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The largest ever Sri Lankan dengue outbreak of 2017 provides an opportunity
for investigating the relative contributions of climatological, epidemiological
and sociological drivers on the epidemic patterns of this clinically important
vector-borne disease. To do so, we develop a climatologically driven disease
transmission framework for dengue virus using spatially resolved tempera-
ture and precipitation data as well as the time-series susceptible-infected-
recovered (SIR) model. From this framework, we first demonstrate that the
distinct climatological patterns encountered across the island play an impor-
tant role in establishing the typical yearly temporal dynamics of dengue,
but alone are unable to account for the epidemic case numbers observed in
Sri Lanka during 2017. Using a simplified two-strain SIR model, we demon-
strate that the re-introduction of a dengue virus serotype that had been largely
absent from the island in previous years may have played an important role in
driving the epidemic, and provide a discussion of the possible roles for
extreme weather events and human mobility patterns on the outbreak
dynamics. Lastly, we provide estimates for the future burden of dengue
across Sri Lanka using the Coupled Model Intercomparison Phase 5 climate
projections. Critically, we demonstrate that climatological and serological fac-
tors can act synergistically to yield greater projected case numbers than would
be expected from the presence of a single driver alone. Altogether, this work
provides a holistic framework for teasing apart and analysing the various
complex drivers of vector-borne disease outbreak dynamics.
1. Introduction
Dengue is a vector-borne disease with major clinical significance, accounting for
96 million apparent infections per year among inhabitants of 128 countries and
an at-risk population of nearly four billion people [1]. Unlike many human
pathogens, dengue virus (DENV) exists in only a small number (four) of phy-
logenetically and antigenically distinct primary groups [2]. Infection with one
DENV strain confers life-long immunity to that particular strain, but not to
the other three [2]. From an epidemiological perspective, these infection
dynamics are particularly important owing to the increased risk of developing
severe dengue upon secondary infection [3].

Dengue virus is spread primarily by the mosquito vector Aedes aegypti [4].
In brief, after taking a blood meal from an infected host (human or animal), a
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Figure 1. Schematic depicting the various potential drivers of the transmission dynamics of dengue as well as the relationships between these drivers. The depicted
phylogeny of DENV is from [18].
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susceptible mosquito becomes infectious and able to transmit
DENV to future hosts following a delay time known as the
extrinsic incubation period (EIP) [5]. The EIP is dependent
on the environmental temperature, along with the life cycle
duration and survival of the mosquito [5,6]. In addition, pre-
cipitation and the local hydrological conditions can affect the
quantity of pooled surface water, which serves as the breed-
ing sites in which mosquitoes deposit their eggs. In
particular, for dengue, Aedes mosquitoes are primarily con-
tainer breeders (natural and artificial) and thrive in both
clean and organically rich water [7]. Consequently, climate
variables interact in complex ways with the biological par-
ameters of the vector to determine not only the viable
geographical range for the transmission of the disease
[1,6,8] but also the timing and seasonality of infection in
regions where the disease is endemic.

In 2017, Sri Lanka experienced its largest recorded dengue
outbreak, with 186 101 patient hospitalizations reported [9].
DENV has been endemic in Sri Lanka since the mid-1960s,
and the four primary virus serotypes have been co-circulating
there formore than three decades [7]. Furthermore, topographi-
cal influences as well as the seasonality of the monsoon cycles
result in highly variable rainfall characteristics across the com-
pact island nation [10], providing a unique opportunity to
analyse localized interactions between climate and disease
transmission. Indeed, several studies have determined a role
for climatological drivers in the temporal dynamics of dengue
incidence in Sri Lanka [11,12] (and more broadly [1,13–15]). In
Sri Lanka, a variety of other factors have also been implicated
in the epidemic and transmission dynamics of dengue, includ-
ing changes in viral serotype [9], high population densities in
affected areas [16], and poor hygiene conditions in urban
environments [17]. This complex dynamical network of poten-
tial drivers is depicted schematically in figure 1. Recent work
related to a dengue epidemic in Guangzhou, China has
demonstrated that dengue epidemic periods in geographical
regions with inter-annual transmission variability can serve as
important case studies for assessing the relative importance of
different drivers on DENV dynamics [19].

In this work, we systematically assess potential roles for
climatological drivers including seasonal patterns in average
temperature and precipitation as well as extreme weather
events, epidemiological drivers including serotype change,
and sociological drivers including human movement patterns
in response to a severe drought, on the outbreak dynamics of
dengue in Sri Lanka. We consider four distinct time periods
in this analysis: the years 2010–2015 when endemic trans-
mission patterns persisted, the transition year of 2016, the
epidemic year of 2017, and finally future transmission pat-
terns. We find that although seasonal climatological
conditions play an important role in establishing monthly
dengue transmission patterns in Sri Lanka, they alone are
unable to account for the severity of the 2017 epidemic.
Using a simplified two-strain susceptible-infected-recovered
(SIR) model, we show that the re-introduction of a DENV ser-
otype may have played an important role in driving the
epidemic, and that in combination, climatological and serolo-
gical drivers can act synergistically to yield greater projected
case numbers than the presence of a single driver alone.
2. Results and Discussion
In figure 2, an overview of the dengue incidence time series as
well as relevant demographic and climatological information
for Sri Lanka is provided. Dengue case data at a national
level between the years 2010 and 2018 is plotted in figure 2a,
showing a striking peak in case numbers in 2017. Population
levels by district, averaged over the years 2010–2018, are
presented in figure 2b.
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Figure 2. Dengue epidemiological data and relevant demographic and climatological information for Sri Lanka. (a) Annualized reported dengue cases across all
25 districts of Sri Lanka for the years 2010–2018. (b) Population of each district (in thousands) averaged over the years 2010–2018. (c) Mean monthly reported
dengue cases (top panel), precipitation (middle panel), and average temperature (bottom panel) between the years 2010 and 2016 averaged across all districts
(solid line). The shaded areas indicate the standard errors of the district means. Dashed grey lines in all charts are aligned with local maxima in precipitation, while
the solid grey lines are aligned with the peaks in dengue cases. Together, these illustrate a two month lag between peak rainfall and peak dengue incidence.
(d ) Monthly entropy metric S by district for precipitation (centre panel) and dengue cases (right panel) from 2010 to 2016. Darker colours indicate districts with
greater seasonal variability. Time series of monthly averaged precipitation (solid line) and standard deviation across years (shaded regions) for this same time period
corresponding to the districts with the minimum (Nuwara Eliya, S ¼ 0:05), and maximum (Jaffna, S ¼ 0:67) precipitation entropy are also shown in the left
panel. The approximate location of the national capital city of Colombo is indicated by a star in (b) and in the centre and right panels of (d ).
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In addition to substantial demographic variation by district,
the tropical monsoon climate of Sri Lanka is characterized by
elevated minimally varying average temperatures as well as
highly variable rainfall characteristics [10]. Two precipitation-
based climate zones can be distinguished within the island:
the wet zone lying to the west of the central highlands, and
the relatively drier zone lying to the east and north [10]. In gen-
eral, thewet zone is exposed to the southwestmonsoon from the
months of May through to September as well as the first inter-
monsoon (lasting from March through to April), while the
dry zone experiences substantial rainfall during the second
intermonsoon (October through to November) and the
northeast monsoon of December through to February [10].

In figure 2c,d, these climatic features for the pre-epidemic
years of 2010–2016 are summarized and contrastedwith the sea-
sonality of dengue cases. In figure 2c, themeanmonthly number
of dengue cases, precipitation, and average temperature
between the years 2010 and 2016 averaged across all districts
are plotted as the solid lines, with the shaded areas indicating
the standard error across districts. One immediately apparent
feature is the relative uniformity of temperature both temporally
over the year and across districts, as opposed to the clear season-
ality in both precipitation and dengue cases, with larger
standard errors indicative of greater variation between districts.
Furthermore, two peaks in precipitation and dengue can be
distinguished at this macroscopic level, with the former leading
the latter by a period of two months.

In order to explore regional variation in seasonality of
precipitation and dengue, a monthly relative entropy metric
S [20,21] is calculated by district for these same data
spanning the years 2010–2016, where

S ¼
XM
m¼1

xm log (Mxm): (2:1)

In equation (2.1), M = 12 is the number of months in the
year and xm is the monthly value of the parameter of interest
divided by the mean annual value. Values of S ! 0 indicate
minimal seasonal variation, i.e. more constant values of the
parameter of interest throughout the year.

In the centre panel of figure 2d, the entropy metric S cor-
responding to the monthly mean precipitation between the
years 2010 and 2016 is presented for each district. A notable
geographical trend is observed, with low levels of precipitation
entropy, or minimal seasonality, in the wet zone or southwest
region of the country, and increasing precipitation entropy, or
increasing seasonality, towards the northeast and the climatic
drier zone. To illustrate the precipitation patterns correspond-
ing to these values of S, time series of mean monthly
precipitation from 2010 to 2016 with standard deviations
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across years indicated corresponding to the districts with the
minimum (Nuwara Eliya, S ¼ 0:05), and maximum (Jaffna,
S ¼ 0:67) precipitation entropy are shown in the left-hand
panel. In the right-hand panel of figure 2d, this entropy calcu-
lation is repeated for mean monthly dengue case incidence
between the years 2010 and 2016, and plotted for each district.
Although less clear than that for precipitation, a similar trend
of increasing seasonality in dengue case numbers is observed
towards the northeast drier zone of Sri Lanka.

Motivated by the apparent correlation between precipi-
tation and dengue cases observed in figure 2d as well as
previous evidence of a role for climatological and other fac-
tors in establishing the temporal dynamics of dengue in the
region [11,12], we analyse these epidemiological data within
the framework of various disease drivers during four distinct
periods: the years 2010–2015 when endemic transmission pat-
terns persisted, the transition year of 2016, the epidemic year
of 2017, as well as future years extending until 2099. We
develop and use a climatologically informed time-series sus-
ceptible-infected-recovered (TSIR) model [22], in which
temperature and precipitation levels or approximated sero-
type susceptibility play a role in determining either the
dynamical transition of individuals within a given popu-
lation from the susceptible to the infected category or the
relative sizes of these subpopulations. The details of the
development of this model are provided in the Material
and methods section.
2.1. 2010–2015: endemic dynamics
We begin by studying the ability of the TSIR model [22] to cap-
ture the more regular endemic dynamics of dengue incidence
from 2010 to 2015, prior to the dynamical transitions character-
izing the epidemic year of 2017. This relative case regularity is
evident in figure 3a, where the ratio of dengue cases by district
in 2015 to the average of those reported in the years 2010 to
2014 (C2015/C2010–2014) is plotted and found to range between
values of 0.36≤C2015/C2010–2014≤ 2.06.

In order to evaluate the predictive ability of the TSIR
model during these endemic years, we train the model on
district-level case data from 2010 to 2014, and assess its ability
to predict the 2015 case numbers. In figure 3b, the number of
cases from 2010 to 2015 adjusted by the reporting rate ρ
obtained from the TSIR model fitted to the case data from
2010 to 2014, the TSIR fitted from 2010 to 2014, and the pre-
dicted case numbers for 2015 are plotted as the solid blue,
solid black and dashed red curves, respectively, for the dis-
tricts in which the ratio C2015/C2010–2014 deviates the most
(Ampara, C2015/C2010–2014 = 0.36), and least (Vavuniya,
C2015/C2010–2014 = 0.99) from unity. Here, we consider only
districts included in the climatological regression model,
thus excluding (for example) Mullaitivu, which has a ratio
of C2015/C2010–2014 = 2.06 (as described in the Material and
methods section, Mullaitivu is excluded from this analysis
as an outlier, consistent with its exclusion from the climatolo-
gical regression model). As can be seen, the TSIR model
produces a satisfactory prediction of the 2015 case numbers
in both districts, with cyclic seasonal trends well-captured
despite disagreement in quantitative values. This is also sum-
marized in the scatter plot of the number of dengue cases in
2015 adjusted by the reporting rate ρ obtained from the TSIR
model fitted to the data from the years 2010 to 2014 versus the
TSIR predictions for the number of infected individuals in
2015 for the districts of Vavuniya (purple colour scheme, cir-
cles) and Ampara (yellow colour scheme, triangles) presented
in figure 3c. These data are further organized by season, with
the lightest hues corresponding to winter months (December,
January, February (DJF)), then spring months (March, April,
May (MAM)), summer months (June, July August (JJA))
and finally the darkest hues correspond to autumn months
(September, October, November (SON)). In Vavuniya, the
observed and predicted case numbers agree well (lie near
the dotted black line indicating parity) apart from in the
winter months when the observed case numbers increase
sharply. By contrast, the case numbers are over-predicted in
Ampara for all seasons.

2.2. 2016: transitional dynamics
In certain districts, the onset of the epidemic period occurred
as early as partway through 2016, thus warranting a separate
consideration of this transitional year. To illustrate this, in
figure 3d, the ratio C2016/C2010–2015 of dengue cases by district
in 2016 to the average of those reported in the years 2010–
2015 is shown. As can be seen, in contrast with figure 3a,
the value of this ratio is now greater than unity in nearly
all districts. As in §2.1., we next assess the ability of the
TSIR model to predict the 2016 case numbers in the district
for which C2016/C2010–2015 deviates the most (Galle, C2016/
C2010–2015 = 2.76), and least (Puttalam, C2016/C2010–2015 =
1.04) from unity. Here, we consider only districts included
in the climatological regression model, thus excluding (for
example) Mannar, which has a ratio of C2015/C2010–2014 =
1.00 (as described in the Material and methods section,
Mannar is excluded from this analysis as an outlier, consistent
with its exclusion from the climatological regression model).
In figure 3e, the number of cases from 2010 to 2016 adjusted
by the reporting rate ρ obtained from the TSIR model fitted to
the case data from 2010 to 2015, the TSIR fitted from 2010 to
2015, and the predicted case numbers for 2016 are plotted as
the solid blue, solid black, and dashed red curves, respect-
ively, for the districts of Puttalam and Galle. As can be
seen, for the district of Puttalam where the epidemic had
not begun by the end of 2016, the TSIR model produces a sat-
isfactory prediction of the 2016 case numbers, with the
climatological seasonal cycle well-captured despite disagree-
ment in quantitative values. Conversely, in Galle, where the
epidemic begins midway through the year 2016, there is sub-
stantial disagreement between the prediction of the TSIR
model and the reported case numbers.

2.3. 2017: epidemic dynamics
Next, we consider the dynamics of the epidemic year of 2017.
As can be seen in figure 4a, dengue incidence in 2017 was
higher in all districts compared to the previous 7 years, ranging
from a 10.7-fold increase in the district of Trincomalee to a
2.3-fold increase in the district of Mannar. In this section, we
seek to explore the possible drivers that may have contributed
to these epidemic dynamics.

2.3.1. Climatological drivers
We begin by testing the role of climate, and repeat the exer-
cise from figure 3b,e, this time training the model on data
from 2010 to 2016 and obtaining predictions for the 2017
case numbers for the districts of Puttalam (where the TSIR
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prediction for 2016 was satisfactory) as well as the district of
Colombo which contains the national capital city of the same
name. These results are shown in figure 4b. We additionally
perform the model prediction for 2017 using values for the
transmission rate β derived from the climatological regression
model (see the Material and methods section) that explicitly
accounts for the climate of 2017, and plot these results as
the solid red curve in figure 4b. As can be seen, although
the timing of dengue case seasonality is relatively well cap-
tured by the TSIR predictions in both districts, even when
the climate from 2017 is explicitly accounted for, the reported
case numbers are substantially under-predicted. Conse-
quently, it would appear that although climate plays an
important role in establishing the timing of annual dengue
transmission patterns in Sri Lanka, the severity of the 2017
epidemic cannot be explained by an anomalous climate that
year. Figure 3b is reproduced for all districts in the electronic
supplementary material, figure S8.
ce
17:20200075
2.3.2. Virological drivers
As illustrated in figure 4c, according to hospital surveillance
reports, DENV1 was the predominant serotype in circulation
in Sri Lanka from 2009 until mid-2016, during which time
DENV2 and DENV3 were not detected [9]. DENV2 and
DENV3 were the predominant serotypes in circulation prior
to 2009, and indeed all four virus serotypes have been
co-circulating in Sri Lanka for more than three decades [7,9].
In mid-2016, the re-emergence of DENV2 coincided with the
onset of the epidemic [9]. Sequencing studies of the 2016 Sri
Lankan DENV2 strain obtained from patients who were trea-
ted for acute dengue infection at the National Institute of
Infectious Disease confirmed it to be from the same clade as
those circulating in 2015–2016 in Singapore, and indicated
that it shared a common ancestor with the 2014 Malaysian
strains [9]. In fact, these studies found that the 2016 Sri
Lankan DENV2 strain was genetically more distant from the
DENV2 strains that circulated in Sri Lanka from 1981 to 2004
than these Singaporean and Malaysian strains [9], suggesting
case importation. The phylogeny of DENV from [18] is
included in the electronic supplementary material, figure S1a.

In order to estimate the possible role for serotype re-
emergence on the epidemic dynamics, we model the predicted
effect of an effective increase in population-level susceptibility
at the start of the epidemic. This increase can be interpreted as
representing individuals in the population who had pre-
viously been infected with DENV1 only (and were hence
still susceptible to DENV2 infection), or an increase in the
severity of secondary DENV infections relative to primary
ones [2] following replacement of the dominant strain.
Indeed, over short time periods, the TSIR yields similar pre-
dicted increases in case numbers when either the initial
number of susceptible individuals or the transmission rate β
is increased. It is worth noting, however, that in one clinical
report [9], all patients with acute dengue infection recruited
after January 2017 by the National Institute of Infectious Dis-
ease of Sri Lanka were infected with DENV2, and that high
levels of patients presenting with both DENV1 (pre-epidemic)
and DENV2 (post-epidemic) were experiencing secondary
infections. Whether this extends to the district-level data
used in this paper is unknown. We emphasize then that
with these clinical observations in mind, the analysis in this
section serves as a reasonable starting point for considering
the role of virological drivers given the absence of serotype
information. Further caveats are discussed in §2.5.

In figure 4d, the multiplicative factor on the initial value of
susceptible individuals at the start of 2017 that minimizes the
difference in the peak number of reported and predicted cases
in 2017 is plotted for each district, and ranges between a value
of 1.11 and 2.61. In figure 4e, the number of cases from 2010 to
2017 adjusted by the reporting rate ρ obtained from the TSIR
model fitted to the case data from 2010 to 2016, the TSIR fitted
from 2010 to 2016, and the predicted case numbers for 2017
are plotted as the solid blue, solid black and dashed red
curves, respectively, for the district of Colombo. Additionally,
we plot the TSIR prediction for 2017 following re-initialization
of the initial numberof susceptible individuals by themultiplica-
tive factor obtained in figure 4d as the solid red curve.

In order to contextualize these determined increases in
the number of susceptible individuals, we consider the sim-
plified scenario of a two-strain system, in which we assume
that a single DENV serotype has achieved steady-state trans-
mission dynamics prior to the arrival by exogenous
importation of a new viral strain. As described above, this
approximation is consistent with sequencing results of the
genetic origins of the 2016 Sri Lankan DENV2 strain. How-
ever, this scenario ignores the complexities of cross-
immunity associated with the long-term co-circulation of all
four DENV strains in Sri Lanka. Further discussion of the
caveats of this two-strain system are discussed in §2.5. Never-
theless, in this simplified scenario, the number of individuals
susceptible to the newly imported strain and/or the previously
circulating one would exceed the steady-state number of sus-
ceptible individuals to the previously established strain only.
A schematic of this simplified two-strain system based on
that developed in [23] is shown in the electronic supplemen-
tary material, figure S1b and the mathematical details are
described in the Material and methods section.

At the time of importation of serotype 2 infections, we
approximate the actual number of susceptible individuals S0 as

S0 � Sþ R1r2N
I1

� S� 1þ r2gb

m(gþ m)

� �
, (2:2)

where S is the number of individuals susceptible to infection by
both strains, S* =N/β(γ + μ) is the steady-state value of this
quantity when a single strain is in circulation (see the Material
and methods section), I1 and R1 are, respectively, the number
of individuals presently infected with or recovered from
serotype 1 infections only, andN is the total number of individ-
uals. Furthermore, μ, γ, β and ρ2 denote the rates of birth, death,
transmission and importation of exogenous infections of sero-
type 2, respectively. The analytic expression for the factorial
increase in the susceptible population in equation (2.2) allows
us to consider the magnitude of the importation rate of infec-
tions of the exogenous serotypes that would yield the results
found in figure 4d. The multiplicative factor for the number of
susceptible individuals predicted for the district of Colombo
is S0 = 1.27S*. Furthermore, given a recovery rate for dengue of
γ = 1 biweek−1, an average crude birth rate of μ = 8.55 × 10−4

biweek−1 for the years 2010–2016, and a mean population-
normalized value for the transmission rate reconstructed
from the TSIR model fitted for the years 2010–2016 of β/N =
2.38 × 10−6 person−1 biweek−1, the predicted number of
imported cases for the first biweek of 2017 in the district of
Colombo is found to be ρ2 N = 96.9. Although the dengue
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dataset used in this work does not contain information regard-
ing whether cases are autochthonous or imported, recent
network models have been developed for predicting the
number of imported dengue cases for any given airport [24].
075
2.3.3. Other drivers
Finally, it is worth noting a number of other factors that may
have influenced the dynamical pattern of the 2017 dengue
epidemic. Between the spring of 2016 and the summer of
2017, Sri Lanka experienced a series of extreme climatic
events including both severe droughts and floods. As seen
in figure 5a which shows the spatially averaged monthly pre-
cipitation across the country, cyclone Roanu hit the island in
May 2016 causing severe flooding and landslides which led
to over 200 individuals being reported dead or missing. Sub-
sequently, the island experienced a severe drought owing to
diminished winter precipitation in 2016. These drought con-
ditions are illustrated in figure 5b by the mean, minimum
and maximum spatially averaged values of the standardized
precipitation-evapotranspiration index (SPEI) [25].

The 2017 drought had a severe impact on the agricultural
sector, causing a 40% decrease in the cultivated area and pro-
duction of rice as depicted in figure 5c. Economic theory and
empirical research in a number of developing economies
including Senegal have shown that increases in the ratio of
urban-to-rural wages, possibly driven by decreases in agri-
cultural output, provide the foundation of rural–urban
migration [26,27], and news reports suggest that this
phenomenon occurred in Sri Lanka during this period [28].
Changes in human social ecology, including population size
and density and urbanization, have been implicated in alter-
ing the probabilities of infectious disease emergence and
transmission by creating highways for ‘microbial traffic’
and providing opportunities for rapid dissemination of emer-
ging infections [29]. These various factors suggest that in-
depth studies into the effect of human mobility patterns on
the dengue epidemic of 2017 may be warranted, such as
those conducted using mobile phone data in Pakistan [30]
and for rubella in Kenya [31]. It is nevertheless interesting
to consider the magnitude of the population that would
be required to relocate in order to achieve the fractional
increases in the susceptible population calculated in §2.3.2.
In the district of Colombo, for instance, a 27% increase
in the susceptible population (i.e. a fractional increase of
S0 = 1.27S*) corresponds to an influx of 256 000 susceptible
individuals; approximately 11% of its population in 2017.

Lastly, we note that the length of the approximately
7.5 year period from 2009 until mid-2016 during which
DENV1 was the primary serotype in circulation prior to the
re-emergence of DENV2 is broadly consistent with the period-
icity of serotype prevalence of 8–9 years determined both
theoretically and from epidemiological data in [32], although
shorter cycles of 3–5 years have also been observed in both
data and simulations [2]. Depending on the modelling frame-
work, a number of factors have been found to contribute to the
maintenance of these multi-year cycles, including virological
cross-protection [2] as well as the segregation of hosts via
spatially arranged communities with the possibility of impor-
tation of infections via temporal human movements [32].
Therefore, although these complex multi-annual patterns are
undoubtedly driven by a number of factors, it is possible
that these periods of serotype prevalence define an upper
bound on the allowed build-up of the susceptible cohort,
beyond which the re-introduction of a non-predominant viral
strain may result in the onset of an epidemic.
2.4. Projections for future transmission dynamics
As a final exercise, we use the climatological panel regression
model developed for the years 2010–2016 in combination
with the projections of average temperature and precipitation
obtained from the multi-model ensemble Coupled Model
Intercomparison Phase 5 (CMIP5) dataset under Representa-
tive Concentration Pathway 8.5 in order to study the potential
future transmission dynamics of dengue in Sri Lanka.

In figure 6a, the year-averaged empirical transmission rates
β for the time periods 2040–2059 (blue triangles) and 2080–2099
(yellow diamonds) predicted by the climatological panel
regression model are shown, and compared with the present-
day levels obtained using average climate data from 2010 to
2016 (black circles). Although there is substantial variation
across districts, the year-averaged value of β is predicted to
increase approximately consistently with time, primarily as a
result of projections of increasing average temperature during
this time period (see the electronic supplementary material,
figures S2 and S3 and the discussion in S6). Note that location-
by-month and location-by-year dummies for the three districts
that were excluded from the panel regression model (see the
Material and methods section) were obtained by re-running
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Figure 6. Effect of climate and serotype drivers on future dengue transmission dynamics. (a) Mean annual empirical dengue transmission rates by district obtained
from the panel regression model assuming a linear dependence of log transmission on precipitation and a Brière functional form for average temperature. The
present-day values obtained using the mean climate data from 2010 to 2016 are shown as black circles. Future mean transmission rates obtained from projections
of average temperature and precipitation are shown for the time periods 2040–2059 (blue triangles) and 2080–2099 (yellow diamonds). (b) Total number of cases
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the panel regressionmodel with all districts included. The coeffi-
cients on the climate variables used for the transmission rate
projections for these three districts, however, were set to those
obtained by the regression model when these three districts
were excluded. Furthermore, in obtaining the future values, it
is important to note that only climatological variables were
modified in the panel regression model and all location- and
time-specific dummy variables were held constant.

In order to better interpret these predictions for the empiri-
cal transmission rate, we re-run the TSIR model for 2017, as was
done in §2.3.1., using the projected values for the transmission
rate obtained from the panel regression model with climate data
for 2080–2099. Furthermore, because serotype invasion was
found in §2.3.2. to be a potentially important driver of outbreak
dynamics, we also consider the compound scenario in which
the same climatological factors are considered and in addition
the baseline number of susceptible individuals is increased to
S0 (see equation (2.2)). Consequently, these simulations are rel-
evant for considering the effect of altered climate variables
and/or the introduction of a previously absent serotype when
all other demographic variables including birth rates and popu-
lation levels are held constant.

In figure 6b, the total numberof cases for theyear 2017under
these various scenarios are reported for each district. The blue
circles and solid blue line correspond to the actual case numbers
adjusted for the reporting rate ρ obtained from the TSIR model
fitted to the case data from the years 2010 to 2016; the yellow cir-
cles and dashed-dotted yellow line correspond to the predicted
case numbers when the transmission rate obtained from the
panel regression model with 2080–2099 climate data is used;
the red circles and dashed red lines correspond to the scenario
of simulated serotype invasion shown in figure 4e, in which
only the initial number of susceptible individuals is adjusted
by the district-specific multiplicative factor reported in
figure 4d; and the green circles and solid green line correspond
to the scenario of both 2080–2099 climate and serotype invasion.
Once again, substantial variation is observed across districts,
but critical increases in case numbers under the compound cli-
matological and serological driver scenario are observed in a
number of districts, including the most populous district of
Colombo in which the national capital city of the same name
is located. In quantitative terms, in Colombo the total predicted
case numbers under the compounddriver scenario are 2.84-fold
and 2.44-fold higher than those predicted by the scenarios of
2080–2099 climate and serotype invasion alone, respectively.
Dengue incidence across the year is shown for Colombo in
figure 6c under these same conditions, aswell as the predictions
of the TSIR model for 2017 following training on the 2010–2016
data only (the dashed black curve). Figure 6c is reproduced for
all districts in the electronic supplementary material, figure S9.
2.5. Caveats
This work provides an interdisciplinary analysis of the
potential drivers of dengue dynamics in Sri Lanka, and
consequently it is important to explicitly mention a number
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of caveats that should be considered when interpreting the
findings presented herein. Firstly, as described in the Material
and methods section, the panel regression model assumes a
Brière functional form for the average temperature in deter-
mining the empirical transmission rate. This was done to
capture the non-monotonic thermal responses generally
observed for mosquito and viral traits [33]. One immediate
issue with this approach, however, is the shortage of data
points on the decreasing portion of the Brière curve (see the
electronic supplementary material, figure S5c). Although we
lack observational data to populate this curve owing to the
limited range of average temperatures contained within the
regression panel, we hypothesize that above a critical value,
increasing values of average temperature would correlate
negatively with log-transmission rate. Indeed, several of the
critical temperature values estimated in [33] lie above the
range of average temperature values measured in our clima-
tological dataset. Somewhat reassuringly, however, because
the predicted future values of average temperature (see the
electronic supplementary material, figure S2) generally lie
below the critical thermal response temperature obtained
for the panel regression model (see the Material and methods
section), the assumption of either a Brière or linear functional
form for average temperature yielded similar predictions for
log-transmission rates. One interesting exception is the dis-
trict of Nuwara Eliya, whose yearly average temperature
values in the present day as well as projected future values
generally lie below the value of Tmin determined for the
Brière function (see the electronic supplementary material,
figure S2). The assumption of a Brière functional form for
average temperature in the regression model consequently
results in minimal projected changes in log transmission
(figure 6a), while a much greater increase is projected when
a linear functional form is used (electronic supplementary
material, figure S6).

Significant variation across districts was obtained for the lag
times between dengue case numbers and both average temp-
erature and precipitation (see the electronic supplementary
material, figure S4), and these values were also sensitive to
the number of years of data considered by the panel regression
model. In order to capture relevant long-term trends, we chose
to develop the panel regression model using the maximum
number of years of epidemiological data available prior to
the epidemic year (2010–2016), and assumed a single lag
value between the case data and climate variables for the
entire country by selecting that which occurred most frequently
across districts. Nevertheless, if more accurate dengue case pre-
dictions based on future climate projections for a specific
district are desired, it may be more appropriate to use dis-
trict-specific as opposed to national lag values for the climate
variables, and to adjust the years considered in the panel
regression model accordingly.

Furthermore, given the absence of serotype data, it is
important to carefully consider the limitations of the serologi-
cally-motivated analysis in §§2.3.2. and 2.4. As previously
mentioned, modelling an effective increase in population-
level susceptibility or an increase in the transmission rate β
yield similar increases in predicted case numbers using the
TSIR model over short-time periods. These scenarios may
represent additional cases owing to secondary infections
and potential increases in the severity of secondary DENV
infections relative to primary ones [2]. While both of these
scenarios are relevant to multi-strain pathogenic systems,
they highly simplify the reality of DENV infections in Sri
Lanka, which include endemic co-circulation of four viral
strains and temporary periods of cross-immunity between
heterologous strains [2]. There is evidence, however, that for
multi-year periods, one DENV strain dominates and is even-
tually replaced by another serotype (see case data from
Thailand [2] and Puerto Rico [32], for instance). In that
sense, at specific periods in time corresponding to strain
replacement, it may be justified to think about DENV infec-
tion as a two-strain system, although in order to model
long-term serotype interaction dynamics this approach is
clearly not justified. Therefore, given the absence of sero-
type-specific case data but clinical evidence of serotype
invasion, our approach provides a starting point for analysis
despite its numerous limitations. Furthermore, in our analyti-
cal consideration of the potential magnitude of case
importation, it was assumed that R0 was identical for pri-
mary and secondary dengue infections. Although this may
be correct to first order, it is certainly possible that trans-
mission rates may vary between serotypes. Additionally, in
the derivation of the multiplicative increase factor for the
number of susceptible individuals (see the Material and
methods section and equation (2.2)), it was assumed that
the number of imported cases was much smaller than the
number of autochthonous ones. Although this assumption
may hold true in regions where dengue is endemic, it may
not be valid in non-endemic areas.

Finally, as described in §2.4., projections of future trans-
mission rates and dengue case numbers were obtained by
considering modifications to the climatological and serological
drivers of the TSIR model only. In other words, inherent in
these projections are assumptions of unchanging location- and
time-specific dummy variables in the panel regression model,
as well as unchanging demographic patterns including birth
rates and population levels in the TSIR model. Consequently,
our simulations are designed to examine the effect of a changing
climate and serotype invasion on dengue transmission all other
things being equal, and care should be taken when basing claims
about future dynamical trends on these results.
3. Conclusion
Dengue is a geographically widespread disease of major
clinical significance, whose transmission dynamics are well
known to be modulated by a number of drivers including the
local climate, human ecology and behaviour, and biological
interactions between the four distinct primary serotypes.
Particularly in light of the absence of vaccines or antivirals for
this disease, there remain important opportunities to analyse
the transmission dynamics of dengue in a holistic fashion by
integrating these distinct and complex drivers. In this work,
we do so in the context of the largest ever dengue epidemic
in Sri Lanka during 2017, specifically considering climate,
serotype invasion, and human mobility as epidemic drivers.

Sri Lanka provides a particularly powerful location for
studying the effect of climate on dengue transmission as a
result of highly variable rainfall patterns within the island.
By developing a climatologically informed TSIR model, we
found, in agreement with previous work, that seasonal clima-
tological conditions play an important role in establishing
yearly dengue transmission patterns in Sri Lanka, however
they were unable to independently account for the severity
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of the 2017 epidemic. Motivated by hospital reports of a shift
in predominant serotype from DENV1 to DENV2 midway
through 2016, we modified a simplistic two-strain model
for dengue transmission and demonstrated that increasing
the number of susceptible individuals reconstructed by the
TSIR model at the start of the epidemic year in order to
account for secondary infections, was sufficient to capture
the epidemic case numbers of 2017. Additionally, evidence
of significantly reduced agricultural output during 2017 as
a result of a series of severe climatic events suggests that a
careful analysis of internal migration during this year as a
driver of increased dengue transmission may be warranted.
Critically, our simulations also suggest that the combination
of climatological changes and serotype invasion can create
compound effects on dengue transmission, resulting in even
greater predicted case numbers than when only a single
driver is assumed to be present. This possibility of synergistic
interactions between disease drivers further reinforces the
need to consider the epidemiology of dengue holistically.

To conclude, a number of important studies have demon-
strated a role for the various drivers presented in figure 1 in
the outbreak dynamics of dengue [1,2,13–15,23,30–32]. Here,
we establish a holistic framework for teasing apart and ana-
lysing these various drivers, thus bringing together much
of this prior work in the context of the 2017 Sri Lankan
dengue epidemic. Such a multifaceted analysis may prove
to be increasingly important in the face of changes in
human ecology driven by urbanization and development,
as well as climate change.
4. Material and methods
4.1. Dengue case data
Dengue case data were obtained from the publicly available dis-
ease surveillance dataset provided online by the Epidemiology
Unit of the Sri Lankan Ministry of Health [34]. Cases are defined
based on the presentation of a required number of symptoms.
Cases are reported based on three types of surveillance: passive
surveillance (submission of a notification card to a Medical Offi-
cer of Health), sentinel site surveillance (cases entered into web-
based system by hospital officer), and special surveillance (used
to identify the dynamics of dengue fever and dengue haemorrha-
gic fever). Monthly case data ranging from January 2010 to
December 2018 were recorded for each of the 25 districts.

4.2. Demographic data
District-level demographic data for Sri Lanka were obtained from
the CEIC database [35] as well as the Department of Census and
Statistics of Sri Lanka [36].

4.3. Climatological data
Daily surface air temperature data were obtained from the ERA-5
global atmospheric reanalysis dataset [37]. The native 0.25 degree
gridded dataset was interpolated bilinearly to a 0.05 degree grid.
Temperature data for a given district were obtained by averaging
the values at all grid points located within its geographical limits.

Daily precipitation data were obtained from the Climate
Hazards Group InfraRed Precipitation with Station (CHIRPS)
0.05 degree gridded dataset [38,39]. As with temperature, pre-
cipitation data for a given district was obtained by averaging
the values at all grid points located within its geographical limits.

Monthly SPEI data with a three-month time scale were
obtained from the 1 degree gridded SPEI Global Drought
Monitor dataset [40]. The time series of SPEI was computed by
averaging SPEI values of all pixels within the island boundaries.

Climate projection data were obtained from the CMIP5
multi-model means dataset MMM-v2 which averages over 38
models under Representative Concentration Pathway 8.5 [41].
The native 2 degree gridded dataset was interpolated
bilinearly to a 0.05 degree grid. As for the reanalysis data, the
value for a given district was obtained by averaging the values
at all grid points located within its geographical limits.
Projections for temperature Tfut(i, m) during month m in
district i in the future period of interest were obtained using
the formula

Tfut(i, m) ¼ Tpres(i, m)þ (TCMIP5fut(i, m)� TCMIP5pres(i, m)): (4:1)

In equation (4.1), Tpres(i, m) and TCMIP5pres(i, m) are the reana-
lysis and CMIP5 model present-day values for surface air
temperature, where the present day is taken to be the average
value over the 20 year period of 1995–2014. Similarly, TCMIP5fut(i,
m) is the CMIP5 model value of surface air temperature for the
future period of interest.

Projections for precipitationPfut(i,m) duringmonthm in district
i in the future period of interest were obtained using the formula

Pfut(i, m) ¼ Ppres(i, m)�(PCMIP5fut(i, m)=PCMIP5pres(i, m)): (4:2)

In equation (4.2), Ppres(i, m) and PCMIP5pres(i, m) are the reana-
lysis and CMIP5 model present-day values for precipitation,
where the present day is taken to be the average value over the
20 year period of 1995–2014. Similarly, PCMIP5fut(i, m) is the
CMIP5 model value of precipitation for the future period of
interest.

District-level yearly plots of average temperature and pre-
cipitation corresponding to the present day (2010–2016)
mean as well as the 2040–2059 and 2080–2099 projections are
provided in the electronic supplementary material, figures S2
and S3, respectively.

4.4. Agricultural data
Data for annual district level cultivated area and rice production
were obtained from the Department of Census and Statistics
of Sri Lanka [36]. The data included two cultivation seasons:
Maha from September to March, and Yala from May to August.
Annual values were obtained by summing the cultivated area
and production data for the two cultivation seasons every year.

4.5. Development of the climatologically informed
transmission model

SIR models form a family of simple mass-action epidemic models
in which individuals within an assumed well-mixed population
transition between the categories of susceptible (S), infected (I) or
recovered (R) depending on their disease status to a given patho-
gen [42]. In this framework, transitions between categories are
governed by the demographic processes of birth (which feeds
the population of susceptible individuals) and death, as well as
the disease transmission rate β driving susceptible individuals
into the infected category and the recovery rate γ at which indi-
viduals move from the infected to recovered class. For both
directly- and vector-transmitted diseases, the transmission rate
β is frequently seasonal, reflecting yearly variation in disease dri-
vers such as climatic conditions or demographic considerations
such as the timing of school terms [22].

The stochastic, discrete-time TSIR model [22] provides a com-
putationally inexpensive, highly tractable method for calibrating
these seasonally varying, continuous time SIR models against
time-series case data [42,43], and has previously been used to
model the temporal dynamics of DENV [2,8]. From time series
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of disease case counts, births and total population numbers, the
TSIR model constructs estimates for the susceptible population
and transmission rate at discrete time points corresponding to
the generation time of the disease in question. In this work,
numerical implementation of the TSIR model was performed
using the R package tsiR [42]. Following [43], we seek to formu-
late a regression model to estimate the effect of the climatological
variables of average temperature and precipitation on the
transmission rate β constructed by the TSIR model.

4.5.1. Time-series susceptible-infected-recovered model fitting
and parameter details

Inputs for the TSIR model included district-level dengue case data
(described in §4.1.) as well as district-level population levels and
births for the relevant time periods (obtained from the sources
described in §4.2.). A linear regression model was used for suscep-
tible reconstruction, resulting in a constant reporting rate ρ for
each fit performed. The values of ρ obtained from the TSIR
model fitted to the case data from 2010 to 2016 for each district
are plotted in the electronic supplementary material, figure S7.
The mixing parameter α (described in further detail in §4.5.2.
below) was left flexible and hence was fitted by the function.
The generalized linear model family chosen to estimate α and
the transmission rate β was Poisson with a log link [42].

4.5.2. Determination of the empirical transmission rate
The empirical transmission rate βt for each generation time point
by district was used as the dependent variable in a panel
regression. From the output of the TSIR model, the empirical
transmission rate is calculated as

bt ¼
Itþ1Nt

Iat St
, (4:3)

where I denotes the number of infected individuals, S denotes the
number of susceptible individuals, N denotes the district popu-
lation and α is a constant that captures heterogeneities in
population mixing and the discretization of a continuous time pro-
cess. S, α and the reporting rate ρ, which allows for a corrected
estimate of the true case numbers, are reconstructed from the dis-
trict-specific output of the TSIR model. The time period separating
time points t and t + 1 is the generation time of dengue, which is
taken to be two weeks [2]. For certain time steps, the estimated
values of βt were undefined depending on the corresponding
values of infected individuals I at the relevant time points t and
t + 1. In a first instance to mitigate this effect, the transmission
rate was assigned a value of βt = 0 when the number of infected
individuals at the next time point was zero (It+1 = 0). Furthermore,
following the determination of the empirical transmission rate
time series, undefined values of βt were replaced with either the
mean value of surrounding finite values of β or simply βt−1,
depending on the position of t in the panel time series.

When constructing the panel regression model, districts for
which the R2 value associated with the linear regression of the
transmission rate time series derived from the TSIR model against
the empirical transmission rate time series was R2≤ 0.5 were
omitted (three districts). These districts (Kilinochchi, Mannar
and Mullaitivu; indicated as the shaded areas in the electronic
supplementary material, figure S4) share the common feature of
low case numbers, and resulted in empirical transmission rates
with high variance and irregular temporal dynamics.

4.5.3. Determination of the lag period for climate variables
Unlike the directly transmitted infection varicella considered in
[43], the vector-borne nature of dengue implies that its trans-
mission dynamics depend on prior as opposed to contemporary
climatic conditions. In order to estimate the correct lag for the cli-
mate variables considered here, for each of the districts retained in
the regression model, the empirical transmission rate time series
were cross-correlated against each the average temperature and
precipitation time series (interpolated to also be structured at
time points coinciding with the generation time of dengue) for
the pre-epidemic years of 2010–2016. Lag times of up to one
year were considered in each cross-correlation, and only such
that the climate variables led the empirical transmission rate.
Using a peak finding algorithm, the local maxima and minima
of the cross correlation function were subsequently located, and
statistically significant values retained. Finally, from this subset,
the shortest lag time corresponding to a local cross-correlation
maximum or minimum was selected as the appropriate lag for
that district and climate variable. These lag values are shown for
all districts retained in the regression model in the electronic sup-
plementary material, figure S4, for both average temperature
(figure S4a) and precipitation (figure S4b). Note that the same
three districts omitted from the panel regression model were
also excluded from these calculations as a result of the irregular
temporal dynamics of their empirical transmission rate time series.

Once the appropriate district-level lag value was determined
for each climate variable, the national lag value was chosen as the
most frequently occurring district-level lag. For the subsequent
regression model, the climate variable-specific national lag
value was used for all districts. In practice, for the present-day
reanalysis climate data, this lag was implemented by shifting
the time series in order to include data from the previous year.
For the future climate projections over the two 20 year time
periods, the lag was implemented by rotating the annual cycle
by the appropriate delay period. In the case of average temperature,
a 10week lagwas found. This value is in reasonable agreementwith
the 10week lag between temperature and incidence assumed in [33],
which was selected to account for a six week lag between tempera-
ture and oviposition based off findings forAedes aegypti in Ecuador
[13] as well as an assumed four week period to account for trans-
mission, disease development, medical-care seeking, and case
reporting. In the case of precipitation, a four week lag was found,
which again is in reasonable agreement with the lag of three
weeks between precipitation and ovitrap data in [13]. Although
beyond the scope of the present work, we note that several disease
transmission models explicitly include climate-driven vector life
cycle dynamics, and for examples of such work the interested
reader is referred to [44,45].
4.5.4. Development of the panel regression model
Finally, the regression panel was constructed with log(βt + 1) as the
dependent variable, and the appropriately lagged climate par-
ameters as the dependent variables, yielding the regression model

log (bt,i þ 1) ¼ b1f (Tavglag,t,i)þ b2f (Preciplag,t,i)þ gi,m

þ di,y þ et,i, (4:4)

where t denotes the time and i denotes the district. Location-by-
month dummies (γi,m) are included to remove location-specific
seasonal variation in transmission which may be confounded by
other seasonally varying factors. Location-by-year dummies (δi,y)
are included to remove location-specific trends in transmission
that may be spuriously correlated with climate. Standard errors
were clustered at the district level.

In order to determine appropriate functional forms for the cli-
mate variables in equation (4.4), non-parametric binned models of
the lagged average temperature andprecipitationwere constructed.
The results from these models with 95% confidence intervals for
precipitation and average temperature are shown in the electronic
supplementary material, figures S5a and S5b, respectively.

Although precipitation is critical in the mosquito life cycle for
the provision of breeding sites as well as the aquatic larval and
pupal stages, its quantitative effect on vector viability is less
well established. By contrast, numerous studies have
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experimentally determined the effect of average temperature
on various biological traits of mosquitoes and, when appropriate
for the disease in question, parasites or viruses [6,33,46–49].
In general, mosquito and virus traits that drive disease trans-
mission exhibit non-monotonic thermal responses, increasing
initially as a function of temperature before decreasing, following
peak trait performance at a critical temperature value [33].

Motivated by this, we fitted the temperature response to a
Brière function:

fBri�ere(Tavg) ¼ cTavg(Tavg� Tmin)(Tmax � Tavg)1=2, (4:5)

following [33]. Caveats to this fitted selection are discussed in
§2.5. Next, we fitted equation (4.5) to the data in the electronic
supplementary material, figure S5b, assuming that above the
fitted maximum and minimum temperatures there is no effect
of average temperature on log transmission. We impose a value
of Tmax = 38.63°C, the average value of the fitted maximum temp-
erature values for all A. aegpyti traits reported in the electronic
supplementary material, table B of [33], and obtain parameter
estimates of c = 4.99 × 10−4 and Tmin = 25.27°C from this fit.
The resulting curve is shown in the electronic supplementary
material, figure S5c along with the filled circles corresponding to
the temperature response points from the binned model.

Finally, we obtain two possible regression models for
log-transmission rate on the lagged climate variables of interest
by considering either linear responses in both average tempera-
ture and precipitation (i.e. f (Tavglag,t,i) = Tavglag,t,i and
f (Preciplag,t,i) = Preciplag,t,i), or a Brière response for average
temperature and a linear response for precipitation (i.e.
f (Tavglag,t,i) ¼ fBri�ere(Tavglag) (equation (4.5)) and f (Preciplag,t,i) =
Preciplag,t,i). The regression tables for both models are shown in
the electronic supplementary material, table S1.

Because the predicted future values of average temperature
generally lie below the critical thermal response temperature
(see the electronic supplementary material, figures S2 and S5c),
both models yield similar predictions for the effect of future
average temperature on log transmission (see the electronic sup-
plementary material, figure S6). The predictions for the district of
Nuwara Eliya provide an interesting exception to this pattern, as
discussed in §2.5. Ultimately, because of the more realistic predic-
tion of the thermal response of the biological traits provided by
the Brière temperature function, the first regression model of a
linear response in precipitation and a Brière function for average
temperature is used in the analysis of the main text.
4.6. Estimation of the fractional increase in susceptible
individuals at the onset of serotype invasion for
the two-strain susceptible-infected-recovered
model

We consider a simplified two-strain system based on that
proposed in [23], shown schematically in the electronic sup-
plementary material, figure S1b, in order to study the possibility
of a population-level susceptibility increase owing to serotype
invasion. Let S denote the category of individuals susceptible to
infection by both strains, I1 and I2 denote individualswith primary
infections of serotype 1 or 2, respectively, and R1 and R2 denote
individuals recovered from primary infections with serotypes 1
or 2, respectively. I12 and I21 denote individuals previously recov-
ered from infections with serotypes 1 or 2, now experiencing a
secondary infection with serotypes 2 or 1, respectively, and R
denotes the class of individuals recovered from secondary infec-
tions. The total number of individuals is N. The birth and death
rate are denoted by μ, and γ is the recovery rate from infection.
Finally, ρ1 and ρ2 denote the importation rate of exogenous infec-
tions of serotype 1 and 2, respectively. Additionally, we make a
few simplifying assumptions compared to the model described
in [23]. First, we assume that the transmission rate β is identical
for primary and secondary infections, implying that R0, or the
number of secondary infections arising from a single primary
infection in an entirely susceptible population, is identical in
both cases [50]. This assumption still allows for the possibility of
antibody dependent enhancement, or facilitatedwithin-host repli-
cation of a heterologous viral strain upon secondary infection as a
result of cross-reactive antibodies generated by a previous
exposure [51]. Furthermore, the assumption of a uniform R0 has
been made previously in two-strain models of DENV infection
[51], and it has been demonstrated that complex transmission
dynamics can be achievedwithout asymmetries inR0when effects
of temporary cross-immunity between heterologous strains are
considered [52]. As an additional modification to the model in
[23], we ignore short periods of cross-immunity as we are primar-
ily concerned with the initial conditions at serotype invasion as
opposed to the longer-term dynamics.

Prior to the re-emergence of serotype 2, the ordinary differential
equations governing this mass action model are

dS
dt

¼ � b

N
SI1 þ m(N � S), (4:6)

dI1
dt

¼ b

N
SI1 � (gþ m)I1 (4:7)

and
dR1

dt
¼ gI1 � mR1: (4:8)

At steady state, these equations yield S* =N/β(γ + μ),
I�1 ¼ mN=(gþ m)[1� (gþ m)=b], and R�

1 ¼ gN=(gþ m)
[1� (gþ m)=b].

At the moment of importation of ρ2 N serotype 2 infections,
the governing differential equations become

dS
dt

¼ � b

N
S(I1 þ r2N)þ m(N � S), (4:9)

dI1
dt

¼ b

N
SI1 � (gþ m)I1, (4:10)

dI2
dt

¼ b

N
Sr2N, (4:11)

dR1

dt
¼ gI1 � mR1 � b

N
R1r2N (4:12)

and
dI12
dt

¼ b

N
R1r2N: (4:13)

Consequently, gathering terms from equations (4.9)–(4.13)
associated with the generation of newly infected individuals,
we see that the total rate of generation of new infections at this
time point is given by

b

N
[SI1 þ (Sþ R1)r2N], (4:14)

which can be re-expressed as the product of the population-
normalized transmission rate and the total number of susceptible
and infected (I1 + ρ2N) individuals at the previous time step.
Doing so we obtain

b(I1 þ r2N)
N

Sþ R1 1� 1

1þ r2N
I1

0
BB@

1
CCA

2
664

3
775: (4:15)

Assuming the number of imported cases is small relative to
the number of autochthonous infections (i.e. ρ2N≪ I1), the
expression in equation (4.15) simplifies to

b(I1 þ r2N)
N

Sþ R1r2N
I1

� �
: (4:16)
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Recognizing that at this time point R1 ¼ R�
1, I1 ¼ I�1 and S = S*

from the single strain equilibrium result, the number of suscep-
tible individuals at the time of importation of serotype 2
infections can be expressed as

S0 � Sþ R1r2N
I1

� S� 1þ r2gb

m(gþ m)

� �
: (4:17)
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