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Abstract

Many researchers try to understand a biological condition by identifying biomarkers. This is

typically done using univariate hypothesis testing over a labeled dataset, declaring a feature

to be a biomarker if there is a significant statistical difference between its values for the sub-

jects with different outcomes. However, such sets of proposed biomarkers are often not

reproducible – subsequent studies often fail to identify the same sets. Indeed, there is often

only a very small overlap between the biomarkers proposed in pairs of related studies that

explore the same phenotypes over the same distribution of subjects. This paper first defines

the Reproducibility Score for a labeled dataset as a measure (taking values between 0 and

1) of the reproducibility of the results produced by a specified fixed biomarker discovery pro-

cess for a given distribution of subjects. We then provide ways to reliably estimate this score

by defining algorithms that produce an over-bound and an under-bound for this score for a

given dataset and biomarker discovery process, for the case of univariate hypothesis testing

on dichotomous groups. We confirm that these approximations are meaningful by providing

empirical results on a large number of datasets and show that these predictions match

known reproducibility results. To encourage others to apply this technique to analyze their

biomarker sets, we have also created a publicly available website, https://biomarker.

shinyapps.io/BiomarkerReprod/, that produces these Reproducibility Score approximations

for any given dataset (with continuous or discrete features and binary class labels).

1 Introduction

Improved understanding of a disease can lead to better diagnosis and treatment. This often

begins by finding “biomarkers”, which is a generic term referring to “a characteristic that is

objectively measured and evaluated as an indicator of normal biological processes, pathogenic

processes, or pharmacologic responses to a therapeutic intervention”[1]. Typically, these are

individual features (e.g., expression values of specific genes [2, 3]) that follow different distribu-

tions (e.g., have different mean values) in diseased patients versus healthy controls.
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Sometimes, biomedical researchers can identify candidates for biomarkers based on their

existing knowledge of the disease etiology and/or cellular pathways. This is done by seeking

features that are causally related to the disease (e.g., phenylketonuria is caused by mutations in

the single gene PAH [4]) or a symptom of it (e.g., Hemoglobin A1C for monitoring the degree

of glucose metabolism in diabetes [5]). This paper, however, focuses on the use of statistical

tools to discover and evaluate biomarkers, which is typically based on a dataset—a matrix

whose rows each correspond to a subject (say a person) and each column corresponds to a fea-

ture (e.g., clinical measure, or the expression value of a gene), and with a final column provid-

ing the outcome (e.g., a binary outcome distinguishing case versus control); see Fig 1.

These “biomarker discovery studies” (also known as “association studies”) then attempt to

determine which of the features (columns) differ significantly among distinct outcomes. Two

standard examples of such studies are the “Genome Wide Association Studies” (GWASs), over

a set of SNPs [6]; and the “Gene Signature Studies”, over gene expression values [7]. Typically,

this involves first computing a representative statistic for each feature (e.g., for continuous

entries, running a t-test based on the mean and variance of the case versus control), and then

declaring a feature to be a biomarker if the resulting MCC-corrected p-value is below 0.05 [8],

where we use “MCC” (Multiple Comparison Corrections) as a generic term, which includes

both False Discovery Rate (FDR) correction, and Family-Wise Error (FWE) Correction. (Sec-

tion B.I in S1 Appendix discusses some of the subtleties here, especially with respect to

features).

In some situations, the researchers then validate these biomarkers using a biological or

medical process (e.g., based on knock-out or amplification studies [9, 10]). Other studies vali-

date the proposed biomarkers based on existing biological knowledge. A third class of projects

Fig 1. Data matrix, showing t-test p-values for each (shown) feature for the GSE 7390 dataset [14], with respect to

the group outcome (here “Metastasis” for breast cancer). The circled features, with p<0.05, are (purported)

biomarkers. For notation: We will refer to each of the first r columns of the matrix as a “feature”; these are often called

“(independent) variables”. We refer to the final column as a “outcome”–e.g., case versus control (shown here as Y

versus N)–these are often called “labels”, “dependent variables”, “groups”, “phenotypes” or “classes”. Finally, we will

use “subject” to refer to each row of that matrix; these are sometimes called “instances” or “samples”.

https://doi.org/10.1371/journal.pone.0252697.g001
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instead use the potential biomarkers to create a computational model–perhaps to learn a classi-

fier [11–13]–and then measure that down-stream model (perhaps based on its accuracy on a

held-out set) and declare the biomarkers to be useful if that model scores well.

A great many papers, however, simply publish the list of purported biomarkers without

providing validation for this set; see Section B.2 in S1 Appendix. This paper focuses specifically

on this case. We address this limitation by providing a falsifiable (statistical) claim about such

sets of biomarkers, which suggests a way to validate the proposed biomarker sets.

While some biomarkers are causally related to the associated outcome, this can be difficult

to establish (often requiring instrumented studies [15]); but fortunately, in many situations, it

may be sufficient for the features to be correlated with the phenotype. Here, an ideal biomarker

discovery process would identify all-and-only the features that are consistently correlated with

the associated disease, in that its presence (or absence or . . .) alone supports that disease. This

argues that a proposed biomarker is good if it was reproducible—i.e., that the biomarkers

found in one study, would appear in many (ideally, all) future studies that explore this disease.

This has motivated the use of independent test sets to check the validity of the earlier find-

ings. Unfortunately, many papers report this is not the case–i.e., that relatively few biomarkers

appear across multiple studies. For example, while the breast cancer studies by van’t Veer et al.
[2] (resp., Wang et al. [3]) reported signatures with 70 (resp., 76) genes, these two sets had only

3 genes in common. Ein-Dor et al. [16] notes this in another situation: “Only 17 genes

appeared in both the list of 456 genes of Sorlie et al. [17] and the 231 genes of van’t Veer et al.
[2]; merely 2 genes were shared between the sets of Sorlie et al. and Ramaswamy et al. [18].

Such disparity is not limited to breast cancer but characterizes other human disease datasets

(Alizadeh et al. [19]) such as schizophrenia (Miklos and Maleszka [20])”. Many others [21–23]

report similar findings. Indeed, Begley and Ellis [24] report that only 6 of 53 published findings

in cancer biology could be confirmed; which Wen et al. [25] notes is “a rate approaching an

alarmingly low 10% of reproducibility”. Moreover, a 2016 Nature survey [26], of over 1500 sci-

entists, found that 70% of researchers have tried but failed to reproduce another scientist’s

experiments, and 52% thought there was a significant ‘crisis’ of reproducibility.

There are many possible reasons for this.

1. Each study should consider the same well-defined “distribution” over instances—e.g., over

the same distribution of ages and genders, etc. If the study attempts to distinguish case from

control, then the two sub-populations should only differ in a single characteristic. Unfortu-

nately, matching cases and controls over all possible features is often not achievable.

2. A second issue is with the precise notion of what “reproducible” means. Is it a property of a

specific biomarker, or of a set of biomarkers? There is no clear choice for an optimal objec-

tive measure. This is especially problematic when dealing with multi-factorial diseases,

where the outcomes correspond to a disjunction over many sub-diseases [27]. See also Sec-

tion B.3 in S1 Appendix.

3. A final important issue is the impact of sample size. Many studies have a relatively low num-

ber of subjects, which increases the probability of finding both false negatives and false

positives.

Our analysis assumes that the researchers have addressed (1) by running carefully designed,

well-specified studies. Further, we also assume that there is no uncertainty in the outcomes

with respect to its clinical or biological definition. We will provide a precise measure of repro-

ducibility (2), as well as some specific implementations, and show empirically how this mea-

surement varies with sample size (3).
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In this paper, we assume that biomarkers are stand-alone features. Note each feature could

be a pre-defined combination of single features (e.g., the average expression values of the genes

associated with a pre-defined signalling pathway—see gene enrichment [28]) or networks of

genes associated with high loadings of principal component and univariate Pearson correla-

tion values (see PC-corr [29]); but we are not considering learning combinations. By a Bio-
marker Discovery process BD(�), we mean a function that takes as input a labeled data matrix

D of n subjects over a set of r features, each labeled with its outcome, and identifies a subset of

proposed biomarkers; see Fig 1. We will formally define a Reproducibility Score, RS(D, BD), to

quantify the “reproducibility” of the set of proposed biomarkers produced by the biomarker

discovery process: viz.,

the average Jaccard score between these proposed biomarkers BDðDÞ;

and those produced by running the same BD process

over another comparable dataset drawn from the same distribution

ð1Þ

where two datasets are comparable if they have the same number of subjects from each out-

come. (Section B.3 in S1 Appendix discusses some subtle issues related to “reproducibility”.)

In order to estimate the reproducibility score in practice, we construct two approximations: an

overbound and an underbound. We then provide empirical tests over many datasets, with a

focus on t-tests as the main biomarker discovery process. We provide many examples for both

microarray data (with continuous values) and SNP data (with discrete values) to provide prac-

tical evidence for the effectiveness of these approximations. Researchers can use this frame-

work to estimate the reproducibility of the potential results of their biomarker discover study.

A low reproducibility score suggests that these biomarkers may not be accurate, potentially

because the dataset used is too small, the dataset is too heterogenous, or the biomarker discov-

ery algorithm is not suitable for the dataset. To help users evaluate the quality of their proposed

biomarker sets, we have also produced a publicly available website, https://biomarker.

shinyapps.io/BiomarkerReprod/, that, given a labeled dataset, computes these estimates of the

Reproducibility Score, with respect to any of a variety of biomarker discovery algorithms.

Outline: Section 2 formally defines the Reproducibility Score (RS) and describes the chal-

lenges of estimating this measure. We then define two approximations for RS: an overbound

and an underbound. It also describes some of the standard biomarker discovery algorithms.

Section 3 describes extensive empirical studies over many datasets—microarray and mRNAseq

data (with continuous values) and SNP data (with discrete values), focusing on a standard Bio-

marker Discovery process BD(�), to confirm the effectiveness of these approximations. Section

4 summarizes some future work and the contributions of this paper. In the Supplementary

Information, Section B in S1 Appendix discusses various notes: a glossary of the various tech-

nical terms used, how Biomarker Discovery differs from standard (supervised) Machine

Learning, different notions of “reproducibility”, how a combination of a pair of features might

be important for a predictive task, even if neither, by itself, is important (towards explaining

why it can be so difficult to find biomarkers); etc. Section C in S1 Appendix presents results

from other empirical studies, which explore how the RS varies with the type of MCC correc-

tion used (including “none”), the p-value threshold, the size of the dataset and the number of

iterations of the approximation algorithms. Finally, the approximations we present are moti-

vated by two heuristics (Heuristics 7 and 9). Section D in S1 Appendix presents arguments

that motivate these heuristics, and also provide additional empirical evidence that support

them.

We close this section by motivating the need for an objective measure for evaluating the

quality of a set of biomarkers (Subsection 1.1), then overviewing some earlier studies that
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discuss the issue of reproducibility in biomarker discovery and/or provide approaches that

could be beneficial when dealing with such problems (Subsection 1.2).

1.1 Motivation for evaluating biomarker sets

To motivate the need for evaluating association studies, consider first predictive studies, which

use a labeled dataset, like the one shown at the top of Fig 1, to produce a predictive model (per-

haps a decision tree, or a linear classifier) that can be used to classify future subjects–here, into

one of the two classes: Y or N. In addition to the learned classifier, the researchers will also

compute a meaningful estimate of its quality–i.e., of the accuracy (or AUROC, Kappa Score,

etc.) of this classifier on an independent hold-out set [30], or the results of k-fold cross-valida-

tion over the training sample.

By contrast, many association studies report only a set of purported biomarkers, but pro-

vide no falsifiable claim about the accuracy of these biomarkers. Many meta-reviews claim that

a set of biomarkers is problematic if they are not reproduced in subsequent studies [16, 31–

33]. Given that biomarkers should be reproducible, we propose evaluating a biomarker set

based on its reproducibility score. An accurate estimate of this score can help in at least the fol-

lowing three ways:

1. Researchers can compare various different “comparable” biomarker discovery algorithms

to see which produces the biomarker set that is most reproducible. Here, “comparable” cor-

responds to the standard practice of only considering discovery tools that impose the same

criterion, such as the same p-value, or only considering features that exhibit the same mini-

mum fold-change. This type of analysis may help to determine errors within the biomarker

discovery process.

Moreover, we will see that MCC-correction, while useful in removing false-positives, can be

detrimental to the goal of producing reproducible biomarkers; similarly, there is no reason

to insist on p< 0.05 for the statistic test used.

2. A low reproducibility score suggests that few of the proposed biomarkers will be found in

another dataset, and highlights the potential that these proposed biomarkers may not be

accurate. This could motivate researchers to consider a dataset that is larger, to focus on a

more homogenous population, or perhaps consider another biomarker discovery

technique.

3. Finally, there are many meta-reviews [21, 34, 35] that note the lack of repeatability in many

biomarker discovery papers, and question whether the techniques used are to blame. One

way to address this concern is to require that each published paper include both the pur-

ported set of biomarkers, and also an estimate of its reproducibility score. The same way a

prediction study’s “5-fold cross validation” accuracy tells the reader how accurate the classi-

fication model should be on new data, this biomarker-discovery reproducibility score will

inform the reader whether to expect another study, on a similar dataset, will find many of

the same biomarkers. Note that we should view the reproducibility score as necessary for

considering a proposed model, but not sufficient–i.e., it might rule-out a proposed discov-

ery model, but should not be enough to rule-in a model.

For these reasons, we provide an easy-to-use, publicly available webapp https://biomarker.

shinyapps.io/BiomarkerReprod/ that anyone can use to produce meaningful estimates of the

reproducibility of a set of biomarkers. (The underlying code is also available, from https://

github.com/amirfrz/BMDA).
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1.2 Related work

There have been many pairs of studies that have each produced biomarkers for the same dis-

ease or condition, but found little or no overlap between the two lists of purported biomarkers.

Many papers have discussed this issue–some describing this problem in general [16, 33, 35],

and others exploring specific examples [8, 32]. These papers suggest different reasons for the

problem, such as the heterogeneous biological variations in some datasets [16, 33] or problems

in the methods used that may lead to non-reproducible results [36, 37].

In particular, Zhang et al. [33] challenge the claim that the non-reproducibility problem in

microarray studies is due to poor quality of microarray technology, by showing that inconsis-

tencies occur even between technical replicates of the same dataset. They also show that het-

erogeneity in cancer pathology would further reduce reproducibility.

Ein-Dor et al. [16] also show the inconsistencies between the results of subsamples of a sin-

gle dataset, demonstrating that the set of (gene) biomarkers discovered is not unique. They

explain that there are many genes correlated with the group outcomes, but the empirical corre-

lations change for different (sub)samples of instances. These two papers motivate our need for

tools that can effectively estimate the reproducibility–such as the ones presented here.

Several projects [35–37] have attempted to formally analyse this problem. Ein-Dor et al.
[35] describe a method, Probably Approximately Correct (PAC) sorting, that estimates the

minimum number of instances needed for a desired level of reproducibility. As an example,

this worst-case analysis proves that, to guarantee a 50% overlap between different gene lists for

breast cancer, each dataset needs to include at least several thousand patients. This suggests

poor repeatability results when using small sample sizes, which is consistent with our results

for datasets with smaller sample sizes; see Subsection 3, especially Fig 4.

The goal of the MicroArray Quality Control (MAQC) project [36] was to address the prob-

lems and uncertainties about the microarray technology that were caused by the observation

that different studies (of the same phenotype) often found very different biomarkers.

They suggest that the common approach of using just t-test p-values (especially with strin-

gent p-values) can lead to poor reproducibility, which motivated them to consider methods

like fold-change ranking with a non-stringent p cutoff, which they demonstrate leads to more

reproducible gene sets. In a follow-up, Guo et al. [37] found similar results by using the same

procedures for another dataset. However, Klebanov et al. [38] later show that these MAQC

project results do not prove that using t-tests is necessarily unsuitable–i.e., just because another

method (here fold-change) can generate more reproducible results, does not mean that it is

performing better; as an extreme, the algorithm that declares every gene is a biomarker (think

p = 1.0), is completely reproducible. They demonstrate these points by using a set of simulation

studies (where they know the “true biomarkers”), and use either t-test or fold-change to pro-

pose potential biomarkers. These studies found that the t-test approach performed much bet-

ter than the fold-change, in terms of recall (sensitivity). These results motivated us to use the t-

test approach (rather than fold-change) as our main BD algorithm–which we use for all of our

empirical experiments.

Our approximation algorithms use a type of re-sampling to bound reproducibility. Below

we summarize several other studies that similarly deal with re-sampling and biomarker discov-

ery. Some studies provide ways to better estimate the true statistical significance, but do not

provide a framework for evaluating empirical reproducibility—e.g., Gagno et al. [39] used

bootstrap resampling to estimate 95% confidence intervals and p-values for an internal assess-

ment of their findings (related to breast cancer survival), Chitpin et al. [40] proposed a resam-

pling-based method to better estimate the false discovery rate in chromatin

immunoprecipitation experiments, and Pavelka et al. [41] proposed a resampling-based
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hypothesis testing algorithm that provides a control of the false positive rate for identification

of differentially expressed genes. Furthermore, Alshawaqfeh et al. [42] and Zhao and Li [43]

suggested methods for consistent biomarker detection in high-throughput datasets where eval-

uation was based on common biomarkers among the two resampled sets–i.e., they are consid-

ering the false positives but not false negatives. (By contrast, our use of Jaccard score involves

both.) Other studies had different goals–e.g., Ma et al. [44] used resampling in a permutation

test, to evaluate the predictive power of the identified gene set based on the accuracy of down-

stream classification task; recall however that our goal is to evaluate the reproducibility of the

biomarkers directly (not downstream). Filosi et al. [45] propose methods for evaluating the

stability of reconstructed biological networks in terms of inference variability due to data sub-

sampling; we however are focusing on the reproducibility of the individual biomarkers. Hua

et al. [46] conducted a simulation study to compare the ranking performance of several gene

set enrichment methods; by contrast, our approach considers the SET of biomarkers, not the

ranking, and is over several real-world datasets (not just simulated ones). Note that none of

these used re-sampling techniques to bound the expected replicability of the set of biomarkers

found by some discovery algorithm, nor to demonstrate the validity of those bounds.

2 Materials and methods

2.1 Formal description

As illustrated in Fig 1, a “Biomarker Discovery” algorithm, BD(�), takes as input a dataset D of

n subjects, each described by r features F = {f1, . . ., fr} and labeled with a binary outcome, and

returns a subset F0 � F of purported biomarkers.

Typically, each f 2 F0 differs in some significant way between each class. To be more precise,

let xji be the value of the ith feature of the jth subject, and ℓ(j) be the outcome of the jth subject

(which is either + or -). Then a class difference means that the set fxji j ‘
ðjÞ
¼ þg of values of

the ith feature of the diseased individuals is significantly different from the values of that feature

over the healthy individuals, fxji j ‘
ðjÞ
¼ � g. For simplicity, we will assume that these fxjigi;j val-

ues are either all continuous (such as height, or the expression value of a gene), or all discrete

(such as gender, or the genotype of a SNP). Subsection 2.2 below will describe several such bio-

marker discovery algorithms.

As noted in Eq 1, the Reproducibility Score RS(D, BD) quantifies the “reproducibility” of the

set of proposed biomarkers BD(D) corresponding to running the biomarker discovery algo-

rithm over the labeled dataset D. Here, we assume that the values of each feature xj
:
, for each

outcome c, are generated independently from a fixed distribution (i.e., “i.i.d.”)

pi;cðvÞ ¼ Pð xji ¼ v j ‘ðjÞ ¼ c Þ:

Here and in general, we use P (�) to refer to either a probability density for continuous vari-

ables, or a probability mass for discrete variables. Note these are just the marginal distribu-

tions: we do not assume that the various features are independent from one another.–i.e., this

does not necessarily correspond to Naive Bayes [30]. We will view~pð�Þ ¼ ½pi;cð�Þ�i;c as the

matrix of these r × 2 different distributions, and let~p½nþ ;n� �ð�Þ be the distribution for sampling n
= n+ + n− instances independently from this distribution, where nþ 2 Z

þ
instances are drawn

from the distribution [p1,+(�), . . ., pr,+(�)] associated with positive outcomes, and similarly n� 2
Zþ instances from the distribution [p1,−(�), . . ., pr,−(�)] associated with negative outcomes.

Then for datasets D0;D00 �~p ½nþ ;n� �ð�Þ sampled independently, we define

RS�ð~pð�Þ; ½nþ; n� �; BDð�ÞÞ ¼ E½ JðBDðD0Þ; BDðD00Þ Þ � ð2Þ
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where the Jaccard score of two sets

JðA; B Þ ¼
jA \ B j
jA [ B j

ð3Þ

is the ratio of the intersection to the union of these sets—hence J(A, B) ranges from 0 to 1, and

is 1 if and only if A = B 6¼ {}, and is 0 if and only if these sets are disjoint. (We define this to be

0 if A = B = {}.) Note that the Jaccard score is only one possible measure to evaluate the degree

of overlap of gene signatures; Section C.4 in S1 Appendix discusses a slightly different measure

that is sometimes used to measure the reproducibility of a set of biomarkers. See also Shi et al.
[47] for a comprehensive overview of these measures.

Of course, we do not know~pð�Þ, and so we use an empirical distributioncpDð�Þ, determined

based on context from the dataset D, to produce the approximation

RSðD; BDÞ ¼ RS�ðcpDð�Þ; hDi; BDð�ÞÞ ð4Þ

that estimates the reproducibility of the biomarker set BD(D), where the notation hDi = [|D+|,

|D−|] refers to the pair of sizes of the positive and negative subjects in D—corresponding to

[n+, n−]. Note that this reproducibility score deals with the sets of biomarkers that are produced

by the BD(�) function, and not any specific biomarker.

Of course, Eq 4 suggests the obvious bootstrap sampling algorithm [48]. Empirically, how-

ever, we found that it did not perform well (see Section C.1 in S1 Appendix)–motivating the

algorithms described in Subsection 2.3.

2.2 Biomarker discovery algorithms: BD(�)

We now discuss various approximation algorithms for biomarker discovery. As our goal is to

illustrate the reproducibility issues with respect to the standard approach, we focus on that

standard approach: where the biomarker discovery is based on independent two-sample t-
tests, perhaps with some multiple comparison correction. This use of t-tests implicitly assumes

that the feature values, for each outcome, are normally distributed. However, it is easy to adapt

these algorithms to use other statistical tests, that do not make this distributional assumption.

See also Limitations in Section 4.

Recall that we are considering two types of datasets, depending on whether its feature values

(the xji mentioned above) are continuous or discrete. However, for datasets with categorical

values—SNPs in our analysis–we use a simple preprocessing step, which precedes all the BD(�)

algorithms described here, to convert each categorical value to a real number: here converting

each SNP feature, which ranges over the values { AA, Ab, bb }, to the real-values { 0, 1, 2 }, cor-

responding to the number of minor alleles (“b”) in the genotype. This allows us to view each

such dataset as one with continuous values.

We assume that the real values of each feature, for each outcome, follows a normal distribu-

tion, which might be different for the different outcomes, and so we use an independent two-

sample t-test for all of our empirical experiments. Recall that the test statistic is given by

t ¼
�Xþ � �X �

�sp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nþ
þ

1

n�

s �sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ � 1Þ�s2

þ
þ ðn� � 1Þ�s2

�

nþ þ n� � 2

s

:
ð5Þ

where n+ and n− are the number of instances with positive and negative outcomes, respec-

tively, and with empirical means �X � and �Xþ and empirical variances �s2
þ

and �s2
�

.
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Note the biomarker discovery process essentially performs a single statistical test for each

feature. As the number of features is often large–often tens-of-thousands, or more–many proj-

ects sought ways to reduce the chance of false discoveries; a standard way to do this is through

some MCC method. We therefore consider biomarker discovery algorithms described as BDt,

p, χ(D), where the t in the subscript refers to the 2-sided t-test, the p for the p-value used, and χ
to the MCC method. Our canonical example is BDt, 0.05, BH(D), with p = 0.05, and χ = BH to

the Benjamini/Hochberg correction [49]. This notation makes it easy to consider many vari-

ants –- e.g., adjusting the p-value used for the statistical test, whether it is applying another

multiple testing correction, or none, etc. See Section C.2 in S1 Appendix for more details.

2.3 Algorithms that approximate the reproducibility score

As we have the dataset D with n� [n+, n−] labeled instances, we can directly compute BD(D).

To compute RS(D, BD(�)), however, we also need to produce one (or more) similar datasets

D0, each with [n+, n−] subjects drawn from the same (implicit) distribution~pð�Þ that generated

D (with the same number of positive and negative instances), but which is presumably disjoint

from D. While we do not have such D0’s, and so cannot directly compute the Reproducibility

Score, we show below how to compute an overbound and an underbound of RS(D, BD(�)).

2.3.1 Overbound: oRS. The oRS(D, BD(�), k) procedure produces (an estimate of) an

overbound for RS(D, BD(�)), by making it easier for a feature to be selected to be in both pur-

ported biomarker sets. In this algorithm, D is our given fixed dataset, BD(�) is the given bio-

marker discovery algorithm, and k is a parameter to determine the number of trials when

computing the overbound. (Here, and below, see the Glossary in Section A in S1 Appendix for

a summary of the algorithms and their arguments.) The oRS algorithm first defines a size-2n
dataset DD that contains two copies of each subject in D, of course with the same outcome

both times. It then randomly partitions this DD into two disjoint size-n datasets D1 and D2,

balanced by outcome. Here, each partition is with respect to the list of elements, so it will

include duplicates. To insure that the resulting datasets are balanced, oRS first split DD into

DD+ and DD−, where DD+ are the cases and DD− the controls. It then forms Dþ
1

by randomly

drawing 1/2 of DD+, and D�
1

by randomly drawing 1/2 of DD−, then merges D1 ¼ Dþ
1
[ D�

1
;

see Fig 2. The dataset D2 is then formed from the remaining subjects of DD not included in D1.

oRS then runs BD(�) on the datasets D1 (resp., D2) to produce two sets of biomarkers, and

computes the Jaccard score for this pair of biomarker sets: J(BD(D1), BD(D2)). It then repeats

this double-split-BD-Jaccard process k times, then returns the average of these k values:

oRSðD; BDð�Þ; kÞ ¼
1

k

Xk

i¼1

JðBDðD1rÞ; BDðD2rÞ Þ ð6Þ

where each dataset pair [D1r, D2r] is created independently using the above procedure.

For each r, as we expect D1r to overlap with D2r, it is relatively likely that any D1r-bio-

marker will also be a D2r-biomarker (more likely than if D1r was disjoint from D2r), which

means we expect the associated Jaccard score to be higher. This follows from the heuristic that,

as two datasets have more common elements, we expect the number of biomarkers common

to two datasets, to increase–i.e.,

if A1;A2;B1;B2 �~p ½nþ ;n �ð�Þ and

jA1 \ A2j is larger than jB1 \ B2j;

then we expect JðBDðA1Þ;BDðA2ÞÞ will be larger than JðBDðB1Þ;BDðB2ÞÞ

ð7Þ
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ceteris paribus. Here, we view each of {A1, A2, B1, B2} as a set of n = n+ + n−r-dimensional

instances. Note this relationship is simply a heuristic to motivate the algorithm–one that we

expect to hold in practice. Section D in S1 Appendix provides some basic arguments, and

empirical evidence, to support this claim.

We close with three quick observations:

1. Expected Overlap: We expect 50% of the instances to be duplicated in any given pair of

datasets. See Lemma 2 in Section D.4 in S1 Appendix.

2. Relation to Bootstrap Samples: Here, each subject occurs exactly twice in each pair of

datasets D1r and D2,r. If we instead used bootstrap sampling (called bRS below), we expect

many subjects would occur more often in the pair of datasets. (See Lemma 3 in Section D.4

in S1 Appendix.) Given Heuristic 7, this means we expect bRS’s Jaccard score here to be

higher than for oRS’s; as oRS is already an overbound for the true score (RS), this means

bRS would be a worse bound, as bRS� oRS� RS. This is why we use our “doubling

approach” oRS rather than bootstrap sampling bRS, as oRS produces values that are

smaller, but still remains an overbound, as desired. See Figs 7 and 8 and Section C.1 in S1

Appendix.

3. Relation to RS�: Our oRS approach is clearly related to RS� (Eq 2), as both compute the

average Jaccard score of pairs of size-n datasets sampled from a distribution. They differ as

(a) RS� uses the true distribution~pð�Þ, while oRS uses only the estimate bpDð�Þ, (b) RS� is the

true average while oRS is just the empirical average over k trials, and (c) RS� will draw inde-
pendent datasets, but the oRS datasets will overlap.

2.3.2 Underbound: uRS. The uRS(D, BD, k) procedure produces (an estimate of) an

underbound for RS(D, BD(�)) by making it harder for a feature to be selected to be in both pur-

ported biomarker sets. First, observe that as [n+, n−] increases (keeping the n+-to-n− ratio

fixed, as we consider changing the size of the dataset), we expect the statistical estimates to be

Fig 2. Computing oRS. Diagram showing oRS’s process of generating pairs of subsets for a dataset D (k times), then using

those to compute oRS(D, BD(�), k).

https://doi.org/10.1371/journal.pone.0252697.g002
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more accurate, and in particular, statistical tests for differences between the two classes will be

correct more often. Hence, a statistical test will better identify the “true” biomarkers F� from a

size-n subset D(n), versus from a size-n/2 subset D(n/2). Now consider two size-n datasets DðnÞ1

and DðnÞ2 , and also two size-n/2 datasets Eðn=2Þ

1 and Eðn=2Þ

2 . As BDðDðnÞ1 Þ and BDðDðnÞ2 Þ are each

closer to F� than BDðEðn=2Þ

1 Þ and BDðEðn=2Þ

2 Þ, we expect BDðDðnÞ1 Þ and BDðDðnÞ2 Þ to be closer to

each other, than BDðEðn=2Þ

1 Þ and BDðEðn=2Þ

2 Þ, which means we expect that

JðBDðD1ðnÞÞ; BDðD2ðnÞÞ Þ � JðBDðE1ðn=2ÞÞ; BDðE2ðn=2ÞÞ Þ:

In general, given that

bEðkÞ½ JðBDðD1ðsÞÞ; BDðD2ðsÞÞ Þ � � RS�ð~pð �Þ; s; BDð�ÞÞ ð8Þ

(where bEðkÞ½�� is the empirical average over k samples), this argues that the RS� score should

increase with the size s of the dataset–which suggests that

if A1;A2;�~psAð�Þ; B1;B2;�~psBð�Þ and

sA ¼ jA1j ¼ jA2j is larger than sB ¼ jB1j ¼ jB2j;

then we expect JðBDðA1Þ;BDðA2ÞÞ will be larger than JðBDðB1Þ;BDðB2ÞÞ

Fig 4(a) presents empirical evidence, over 5 datasets, supporting this claim —showing that

the Jaccard score increases as we increase the size s of the datasets. Section D in S1 Appendix

provides some arguments, and additional empirical evidence (over hundreds of simulations),

that further support this heuristic.

This motivates our underbound algorithm uRS(D, BD, k), which first partitions D into two

disjoint size-n/2 subsets, E1 and E2, with balanced outcomes. It then computes J(BD(E1), BD

(E2)) which, assuming Heuristic 9, is an underbound in expectation for RS(D, BD(�)). uRS

does this partitioning k times, producing k different dataset pairs {[E1,r, E2,r]}r = 1, . . ., k, and

returning the average Jaccard score, i.e.

uRSðD; BDð�Þ; k Þ ¼
1

k

Xk

r¼1

JðBDðE1;rÞ; BDðE2;rÞ Þ: ð10Þ

See Fig 3.

2.4 Empirical study over various datasets

There are now many publicly-available datasets that have been used in association studies.

Here, we use them to . . .

U1: Better understand what Jaccard scores are typical, for the standard BD(�) algorithms;

U2: Determine whether our predictions match the results of earlier meta-analyses; and

U3: Determine if our approximations are meaningful—i.e., if (for reasonable values of k):

uRSðD; BD; kÞ � RSðD; BDÞ ð11Þ

oRSðD; BD; kÞ � RSðD; BDÞ ð12Þ

The next section will explicitly discuss all three issues. Of course, given only a single dataset

D of size-n, we cannot compute, nor even estimate, the true value of RS(D, BD(�)). However,
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we can estimate RS(D(n/2), BD(�)), where D(n/2) is a size-n/2 (outcome-balanced) subset of D.

In fact, uRS(D, BD(�), k) is a meaningful estimate of RS(D(n/2), BD(�)); below we will use

cRSðDðn=2Þ; BDð�Þ; kÞ ¼ uRSðD; BDð�Þ; kÞ : ð13Þ

We will then compare this cRSðDðn=2Þ; BDð�Þ; kÞ against uRS(D(n/2), BD, k) and oRS(D(n/2),

BD, k) and to see whether the relations of Eqs 11 and 12 both hold, with respect to various

size-n/2 subsets D(n/2).

More generally, we can do this for any size-s subset D(s) of D where s� n/2. Here, we need a

set of pairs of disjoint outcome-balanced subsets D0, D00 � D where |D0| = |D00| = s and D0\D00

= {}. For a fixed dataset D, and specified number k 2 Z>0
, we can then plot these

cRSðDðsÞ; BDð�Þ; kÞ values along with oRS(D(s), BD, k) and uRS(D(s), BD, k), as a function of s
to see their behaviour; see Fig 4(b), for the Metabric dataset. Our website https://biomarker.

shinyapps.io/BiomarkerReprod/ also provides this visualization.

We explored our approximations over 25 different real-world datasets, including 16

microarray datasets and 2 RNAseq datasets with continuous data, and 7 SNP datasets with

Fig 4. Reproducibility Scores for different subset sizes. (a) For each of the 5 datasets D, each point shows the average

(± sd) Jaccard bEðkÞ½ JðBDðD1ðsÞÞ; BDðD2ðsÞÞ Þ � over k = 20 pairs [D1(s), D2(s)] of disjoint size-s subsets of D. Here, n is

the size of the original dataset–note this can only go to n/2–and we are using the standard BDt, 0.05, BH. (b) Showing

how the approximations relate to one another, and scale with the size s of the dataset. Here we are using subsets of the

Metabric dataset, with n = 1654. We observed the same behavior for all datasets.

https://doi.org/10.1371/journal.pone.0252697.g004

Fig 3. Computing uRS. Diagram showing uRS’s process of generating pairs of subsets for a dataset D (k times), then using

those to compute uRS(D, BD(�), k).

https://doi.org/10.1371/journal.pone.0252697.g003
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categorical data (see Table 1). This first set includes 4 of the gene expression datasets dis-

cussed in the Zou et al. [8] meta-analysis—each describing metastatic versus non-metastatic

breast primary cancer subjects—to see if our method is consistent with their empirical results.

We also included 11 other relatively-small gene expression datasets (with 19 to 187 subjects),

focusing on human studies that had a binary class outcome from the GEO repository. To

explore how our tools scale with size, we also included 3 other relatively large datasets, with

532 to 1654 subjects. As these were survival datasets, we set the binary outcome based on the

median survival time (removing any subject that was censored before that median time). In

addition to these 4+11+3 = 18 gene expression datasets (with real-valued entries), we also

include 7 SNP datasets (with 39 to 164 subjects), with discrete values, also selected from

human studies with binary class outcome s. Fig 5 plots the number of features and biomarkers

found, using the BDt, 0.05, BH algorithm, for each dataset—both D(n) and D(n/2).

Results

We ran our suite of methods over the aforementioned 25 datasets, including 16 microarray

datasets and 2 mRNAseq datasets, whose feature-values fxjig (recall each xji is the expression

value of the i-th gene for the j-th subject; we log2-transformed the values from the mRNAseq

Table 1. Results for all 25 datasets when using all the subjects. This table is sorted by sample size (#subjects)–corresponding to Fig 5. The first 18 entries are Gene Expres-

sion datasets (including the 4 “�”ed entries, from the Zou et al. [8] meta-study), and the final 7 are SNP datasets. Reproducibility Scores are shown in the form of

mean ± standard deviation. The “(Majority %)” values are the percentage of the subjects in the dataset with the more common outcome–e.g., 53% of the subjects in the

GDS968 dataset are labeled “+” (for “long survival time”), and 82% of GSE7390 are labeled “−” (for “Non-Metastatic”).

Name #subjects (Majority %) #features #biomarkers uRS % oRS %

GDS968 [50] 171 (53%) 5748 2506 47.5 ± 3.95 63.25 ± 0.76

GSE7390� [14, 51] 198 (82%) 13245 18 0 ± 0 5.15 ± 2.81

GSE2034� [3] 286 (67%) 13245 277 0 ± 0 12.6 ± 4.19

GSE1456� [52] 159 (78%) 13245 443 0 ± 0 13.6 ± 6.4

GSE11121� [53] 200 (86%) 13245 492 0.09 ± 0.2 13.4 ± 5.89

GDS2546 [54, 55] 167 (54%) 12553 2965 30.8 ± 4.82 49.0 ± 0.55

GDS2545 [54, 55] 171 (53%) 12558 4291 34.0 ± 4.09 54.58 ± 0.31

GDS2547 [54, 55] 164 (54%) 12579 1810 23.7 ± 5.86 42.66 ± 0.70

KIPAN [56] 532 (81%) 18271 2782 12.3 ± 4.91 34.2 ± 4.74

BRCA [56] 552 (95%) 18320 2 0 ± 0 2.5 ± 2.1

GDS2771 [57, 58] 187 (52%) 22215 1807 0.32 ± 0.64 31.68 ± 0.47

GDS3966 [59] 83 (63%) 22274 6554 31.7 ± 4.71 53.66 ± 0.27

GDS4185 [60, 61] 67 (58%) 22283 6 0 ± 0 11.29 ± 0.83

Metabric [62] 1654 (57%) 24368 3675 18.5 ± 3.86 39.8 ± 3.56

GDS4431 [63] 146 (53%) 54613 140 0 ± 0 18.85 ± 0.34

GDS4719 [64] 19 (53%) 54675 1 0 ± 0 7.02 ± 0.71

GDS2737 [65] 37 (57%) 54675 4 0 ± 0 10.58 ± 0.5

GDS5218 [66] 110 (56%) 54675 10700 24.0 ± 5.09 46.06 ± 0.29

GSE13429 [67] 39 (79%) 262314 1267 1.66 ± 0.44 21.4 ± 3.76

GSE25103 [68] 122 (92%) 908512 325 0.27 ± 0.14 3.94 ± 2.22

GSE15097 [69] 68 (59%) 909456 108224 4.9 ± 2.9 34.2 ± 5.64

GSE15096 [69] 69 (58%) 909457 106482 5.37 ± 2.9 33.4 ± 5.28

GSE25104 [68, 70] 122 (92%) 909547 326 0.27 ± 0.14 3.94 ± 2.22

GSE15826 [71] 164 (54%) 909549 0 0 ± 0 2.5 ± 0.58

GSE18333 [72] 82 (54%) 909606 0 0 ± 0 0 ± 0

https://doi.org/10.1371/journal.pone.0252697.t001
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datasets) and 7 were SNP datasets with categorical entries, i.e., xji 2 f0; 1; 2g is the number of

minor alleles in the genotype for the ith SNP for the jth subject; see Table 1. Here, we use the

standard BDt, 0.05, BH(�) biomarker discovery algorithm; see Section 2.2.

First, to address (U1) and (U2) in Section 2.4, we analyzed the 4 datasets mentioned in the

Zou et al. [8] meta-analysis (see the 4 “�” rows of Table 1) and computed the {uRS(D, BDt, 0.05,

BH, 50), oRS(D, BDt, 0.05, BH, 50)} values for each dataset D, as well as the actual Jaccard score

for biomarkers for each pair of datasets. (We were not able to replicate the results reported for

the 5th dataset from that study, and so we excluded that one dataset from our analysis.) The

results, in Fig 6, show that the Jaccard score for each pair is well within the bounds computed

by our approximations, for each of the datasets in that pair—that is, the results for 4 × 3 = 12

ordered-pairs of datasets are consistent with our predictions. Note that we verified that our

BDt, 0.05, BH algorithm matched the original study by verifying that the PO scores (Eq 15 in Sec-

tion C.4 in S1 Appendix) matched the ones that were originally published.

To address (U3), we also analyzed the other 14 continuous datasets D, and computed the

oRS and uRS values using k = 50 repetitions; see Fig 7[left]. We see that the overbound oRS is

consistently larger than the underbound uRS—i.e., uRS� oRS—as claimed by Eqs 11 and 12.

Fig 7[right] plots the corresponding values for the D(n/2) datasets, that use only 1/2 of the data-

set, using the same BD(�) algorithm and k = 50. It also plots the “true” cRSðDðn=2Þ; BDð�Þ; kÞ val-

ues for the datasets. Again, we see that oRS � cRS � uRS.

Finally, similar to that experiment over the 18 continuous datasets, we examined the 7 dis-

crete datasets and produced the reproducibility scores. Fig 8[left] shows the scores for each of

the 7 SNP datasets, demonstrating that oRS� uRS holds for the discrete cases as well. Fig 8

[right] shows the scores for D(n/2) datasets, and performs the same verification. Those figures

also allow us to see the Jaccard scores (U1 above) range from essentially 0 to around 0.475 for

the D(n/2) datasets. In addition to the plots, Tables 1 and 2 present the relevant values.

Fig 5. Number of biomarkers found for D(n/2) compared to D(n). Box+whiskers plots showing number of biomarkers

found for D(n/2) when using BDt, 0.05, BH over k = 20 iterations for various dataset, compared to the number of

biomarkers for D(n), and to the number of features in each dataset. Note the y-axis is a log-scale. (Note we first changed

all “0” values to “10−1”.) For details, see Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0252697.g005
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Section C in S1 Appendix provides the results of many additional empirical studies, show-

ing how the reproduciblity scores change based on which (if any) MCC method is used, the

specific p-value used for the t-test, the number of draws k used by the various approximations,

and the size of the dataset n.

4 Discussion

4.1 Recommended use

As suggested above, whenever researchers have identified a possible set of biomarkers from a

dataset D and Biomarker Discovery Algorithm BD, we encourage them to apply our analytic

technique, and where appropriate, even our specific bounding algorithms (from https://

Fig 6. oRS and uRS compared to real Jaccard scores. Under-bound and over-bound for the 4 datasets from Zou et al.
[8], as well as the true Jaccard score for each pair—3 numbers for each dataset, shown by black circles.

https://doi.org/10.1371/journal.pone.0252697.g006

Fig 7. Empirical results for continuous datasets. Reproducibility scores (mean and standard deviation) for all 18

continuous datasets, both for complete datasets with n subjects (left) and for half-sized with n
2

subjects (right), for k = 50

iterations. The x-axes (for both plots) are sorted by the value of the over-bound for the D(n) datasets. We see, in both,

that the over-bound oRS is consistently higher than the under-bound uRS. Moreover, the right plot shows that the

“truth” cRS is also between uRS and oRS. (The bRS lines in the plots are based on the Bootstrap Overbound method; see

Section C.1 in S1 Appendix).

https://doi.org/10.1371/journal.pone.0252697.g007
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Fig 8. Empirical results for SNP datasets. Reproducibility scores (mean and standard deviation) for 7 SNP datasets,

both for complete datasets with n subjects D(n) (left) and for half-sized with n
2

subjects D(n/2) (right), for 50 iterations.

The x-axes (for both plots) is sorted by the value of the overbound oRS for the D(n) datasets. We see, in both, that the

over-bound oRS is consistently higher than the under-bound uRS. Moreover, the right plot shows that the “truth” cRS
is also within the range of oRS and uRS. (The bRS lines in the plots are based on the Bootstrap Overbound method; see

Section C.1 in S1 Appendix).

https://doi.org/10.1371/journal.pone.0252697.g008

Table 2. Results for all datasets when using half of the subjects–i.e., D(n/2). Reproducibility Scores and average number of biomarkers are shown in the form of

mean ± standard deviation. (The caption for Table 1 describes the row ordering).

Name Average #biomarkers uRS % cRS % oRS %

GDS968 1593.67 ± 173.35 26.0 ± 5.87 47.5 ± 3.95 48.6 ± 5.21

GSE7390� 1.38 ± 3.01 0 ± 0 0 ± 0 1.84 ± 2.1

GSE2034� 41.05 ± 144.8 0 ± 0 0 ± 0 6.39 ± 4.72

GSE1456� 58.38 ± 138.11 0 ± 0 0 ± 0 4.5 ± 4.41

GSE11121� 181.8 ± 265.5 0 ± 0 0.09 ± 0.2 9.48 ± 7.67

GDS2546 1266.61 ± 354.72 5.01 ± 7.15 30.8 ± 4.82 33.5 ± 6.3

GDS2545 2051.58 ± 494.77 6.38 ± 7.33 34.0 ± 4.09 38.1 ± 5.92

GDS2547 648.55 ± 255.09 1.82 ± 4.24 23.7 ± 5.86 27.3 ± 6.63

KIPAN 694.48 ± 398.88 0.88 ± 2 12.3 ± 4.91 19.3 ± 8.33

BRCA 36.75 ± 171.15 0 ± 0 0 ± 0 2.6 ± 4.2

GDS2771 457.17 ± 863.64 0.09 ± 0.62 0.32 ± 0.64 7.23 ± 8.48

GDS3966 2976.15 ± 811.92 10.6 ± 7.83 31.7 ± 4.71 37.9 ± 6.44

GDS4185 2.92 ± 40.20 0 ± 0 0 ± 0 0.701 ± 3.11

Metabric 1301.9 ± 504.80 1.97 ± 3.86 18.5 ± 3.86 21.6 ± 7.3

GDS4431 43.35 ± 284.56 0 ± 0 0 ± 0 2.55 ± 3.82

GDS4719 0.36 ± 1.88 0 ± 0 0 ± 0 2.8 ± 5.31

GDS2737 0.79 ± 7.33 0 ± 0 0 ± 0 1.73 ± 2.82

GDS5218 4207.29 ± 1589.79 7.96 ± 4.08 24.0 ± 5.09 31.5 ± 6.15

GSE13429 339.29 ± 170.11 1.73 ± 0.44 1.66 ± 0.44 14 ± 5.04

GSE25103 309.61 ± 78.24 0.13 ± 0.11 0.27 ± 0.14 6.63 ± 6.79

GSE15097 22788.62 ± 23342.37 0.77 ± 0.62 4.9 ± 2.99 16.8 ± 6.85

GSE15096 22393.87 ± 20624.09 0.74 ± 0.60 5.37 ± 2.9 16.1 ± 6.91

GSE25104 309.93 ± 78.14 0.13 ± 0.11 0.27 ± 0.14 6.64 ± 6.8

GSE15826 1.21 ± 5.41 0 ± 0 2.03 ± 0.06 1.21 ± 0.79

GSE18333 0.01 ± 0.1 0 ± 0 0 ± 0 0 ± 0

https://doi.org/10.1371/journal.pone.0252697.t002

PLOS ONE Analyzing biomarker discovery: Estimating the reproducibility of biomarker sets

PLOS ONE | https://doi.org/10.1371/journal.pone.0252697 July 28, 2022 16 / 22

https://doi.org/10.1371/journal.pone.0252697.g008
https://doi.org/10.1371/journal.pone.0252697.t002
https://doi.org/10.1371/journal.pone.0252697


biomarker.shinyapps.io/BiomarkerReprod/), to estimate the Reproducibility Score of this pro-

posed set. If those scores (especially the lower bound uRS(D, BD)) are sufficiently high, they

can use those biomarkers, confident that they (as a set) are reproducible. But if not, the

researchers may want to explore other ways to identify reproducible biomarkers. One obvious

approach is to use a larger dataset, with more instances, as we know that RS increases with the

size of the dataset |D|; see Heuristic 7 and the analysis in Section D.2 in S1 Appendix. Alterna-

tively (or in addition), recall the reproducibility depends on both the dataset, and the Bio-
marker Discovery Algorithm BD; perhaps some other BDtest,p − val, MCC would work better here?

We could consider modifying all 3 of the components:

• While the MCC methods are designed to reduce the false positives, it is not clear whether

they improve RS. Indeed, our experiments (Fig C.1 in S1 Appendix) show that RS values

reduce with MCC—which points to using BDtest,p, None.

• The non-reproducibility problem might be due to the statistical test used. As noted earlier,

the t-test implicitly assumes a Gaussian distribution of the features (or the normality of

residuals); perhaps another test would work better for some dataset / distribution of

instances.

• Finally, they may want to modify the p-value, p, as other values of p may lead to better

reproducibility.

4.2 Limitations

This paper provides an effective way to estimate the reproducibility of the biomarkers found

from a dataset, using a biomarker discovery algorithm. While the message of this paper is very

general, the specific analyses here all used the standard discovery algorithm BDt, 0.05, BH, to

illustrate that the issues apply to the approaches commonly used. Section C in S1 Appendix

explores some other discovery methods, that are also based on t-tests. While this use of t-tests

implicitly assumes normality of the feature values, nothing in our general approach relies on

this specific test—we could use other tests that make other parametric assumptions. (Note that

our analysis appears to work effectively even when dealing with some Bernoulli (non-normal)

features.) We anticipate the same approach would hold for other tests, such as Mann-Whitney,

Wilcoxon or even multivariate analysis–but this is future work. All of our empirical studies

dealt with standard datasets, whose outcomes are binary and whose values were either all real

values or all categorical values; none had some of each. Our analytic model considers the over-

lap of biomarkers found from two datasets, of the same size—e.g., we do not consider how the

biomarkers obtained from a size-100 dataset, overlap with those from a size-300 dataset.

Finally, the recommendations of the previous subsection suggest another future direction: pro-

duce the “BD0(D, s) algorithm” that, given a dataset D and a minimum score s> 0, returns the

parameters [test, p-val, MCC] for a biomarker discovery algorithm BDtest,p − val, MCC that

would produce a biomarker set whose Reproducibility Score would be at least s–i.e., we expect

that RS(D, BDtest,p − val, MCC(�))� s, suggesting this level of reproducibility for the proposed

biomarkers BDtest,p − val, MCC(D).

4.3 Contributions

This paper has several contributions: (1) It motivates, then provides, a formal definition of

reproducibility, that can help researchers evaluate a set of purported biomarkers; (2) It pro-

vides a pair of algorithms that can accurately bound this “reproducibility score” for a given

PLOS ONE Analyzing biomarker discovery: Estimating the reproducibility of biomarker sets

PLOS ONE | https://doi.org/10.1371/journal.pone.0252697 July 28, 2022 17 / 22

https://biomarker.shinyapps.io/BiomarkerReprod/
https://doi.org/10.1371/journal.pone.0252697


dataset and biomarker discovery algorithm; (3) It provides empirical evaluation of these algo-

rithms, over 25 different real-world datasets, to demonstrate that they work effectively; and (4)

It introduces a freely-available website https://biomarker.shinyapps.io/BiomarkerReprod/ that

runs these algorithms on the dataset entered by a user, and biomarker discovery system, which

will allow users to easily evaluate the quality of the biomarker set produced. Given how easy it

is to use this tool, we hope that future researchers will automatically use it to quickly evaluate

the quality of the purported biomarkers, then include these estimates when they publish their

biomarkers. We anticipate this analysis may also lead to new biomarker discovery algorithms,

to optimize this reproducibility score.
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