of miRBoost to miRNAFold
should therefore allow fast and selective identification of
pre-miRNAs in whole genomes.

Software availability

Our software miRBoost is provided on the web server http
://EvryRNA.ibisc.univ-evry.fr with 14 human and 18 cross-
species specific features determined through our feature se-
lection process on the whole data sets of human and cross-
species (see Data sets), respectively. The model trained on
the whole cross-species data is also available for prediction
of new sequences.

MATERIALS AND METHODS

Data sets

We use different sets of positive (pre-miRNA) and negative (non-
miRNA) data to perform the cross-validation on human and
cross-species genomes and to realize the feature selection process.

Positive data set for cross-validation

The genomes of eukaryotes containing at least 100 miRNAs in the
miRBase database (version 18) (Kozomara and Griffiths-Jones
2011) are studied. We take from these genomes pre-miRNAs of
<400 nt. As it is known that miRBase contains a number of mis-an-
notated miRNAs, we first remove the sequences reported as mis-an-
notated in the later versions (19 and 20). The remaining pre-
miRNAs are filtered by ncRNAclassifier (Tempel et al. 2012) to dis-
card the ones that are mis-annotated because corresponding to
transposable elements. The obtained sequences are then considered
as positive data. They include 1279 sequences for human and 3082
sequences for cross-species. To avoid overfitting, we remove the
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sequences that have an identity of >97% with the other ones using
EMBOSS skipredundant (Rice et al. 2000). Finally, we obtain 863
pre-miRNAs for human and 1677 pre-miRNAs for cross-species.

Negative data set for cross-validation

From selected genomes, we randomly choose the exonic regions
from protein-coding genes at NCBI (http://www.ncbi.nlm.nih
.gov/genome). We also take the noncoding RNAs that are not
miRNA, including tRNA, siRNA, snRNA and snoRNA, from
fRNAdb (Kin et al. 2007), NONCODE (Liu et al. 2005), and
snoRNA-LBME-db (Lestrade and Weber 2005) database. All of
them contain <400 nt. We use miRNAFold (Tempel and Tahi
2012) to predict a hairpin-like structure in each selected sequence
(see Fig. 3). miRNAFold first identifies the longest exact stem
from the given sequence. The identified stem is then extended
into the longest nonexact stem (i.e., succession of exact stems
separated by symmetric internal loops). The hairpin secondary
structure corresponding to this nonexact stem is finally predicted.
Various constraints are applied to the structure prediction. The hair-
pin-like structure should have a folding free energy ▵G0 <−25.0
kcal/mol, while its hairpin is formed with at least one exact stem
of >5 nt. Moreover, at least 90% of the features introduced in
miRNAFold must be satisfied. We reduce the sequence redundancy
to 97% using EMBOSS skipredundant, giving 7123 human and 7916
cross-species sequences from exonic regions that are not pre-
miRNAs, and 299 human and 350 cross-species noncoding RNA se-
quences.
The two sets of coding and noncoding sequences are then com-

bined to constitute the negative data set for cross-validation. We
have then in total 7422 and 8266 sequences of human and cross-spe-
cies, respectively.

Novel pre-miRNAs for sensitivity validation

Furthermore, we evaluate the sensitivity of our algorithm, i.e., its
ability to identify pre-miRNAs, through a prediction on novel
cross-species pre-miRNA sequences. These pre-miRNAs are taken
from newly added sequences in the versions 19 and 20 of miRBase
database. We also use ncRNAclassifier to eliminate false pre-
miRNAs, after removing the misannotated ones that are reported
in miRBase. Their redundancy is then reduced to 97%, giving 690
sequences.

Non pre-miRNAs for specificity validation

We also measure the specificity of miRBoost, i.e., its ability to reject
non-miRNA sequences, with a prediction on other non-miRNAs.
This set is constructed similarly to the negative data set for cross-val-

idation described above, and is reduced to 97% of redundancy to the
latter. It contains 7916 exonic region sequences and 330 noncoding
RNAs.

Algorithm

Boosting is a machine learning method in which weak component
classifiers are subsequently added to an ensemble in such a way
that they emphasize the samples misclassified by the existing classi-
fiers in the ensemble, where a weak classifier is one that performs
slightly better than a random guess. AdaBoost (or Adaptive
Boosting), the most popular boosting method formulated by
(Freund and Schapire 1997), iteratively learns weak classifiers with
a weight distribution on the training samples, then adds them to a
final strong classifier. The AdaBoost algorithm is presented as
follows:

Algorithm AdaBoost

• Input: a set of training samples with labels
S = {(xi, yi)}i[I, I = {1, 2, .. ., N}; a maximum number of iter-
ations T.

• Initialize: the weights of training samples:W1 � {w1
i = 1/N}i[I

• For t = 1 to T do

1. Build a weak classifier ht on S with W t .
2. Calculate the training error of ht on S: 1t �

∑
i[I

wt
i I(ht(xi) = yi)

If 1t . 1/2, stop.
3. Set the weight of component classifier ht:

at � 1

2
ln

1− 1t
1t

( )

4. Update the weights of training samples:

W t+1 = wt+1
i = wt

i exp(−at yiht(xi))
Ct

{ }
i[I

,

where Ct is a normalization constant, and
∑
i[I

wt+1
i = 1 .

• Output: f (x) = sign
∑T
t=1

atht(x)
( )

.

The core of AdaBoost procedure is to construct appropriate weak
component classifiers. Each weak classifier is adaptively built with a
favor to the samples misclassified by previous classifiers via weights
associated to training samples.
For a weak classifier, the condition that its training error is lower

than 1/2 is widely used in the literature (Rangel et al. 2005; Li et al.
2008). SVM, as a relatively strong classifier, does not seem to be suit-
able for the principle of boosting and may lead to performance deg-
radation (Wickramaratna et al. 2001). However, the use of a
weakened SVM model is still efficient, as shown in (Rangel et al.

2005; Li et al. 2008; Ting and Zhu 2009;
Wang and Japkowicz 2010). The boosting on
SVM classifiers can perform as well as SVM
and shows a better generalization perfor-
mance than that of SVM.
Different methods for building weak classi-

fiers have been implemented. Li et al. (2008)
proposed weak RBFSVM (Radial Basis
Function) classifiers using large Gaussian
widths s. They set a large initial value to sFIGURE 3. Example of a pre-miRNA hairpin structure (hsa-mir-107).
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and gradually decreased it to obtain moderately accurate SVM com-
ponent classifiers. Ting and Zhu (2009) subdivided the feature space
into nonoverlapping regions and trained the local SVM component
classifiers on those. Wang and Japkowicz (2010) reduced the diver-
sity of SVM component classifiers by updating weights on training
samples. Nonetheless, these methods do not well clarify or quantify
the weakness, i.e., control the training error, of component classifi-
ers. Rangel et al. (2005) weakened the component classifiers by not
using the whole data set but only its subsets for training in such a
way that the training errors of constructed n-SVM classifiers were
bounded above by 1/2.

In this work, we propose a new definition of classifier weakness,
which allows controlling the weakness of component classifiers by
implying a lower bound of 1/2 − d, for some small d ≤ 1/2,
and an upper bound of 1/2 on their training error. The SVM clas-
sifiers are also weakened by training on subsets of the whole data set.
We select the training subsets in such a way that the training errors
on the whole data set are bounded between 1/2 − d and 1/2. We
implement the weighted C-SVM instance from LIBSVM (Chang
and Lin 2011), which allows penalizing the imbalance among train-
ing samples via their different weights. The boosting with such
weakened SVM classifiers can improve the computation time of
the training algorithm, as the training is realized on a smaller data
set and requires a smaller number of support vectors.

Let S = {(xi, yi)}i[I be a set of labeled samples, where x [ Rn,
yi [ {−1, +1} and W = {wi}i[I be a weight distribution over S,∑
i[I

wi = 1, where I = {1, 2, . . . ,N}. To build a weak SVM classifier

over S, we discard {(xi, yi)}i[I\J that consists of the samples of

weights bounded above by m0 from the original data set S, and train
an SVM classifier ht on the training subset J = {(xi, yi)}i[J :

∑
i[I\J

wi = m ≤ m0,

where J has a minimum cardinality, J , I and 0 , m ≤
m0 , 1.

Our algorithm for building a weak SVM classifier is then present-
ed as follows:

Algorithm WeakSVM

• Input: set of training samples with labels S = {(xi, yi)}i[I ; weight
distribution W = {wi}i[I, I = {1, 2, . . . ,N}; parameter m0.

• Select J , I such that
∑
i[J

wi ≥ 1− m0 and J has a minimum
cardinality.

• Train a RBFSVM component classifier ht onJ = {(xi, yi)}i[J with
the weight distribution

W J = wi∑
j[J wj

{ }
i[J

• Output: ht

We clarify here the choice of m0 for the weakened SVM classifier
built. Let eJ and eS be the training errors of ht over J and S,

respectively:

eJ =
∑
i[J

wi∑
j[J wj

I(ht(xt) = yi) = 1

1− m

∑
i[J

wiI(ht(xi) = yi)

eS =
∑
i[I

wiI(ht(xi) = yi)

where I( · ) is the indicator function. We hereby deduce
(1− m)eJ ≤ eS ≤ (1− m)eJ + m. As the training error of ht over
S is required to be lower than 1/2, we have (1− m)eJ + m ≤ 1/2,
and thus

m ≤ 1/2− eJ
1− eJ

. (1)

Moreover, given that ht classifies the samples of S\J indepen-
dently with probability 1/2, the expected value of eS is
�eS = (1− m)eJ + m/2. The weakness of ht on S requires the lower
bound on �eS : (1− m)eJ + m/2 ≥ 1/2− d, which implies

m ≥ 1− 2d− 2deJ
1/2− eJ

. (2)

For a tiny eJ , as ht is still a strong classifier on J , we can deduce,
from Equations (1) and (2), 1− 2d ≤ m ≤ 1/2, which implies
d ≥ 1/4.

Hence, we may leave d as a parameter and choose

m0 =
1− 2d+ 1/2

2
= 3/4− d for some d in [1/4, 1/2]. As d is in-

volved in the lower bound of the training error, the choice of d plays
an important role in determining the weakness of SVM component
classifiers, and thus for the performance of miRBoost. When d is
small (close to 0.25), the training errors get close to each other,
and thus the diversity among component classifiers is reduced.
Contrarily, when d is large (close to 0.5), the weakness is not always
guaranteed. We found a critical value of d = 0.25 for both data sets
(human and cross-species), at which miRBoost performs its Pareto
optimality regarding different measures, i.e., the optimal state that
no measure could be made better off without making any other
measure worse off (see Fig. 1 in Supplemental Data 1). This may
suggest appropriate bounds for the diversity between component
classifiers, which is correlated with the efficiency of the boosting
technique.

Pre-miRNA feature selection

A given sequence is identified as either a pre-miRNA or a non-
miRNA based on its features. It is thus important to select an appro-
priate set of features of pre-miRNAs for classification. In this work,
we did an exhaustive study to get all (or at least most) pre-miRNA
characteristics representing intrinsic properties on sequence and
structure used by different teams in their published works on pre-
miRNA prediction.

We first calculate 62 features that we newly introduced, among
which 26 features are used in miRNAFold (Tempel and Tahi
2012). These features describe the intrinsic properties of the pre-
miRNA hairpin: size, energy, nucleotide composition of exact and
nonexact stems in total and in average, size and number of bulges
and loops, and hairpin asymmetry.

We also extract 125 features from the literature, which are used in
several pre-miRNA prediction algorithms, including microPred
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(Batuwita and Palade 2009), MiPred (Jiang et al. 2007), miR-abela
(Sewer et al. 2005), miRank (Xu et al. 2008), and triplet-SVM
(Xue et al. 2005). Among them, 32 structural features are taken
from triplet-SVM (Xue et al. 2005). They represent the structure-se-
quence information of every three adjacent nucleotides, described
by the middle nucleotide among the three and the pairing status
of all the three, e.g., U.((. In addition, 63 features are taken from
microPred (Batuwita and Palade 2009), 14 features from miR-abela
(Sewer et al. 2005), and 16 features from miRank (Xu et al. 2008)
andmiPred (Jiang et al. 2007). These features correspond to the pri-
mary sequence of pre-miRNAs such as ratio of dinucleotides
(Batuwita and Palade 2009), the secondary structure of pre-
miRNAs such as the number of base pairs (Sewer et al. 2005), and
the average size of internal loops (Batuwita and Palade 2009).
Thus, we study in total 187 features, which give information on

structure and sequence of pre-miRNAs. They can be gathered into
three groups describing size, position, composition, asymmetry,
and energy of the exact stem, nonexact stem and hairpin (see
Table 3; Supplemental Data 2).
For each data set, to select the consistent and nonredundant fea-

tures from those 187 ones, we exploit feature selection techniques
proposed by the WEKA workbench (Hall et al. 2009): Best First,
Linear Forward Selection, Greedy Stepwise, Scatter Search, and
Subset Size Forward Selection. These search-based techniques
(Devijver and Kittler 1982; Jain and Zongker 1997) find highly
scored low-dimensional projections of the given data, and thus se-
lect the features giving the largest projections in lower dimensional
spaces. From the output of those five methods, we choose the fea-
tures discovered by at least two of them.

Existing software

A number of computational tools were introduced for pre-miRNA
classification. As mentioned in the Results, we used several of them
for comparison withmiRBoost: CSHMM (Agarwal et al. 2010), trip-
let-SVM (Xue et al. 2005), microPred (Batuwita and Palade 2009),
HeteroMirPred (Lertampaiporn et al. 2013), MiPred (Jiang et al.
2007), mirExplorer (Guan et al. 2011), and MIReNA (Mathelier
and Carbone 2010), which are described as follows.
CSHMM used a context-sensitive hidden Markov model (HMM)

to represent pre-miRNA structures and identify pre-miRNAs in ge-
nomes. CSHMM extended the idea of HMMby introducing a mem-
ory, in the form of a stack or a queue, between certain states in the
model.

The proposed CSHMM structure had two context sensitive states
that were linked to the same pairwise-emission state through a stack
in order to separate states for the stem and symmetric bulge gener-
ation and to keep information about what was emitted earlier. The
known human pre-miRNA sequences were used to assess the tran-
sition and emission probabilities for CSHMM.
triplet-SVM consisted of an SVM classifier applied on the features

of local contiguous structure-sequence information to distinguish
real and pseudo pre-miRNAs. The SVM model trained on human
miRNA data showed the ability to predict pre-miRNAs from other
species across animals, plants, and viruses with high accuracy. It sug-
gested that their 32 features of triplet elements reflected discrimina-
tive and conserved characteristics of pre-miRNAs, which were
consistent across all species.
microPred applied filter methods to select discriminative features

(they filtered 48 initially proposed features to 21) and utilized an
SVM classifier, which was able to deal with the imbalance problem
via techniques of random over/under-sampling, synthetic minority
over-sampling technique (SMOTE), different error costs, and z-
SVM. SMOTE was an over-sampling technique that created new
synthetic samples in the neighborhood of the existing minority
(positive) samples. In this technique, they randomly selected a pos-
itive class sample, and determined its k-nearest neighbors. A set of
synthetic data points was then generated such that each one was lo-
cated between the original data point and one of its nearest neigh-
bors. In z-SVM method, firstly, an SVM model was developed
using the imbalanced training data set. Then, the decision boundary
of the resulted model was modified to remove the bias of the classi-
fier toward the majority (negative) class. This was done by multiply-
ing the coefficients of the minority (positive) support vectors by a
particular value referred to as z (z > 1). The value of z, which gave
the best classification for the training data set, was selected as the op-
timal z value. The prediction model of microPred was built on hu-
man data and then validated on other animal and viral data.
HeteroMirPred aggregated the prediction of different heteroge-

neous algorithms, including SVM, k-nearest neighbors, and random
forest in order to create a high level of diversity and to reduce bias of
each individual classifier. The authors proposed a modified version
of SMOTE to solve the imbalanced data problem. The feature selec-
tion was realized via filter methods of ReliefF, Information Gain,
and Correlation-based feature selection from 125 features on se-
quence, secondary structure, base pairs, triplet elements, and struc-
tural robustness. This cooperative combination was validated across
various organisms, from animals, plants to viruses.
MiPred used random forests to separate the real pre-miRNAs

from the pseudo ones. Random forest is an ensemble classifier
that consists of several decision trees (Breiman 2001). It could be
considered as a combination of a further development of the bag-
ging technique and a random feature selection technique. For bag-
ging, each tree was trained on a bootstrap sample of the training
data, and predictions were made by a majority vote of trees. For fea-
ture selection, a hybrid feature that incorporated 34 features on the
local contiguous structure-sequence composition, the minimum
free energy of the secondary structure and the P-value of randomi-
zation test was used. The model was only trained on human pre-
miRNA sequences and tested on data from other species.
mirExplorer proposed a visual pre-miRNA prediction using a set

of transition probability and miRNA biogenesis features. Adaptive
Boosting was applied to boost several weak classifiers built from
each of those features whose discriminative power had been

TABLE 3. Description of the whole 187 features used for feature
selection process

Structure
Number of
features Properties

Exact stem 32 Size, position, energy, percentage of
mono-, di-, tri-nucleotides

Nonexact
stem

45 Size, position, energy, percentage of
mono-, di-, tri-nucleotides

Hairpin 110 Size, energy, asymmetry, bulge and
loop size, number and position,
percentage of mono-, di-,
tri-nucleotides
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analyzed by F-score. SMOTE and under-sampling methods were
also used to resolve the imbalanced data issue. The method could
distinguish real pre-miRNAs from pseudo pre-miRNAs in a genome
from a wide range of species, including animals, plants, and viruses.

MIReNA explored a multidimensional space defined by three
combinatorial criteria (unfolding property of a miRNA in its pre-
cursor, size relation of a miRNA and its complementary sequence,
percentage of unmatched nucleotides) and two physical (adjusted
minimum folding free energy and minimum free energy index) cri-
teria to identify pre-miRNAs. The thresholds for these criteria were
defined using knowledge from knownmiRNAs inmiRBase. The dis-
criminative ability ofMIReNA was validated on five species H. sapi-
ens, Arabidopsis thaliana, Caenorhabditis elegans, Oryza sativa, and
Rattus norvegicus.

Other existing classification methods, such as miR-abela (Sewer
et al. 2005), mir-KDE (Chang et al. 2008), miPred (Ng and Mishra
2007), miRPara (Wu et al. 2011), and yasMiR (Pasaila et al. 2011),
were not tested due to their unavailability or configuration problems
for executing their programs. Especially, we failed to validate
HuntMi (Gudys et al. 2013), which has recently appeared as an ef-
ficient tool, implementing ROC-select and applied random forest
to get the best balance between sensitivity and specificity. Twenty
gigabytes of memory on our machine was not enough to build its
models on our data. Moreover, it took a lot of time for the feature
selection process, which was inspired from microPred. Besides, we
could neither get the source code of miRenSVM (Ding et al.
2010), which used bagging technique on SVM to deal with imbal-
anced data, nor receive the classification results via the web server
ofmiRD (Zhang et al. 2011), which used a boosting method to com-
bine two different SVM models.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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