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Abstract We propose a novel gaze-control model for

detecting objects in images. The model, named ACT-DETECT,

uses the information from local image samples in order to

shift its gaze towards object locations. The model consti-

tutes two main contributions. The first contribution is that

the model’s setup makes it computationally highly efficient

in comparison with existing window-sliding methods for

object detection, while retaining an acceptable detection

performance. ACT-DETECT is evaluated on a face-detection

task using a publicly available image set. In terms of

detection performance, ACT-DETECT slightly outperforms the

window-sliding methods that have been applied to the face-

detection task. In terms of computational efficiency, ACT-

DETECT clearly outperforms the window-sliding methods: it

requires in the order of hundreds fewer samples for

detection. The second contribution of the model lies in its

more extensive use of local samples than previous models:

instead of merely using them for verifying object presence

at the gaze location, the model uses them to determine a

direction and distance to the object of interest. The

simultaneous adaptation of both the model’s visual features

and its gaze-control strategy leads to the discovery of

features and strategies for exploiting the local context of

objects. For example, the model uses the spatial relations

between the bodies of the persons in the images and their

faces. The resulting gaze control is a temporal process, in

which the object’s context is exploited at different scales

and at different image locations relative to the object.

Keywords Gaze control � Computationally efficient

object detection � Active vision � Evolutionary algorithms

Introduction

Humans typically detect an object quickly and accurately

by exploiting its visual context. Violations of the context

impair the speed and accuracy of the detection (cf. [5, 6,

18, 26]). To detect an object, humans exploit its (statistical)

relations to other scene elements, which are due to the

structure of the world [5, 6, 13, 18, 26, 37, 38, 50, 52, 55].

Object-Detection Methods

Remarkably, standard artificial object-detection methods

typically do scan the entire image in search for objects of

interest. For instance, window-sliding methods (e.g., [35,

42, 53, 66, 70, 74, 78]) employ exhaustive search to

evaluate the presence of an object at all locations of an

evenly spaced grid. They slide a window over the image,

extracting a local sample at each grid point and classifying

it either as an object or as a part of the background. Con-

sequently, window-sliding methods extract a large number

of local image samples.

Several object-detection methods were proposed in an

attempt to limit the number of sample locations at which

G. C. H. E. de Croon (&)

Micro Air Vehicle Lab, Control and Simulation Department,

Technical University Delft, Delft, The Netherlands

e-mail: g.c.h.e.decroon@tudelft.nl

G. C. H. E. de Croon

Department of Artificial Intelligence, Radboud University

Nijmegen, Nijmegen, The Netherlands

E. O. Postma � H. J. van den Herik

Tilburg Innovative Computing Center, Universiteit van Tilburg,

Tilburg, The Netherlands

e-mail: e.o.postma@uvt.nl

H. J. van den Herik

e-mail: h.j.vdnherik@uvt.nl

123

Cogn Comput (2011) 3:264–278

DOI 10.1007/s12559-010-9093-9



object presence is evaluated. Typically, these methods

proceed in two stages: (1) exhaustively scan the image to

detect interest points, and (2) evaluate local samples only

at the interest points. We briefly describe three methods

employing these two stages: constellation-based methods,

object-context methods, and region-of-interest methods.

First, constellation-based methods (cf. [10, 11, 20, 22,

23, 29, 41, 43, 47, 80, 81, 82]) detect objects by detecting

constellations of their parts. For the first stage they calcu-

late interest values for local samples at all points of an

evenly spaced grid (typically processing the entire image).

Examples include the calculation of the entropy of grey-

scale values at multiple scales [31], and difference-of-

Gaussian responses (in the SIFT-approach by [44]). Sub-

sequently, at the interest points, the methods extract new

local samples that are identified either as a part of the

object or as a part of the background. An object is recog-

nised if there is a constellation of recognised parts that is

sufficiently similar to a learned constellation object model.

Second, object-context methods exploit the local spatial

context of an object during scanning. These methods per-

form an initial scan to identify probable object context

locations [4, 21, 27, 28, 35, 56, 67, 83], and subsequently

apply an object classifier at these locations only, to verify

the presence of an object.

Third, region-of-interest methods do not scan the entire

image for object detection, but use a coarse global repre-

sentation of the image in order to determine a region of

interest [49, 76, 77]. The region of interest can then be

(exhaustively) scanned in order to find the objects of

interest [49].

In a different spirit from the object-detection methods

mentioned earlier, [39, 40] reduce the number of sample

evaluations by successively excluding regions of the image

with a branch-and-bound scheme. In this manner the

computational effort necessary for object detection can be

significantly reduced.

Although the aforementioned object-detection methods

limit the number of image samples evaluated with the

object classification function, they do not exploit the

coarse-scale and fine-scale scene elements to a degree that

is comparable to human observers. In that respect, object-

detection methods may incorporate ideas from gaze-control

models to be discussed in the next section.

Gaze-Control Models

Visual attention mechanisms allow humans to search for

objects efficiently. Many models for human visual attention

have been introduced, e.g., [7, 8, 30, 57, 59, 61, 64, 73, 77].

Many of these models process the entire image to deter-

mine interest points that can be used by any computer

vision algorithm for subsequent processing. A subset of

visual attention models focuses on the processing of only

local samples, for example, [3, 34, 36, 54, 62, 68, 75]. In a

cornerstone paper on active vision,1 [2] suggested to use

such gaze-control models for the task of object detection.

He argued that such models can use contextual cues to shift

the gaze to probable object locations. For example, the

corner of a table provides a contextual cue to the location

of an object standing on the table (e.g., a mug).

Following this idea, it is clear that the main potential

advantage of gaze control for object detection is a higher

computational efficiency. Gaze-control models perform an

informed search for an object. As a result, they can find

objects by extracting far fewer samples than in an

exhaustive search. Computational efficiency is important

for object-detection tasks with time constraints, such as

object detection on a miniature robotic platform (cf. [19,

65]), or object search in large image databases. Of course,

the goal of gaze control is to obtain a higher computational

efficiency, while retaining as good a detection performance

as possible.

A small group of gaze-control models has been pro-

posed purely for performing the task of object detection.

Some studies [48, 62, 63, 72, 84] introduced gaze-control

models for detecting a specific object in a visual scene.

These models mainly shifted their gaze to the part of the

visual scene that was most similar to the object. Other

studies [24, 32, 46, 69] investigated gaze-control models

that had to find black geometrical shapes (triangles or

squares) in artificial images with a white background,

under various amounts of noise. These studies emphasised

that the gaze-control models should not follow a predefined

gaze-control strategy, but should adapt their strategy to the

object-detection task at hand. In more recent work, the

gaze-control model in [12] extracted shape-based features

at all positions in an image and combined this with bottom-

up saliency and top-down cues in order to generate an

attention map. The model built this map once and then

shifted its gaze to the most promising locations in turn. The

areas of attention overlapped for 92% with the eye move-

ments of human observers, although this correspondence

decreased after the first observation. Finally, in [79] a gaze-

control model was presented that combined bottom-up and

top-down cues with the modelling of temporal aspects of

gaze control. The bottom-up visual saliency of the image

was merged with an object location prior to form an

attention map. Gaze control consisted of an iterative pro-

cess of planning a gaze location, checking for object

presence, and updating the attention map. Since the gaze-

control model extracted visual features at all positions in

1 Ballard himself used the term animate vision, to prevent confusion

with active sensors, such as laser rangefinders. However, active vision
remains the most commonly employed term.

Cogn Comput (2011) 3:264–278 265

123



the image and reasoned about all permutations of actions, it

involved a considerable computational effort.

Although the gaze-control models mentioned earlier

have contributed to the understanding of gaze control, none

of them are competitive yet with existing window-sliding

methods for object detection. Most of the models have

been made for modelling and explaining human eye

movements. For determining regions of interest, i.e.,

potential target locations of eye movements, they extract

many different local features exhaustively from the image.

Consequently, the computational load is large. As a case in

point, in [79] processing a single image requires 212 s.

Contributions

In this article, we introduce a gaze-control model, named

ACT-DETECT, which performs the task of object detection by

processing local image samples.

In comparison with existing models of gaze control,

ACT-DETECT makes two main contributions. The first con-

tribution is that the model’s setup makes it computationally

highly efficient: in comparison with standard window-

sliding methods only very few samples are extracted from

an image to perform object detection. This computational

efficiency does not imply that the detection performance is

below par. On the face-detection task studied in this article,

ACT-DETECT actually slightly outperforms existing object-

detection methods. The second contribution of the model

lies in its more extensive use of local samples than previous

models: instead of merely using them for verifying object

presence at the gaze location or for determining likely

object locations, the model uses them to determine a

direction and distance to the object of interest. The

simultaneous adaptation of both the model’s visual features

and its gaze-control strategy leads to the discovery of

features and strategies for exploiting the local context of

objects. For example, in contrast to existing gaze-control

models, the model can use the spatial relations between the

bodies of the persons in the images and their faces. The

resulting gaze control is a process over time, in which the

object’s context is exploited at different scales and at dif-

ferent distances from the object.

The remainder of the article is structured as follows. The

gaze-control model is described in ‘‘ACT-DETECT’’. The

model is adapted to a face-detection task, which is

explained in ‘‘Setup Face-Detection Experiment’’. Subse-

quently, in the ‘‘Performance Face-Detection Experiment’’,

ACT-DETECT’s performance is compared with that of stan-

dard window-sliding methods. Then, its visual features and

gaze-control strategy are analysed in ‘‘Analysis Face-

Detection Experiment’’. We compare the computational

effort of ACT-DETECT with that of window-sliding methods

in ‘‘Computational Efficiency’’. Subsequently, we discuss

the results and draw conclusions in ‘‘Discussion and

Conclusion’’.

ACT-DETECT

The gaze-control model ACT-DETECT consists of two mod-

ules: a feature extraction module and a controller module

(see Fig. 1). ACT-DETECT operates on a multi-scale image

representation (pyramid) consisting of s scaled versions of

the input image. The multi-scale representation allows ACT-

DETECT to perform a coarse-to-fine strategy and to use

information on an object’s location at different scales. The

choice for the number of image scales, s, depends on the

task (in the figure s = 3). The feature-extraction module

extracts informative low-level visual features (e.g., ori-

ented edges) from a local region of the multi-scale repre-

sentation. The types and locations of the features are

adaptable parameters. It outputs a numerical representation

indicating the presence of these features within the local

region. The controller module maps the numerical repre-

sentations to actions (gaze shifts) by means of a nonlinear

function with adaptable parameters. The adaptable

parameters of ACT-DETECT are scale specific. So although

the feature extraction and controller modules at each scale

are identical, their parameters may be different.

The object-detection process in an image proceeds as

follows. ACT-DETECT starts a detection sequence at a random

location at the coarsest scale in the image pyramid. It then

performs t gaze shifts (solid arrows) and moves down to

the next, more detailed, scale (thick lines). At the next

scale, these steps are repeated. Provided that the adaptive

parameters have appropriate values, ACT-DETECT progres-

sively refines its search for the object. The run ends when

ACT-DETECT has made t gaze shifts on the finest scale. Since

ACT-DETECT only takes local samples at each scale, it is in

principle not necessary to construct the entire multi-scale

representation for each image.

On the basis of findings in an earlier study [17], in this

paper we employ s = 2 scales, the coarse scale and fine

scale, respectively. We refer to the gaze-control model with

Fig. 1 Overview of ACT-DETECT. The pyramid on the left shows that

ACT-DETECT exploits visual features on different image scales. The

right part of the figure illustrates the core concept of ACT-DETECT: it

has a closed loop of extracting visual features and performing gaze

shifts. For a more detailed explanation we refer the reader to the text
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the parameters for the coarse scale as the coarse-scale

model and to the gaze-control model with the parameters

for the finer scale as the fine-scale model.

The right part of Fig. 1 illustrates the core concept of

gaze control for object detection: the model has a closed

loop of visual inputs and gaze shifts. The figure shows for

the most detailed scale how ACT-DETECT takes a local image

sample from the gaze window (box), centred at the current

gaze location (x). The model extracts visual features from

this sample and passes the feature values to the model’s

controller, which maps the features to a relative gaze shift

in the image to the new gaze location (o). In our experi-

ments, ACT-DETECT makes t = 5 gaze shifts per scale.2

The final gaze location at the finest scale is considered a

candidate object location. We use a standard object clas-

sifier to verify whether this location actually contains an

object.

Below the implementation details are discussed. The

details regard the feature extraction module (section

‘‘Feature Extraction Module’’), the controller module

(section ‘‘Controller Module’’), and the object classifier

that verifies the presence of an object at the final gaze

location (section ‘‘Object Classifier’’). Finally, we discuss

the evolutionary algorithm that is used for optimising the

adaptable parameters of the visual feature extraction and

controller modules (section ‘‘Evolutionary Algorithm’’).

Feature Extraction Module

To facilitate comparison with existing window-sliding

methods, the feature-extraction module employs features

that are often used by such methods: the integral features

introduced in [78]. The main advantage of these features is

that they can be extracted with little computational effort,

independent of their scale.

ACT-DETECT extracts n integral features, where n depends

on the task. Each integral feature has a type and an area in

the gaze window, both of which can be optimised for the

task and the scale at hand. The top row of Fig. 2 shows the

types of integral features that we use in our object-detec-

tion experiments. The features can occupy any area inside

of the gaze window.

The bottom row of Fig. 2 (left) shows an example fea-

ture within the gaze window (surrounding box). It is of type

1 and spans a large part of the right half of the gaze win-

dow. The value of this feature is equal to the mean grey-

value of all pixels in area A minus the mean grey-value of

all pixels in area B (see Fig. 2 right). The example feature

will respond to vertical contrasts in the image, slightly to

the right of the gaze location (in the centre of the gaze

window).

The adaptable parameters of the feature extraction

module consist of the types and coordinates of the integral

features in the gaze window. These parameters are opti-

mised using an evolutionary algorithm (see ‘‘Evolutionary

Algorithm’’).

Controller Module

The controller module takes the n extracted features as

input. It is a completely connected multilayer feedforward

neural network, with h = b n/2 c hidden neurons and o = 2

the output neurons. Both the hidden and output neurons

have a sigmoid activation function:

aðzÞ ¼ tanhðzÞ; aðzÞ 2 h�1; 1i; ð1Þ

where z is the weighted sum of the inputs to the neuron.

The two output neurons, out1 and out2, encode for the gaze

shift ðDx;DyÞ in pixels as follows:

Dx ¼ bdmax � out1c; ð2Þ
Dy ¼ bdmax � out2c: ð3Þ

The constant dmax represents the maximal displacement in

the image in pixels. If a gaze shift brings the gaze window

over the border of the image, the gaze location is reset to

the closest possible valid location.

The adaptable parameters of the controller module

consist of the neural network’s weights. They are adapted

to the object-detection task with an evolutionary algorithm

(section ‘‘Evolutionary Algorithm’’).

Object Classifier

The verification whether the final gaze locations are located

at object locations is performed by a Support Vector

Machine (SVM) [33, 53, 60].3 To train the classifier, we

gathered image samples at the final gaze locations in the

Fig. 2 Possible feature types (top part of the figure) and an example

feature shown in the gaze window (bottom part of the figure)

2 The number of time steps represents a trade-off between detection

performance and computational efficiency: employing more time

steps results in a higher performance, but also less computational

efficiency.

3 In previous studies [15, 16] we only used the first stage of a Viola

and Jones classifier, i.e., a simple linear classifier. The classifier was

trained on all locations in all training images.
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training set. The inputs to the classifier are also integral

features (see Fig. 2). The SVM was trained with the SMO-

algorithm [58], with c = 10 and an RBF-kernel with

c = 0.75.4 Please remark that since the image set described

in ‘‘Setup Face-Detection Experiment’’ does not have large

variations in object sizes, the classifier is applied only at

one scale.

Evolutionary Algorithm

ACT-DETECT’s parameters are optimised by means of a k,

l-evolutionary algorithm [1, 51]. We employ an evolu-

tionary algorithm mainly because (1) it is a semi-supervised

optimisation method, which can thus find non-greedy action

strategies, and (2) it can optimise multiple parts of the

model at the same time. As explained earlier, we optimise

both ACT-DETECT’s visual features and controller, which may

improve the performance on the task (see e.g., [45]).

For evaluation purposes, the image set associated with

the detection task at hand is divided into two parts: half of

the images is used for evolution and half of the images for

testing. We first evolve the coarse-scale model parameters,

starting from uniformly distributed locations. Since one run

of ACT-DETECT can only lead to the detection of one object,

we always perform R = 10 runs per image. The coarse-

scale model is evolved to optimise the detection rate, i.e.,

the proportion of objects present in the training set that are

detected by the ensemble of runs of ACT-DETECT. Then, we

evolve the parameters of the fine-scale model, which

always starts from the end locations of the already evolved

coarse-scale model. The fine-scale model is evolved to

minimise the number of false positives, i.e., the proportion

of runs that do not end up at an object location. For the

evolution of each model, we use a population size of

k = 100 and select the best l = 25 genomes to create a

next generation. Evolution continues for g = 300

generations.

The genome representing the search space of the evo-

lutionary algorithm is a vector of real values (double pre-

cision) in the interval [-1, 1]. The first part of the genome

encodes for the visual features of ACT-DETECT. Each feature

is represented by five values, one for the type (gene1) and

four for the two coordinates inside the gaze window (gene2

to gene5). The type of the feature is decoded as follows:

type ¼ ½jgene1j � 8� þ 1, where ½�� is the round-function.

The left coordinate of the feature in the window is decoded

as: left ¼ minðjgene2j; jgene3jÞ� window_width. The

right coordinate is then: right ¼ maxðjgene2j; jgene3jÞ�

window_width. We determine the top and bottom coordi-

nates in the same manner, but with gene4 and gene5.

The second part of the genome encodes for the neural

network weights. Each weight is directly represented by

one value, which implies a weight range of [-1,1]. The

probability for a mutation in the genome is pmut ¼ 0:04,

and for one-point crossover with another selected genome

is pco ¼ 0:5.

After the optimisation of the fine-scale model, we gather

the image samples at the final gaze locations in the training

set to evolve the object classifier. We use the same training

parameters for the evolution of the object classifier as for

the gaze-control models, but the genome only consists of

double values encoding the visual features. The visual

features of the object classifier are evolved to optimise the

proportion of correctly classified samples.

Setup Face-Detection Experiment

In the face-detection experiment, ACT-DETECT is adapted to a

face-detection task. We explain the task in ‘‘Face-Detec-

tion Task’’. In ‘‘Performance Face-Detection Experiment’’,

ACT-DETECT’s performance is compared with that of win-

dow-sliding methods. Then, in the section ‘‘Analysis Face-

Detection Experiment’’, we analyse the evolved gaze

strategy.

Face-Detection Task

The face-detection task consists of detecting frontal faces

in the publicly available FGNET image set.5 The choice for

this set is motivated by the fact that the results can be

compared with those reported in the literature, mainly

obtained with variations of the Viola and Jones object

detector [78].

The FGNET image set contains video sequences of a

meeting room, recorded by two different cameras. The

experiments involved the joint set of images from both

cameras (‘Cam1’ and ‘Cam2’) in the first scene (‘ScenA’).

The set consists of 794 images of 720 9 576 pixels, which

are converted to grey scale. Figure 3 shows five example

images from the set. We use the ground truth data that is

available online, in which only the faces with two visible

eyes are labelled. For evolution, the image set is divided

into two parts: half of the images is used for testing and

half of the images for evolution. A two-folded test is used

to obtain the results, with one evolution per fold.

For the face-detection task, ACT-DETECT extracts n = 10

features. Furthermore, the maximal displacement of the
4 We used a publicly available implementation of this algorithm,

which can be downloaded at http://theoval.sys.uea.ac.uk/*gcc/svm/

toolbox/. For a more detailed explanation of the SVM and its param-

eters, we refer the reader to [9] and [58].

5 The FGNET image set is available at (http://www-prima.inrialpes.

fr/FGnet/).
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gaze window in pixels is dmax ¼ 360 for the coarse-scale

model and dmax ¼ 240 for the fine-scale model. All the

other parameter settings have been discussed in ‘‘ACT-

DETECT’’.

Performance Face-Detection Experiment

The evolutionary algorithm finds successful gaze-control

strategies for the face-detection task. Figure 4 shows ten

independent runs of the best instance of ACT-DETECT (first

fold). The arrows represent the gaze shifts of ACT-DETECT.

At time step i = 0, all runs are initialised at random

locations in the image. The coarse-scale model then makes

five gaze shifts, followed by another five gaze shifts of the

fine-scale model. At the last time step (i = 10) seven out of

ten runs have reached an object location. The local image

samples at the final gaze locations are classified by the

trained SVM. Circles indicate positive classifications,

crosses negative classifications. The gaze shifts leading to a

positive classification are blue for the coarse-scale model

and red for the fine-scale model. Gaze shifts leading to a

negative classification are grey. ACT-DETECT successfully

detects all three faces in the image.

For classification tasks, it is common to use a Receiver

Operating Characteristic plot (ROC-plot) for comparing the

performances of different methods. A ROC-plot shows the

relation between the true positive rate and the false positive

rate. In object-detection tasks, this would correspond to the

proportion of objects in the image set detected by the

method, and the proportion of non-object locations classi-

fied as objects. Since the number of samples evaluated in

an image can differ between methods, it is better to con-

struct a Free-response Receiver Operating Characteristic

plot (FROC-plot). It plots the detection rate against the

average number of false positives per image. Of course, the

goal of an object-detection method is to achieve a high

detection rate and a low number of false positives.

For object-detection methods that mainly rely on a

binary classifier, an FROC-plot can be constructed by vary-

ing the threshold of this classifier. Since both the gaze

shifts and the object classification are of importance to the

performance of ACT-DETECT, it is not evident how to con-

struct an FROC-plot. Here, we mention three factors that are

of influence. First, gaze control itself represents a choice

for computational efficiency at the possible cost of the

detection rate. The approach implies that parts of the image

are skipped. Second, the fitness function is of influence on

the FROC-plot. For example, the fitness function of the

coarse-scale model puts an emphasis on the detection rate,

while the fitness function of the fine-scale model does so on

the number of false positives. Third, the number of inde-

pendent runs is positively related to the detection rate and

number of false positives. A higher number of runs results

in more detections and false positives. We use the third

factor to construct the FROC-plot of ACT-DETECT, since it is

the easiest factor to vary. We use R = {1, 3, 5, 10, 20,

30, 50, 75, 100, 150, 200, 250, 300} for generating the

curve.

Figure 5 contains an FROC-plot of ACT-DETECT’s results,

averaged over the experiments with both folds (square

markers, dotted line). In addition, the figure shows the

results on the FGNET image set of the detector by Cristinacce

and Cootes [14] (solid lines), of a Fröba–Küllbeck [25]

detector (plus-markers) and a Viola and Jones [78] detector

(circular markers). It also includes the results by Kruppa

et al. of two Viola and Jones detectors trained on a separate

image set and tested on the FGNET set [35] (dashed lines).

The first of these detectors attempts to detect face regions

in the image in the same manner as the detectors in [14]

Fig. 3 Five example images from the FGNET image set

Fig. 4 Ten independent runs of ACT-DETECT on an image from the

FGNET data set
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(circular markers). The second of these detectors attempts

to detect a face by including a region around the face,

containing head and shoulders (cross-markers).

Figure 5 leads to the observation that ACT-DETECT has a

better detection performance than the window-sliding

methods on the FGNET data set. This is surprising, since ACT-

DETECT avoids large image regions in the detection process.

The second best method is the one by [35], which takes an

object’s context into account. Detecting faces without

considering context is difficult in the FGNET video-

sequence, because the appearance of a face can change

considerably from image to image [14]. However, the

context of a face (such as head and shoulders) is rather

fixed. This is why approaches that exploit this context [4,

35] have a more robust performance. The active object-

detection method exploits context even to a greater extent

than the methods studied in [4] and [35].

It is interesting to note the difference between the Viola

and Jones classifiers used in [14] and [35]. The difference

can be explained by at least three factors: a different

training set, different settings of the training parameters for

the Viola and Jones classifier, and different ground truth

data. In contrast to the ground truth data available online,

[35] also labelled profile faces.

Disregarding small differences between the experi-

ments, the results show that ACT-DETECT performs at least as

good as the window-sliding methods on the FGNET face-

detection task.

Analysis Face-Detection Experiment

In this section, we investigate how ACT-DETECT selects

sensible gaze shifts. The analysis focuses on the best-

evolved instance of ACT-DETECT on the first fold, with an

emphasis on the coarse-scale model. We first study its

evolved visual features (section ‘‘Visual Features’’) and

then its mapping from visual inputs to gaze shifts in the

image (section ‘‘Gaze Shifts’’).

Visual Features

The evolved visual features capture properties of the object

and its context. Figure 6 shows the n = 10 evolved input

features for the coarse-scale model. The features are pro-

jected on an image from the training set. They are shown at

their locations and with their sizes within the gaze window

(white box). The white cross indicates the centre of the

gaze window.

In order to interpret the evolved features, we extract

them at all possible gaze locations within the image and

store their values. We scale these values to obtain feature

responses in the interval [0,1]. Figure 7 shows a (darkened)

image in the background and the feature responses on all

possible gaze locations on the foreground. There are no

feature responses in the border of the image, since the gaze

window cannot go over the border of the image. High

intensity regions mark high responses, low intensity

regions low responses.
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Fig. 5 FROC-plots of the different object-detection methods for the

face-detection task

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Feature 6 Feature 7 Feature 8 Feature 9 Feature 10

Fig. 6 The ten evolved features

for the face-detection task,

shown within the gaze window

(white box) of the coarse-scale

model. The white cross
indicates the centre of the gaze

window
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Contextual and Object Features

Figures 6 and 7 illustrate that the model uses contextual

features to find the object. Let us take feature 8 as an

example. This feature represents vertical contrasts to the

top right of the current gaze location (Fig. 6). We can see

in Fig. 7 that this feature has a high response when the gaze

location is on the right part of a person’s body. This can be

used by ACT-DETECT to locate the face.6 Besides contextual

features, ACT-DETECT also exploits features that seem to be

more object-related. A telling example is feature 9, a

centre-surround feature. Figure 7 shows that the high

responses of the feature appear like ghost silhouettes

shifted upwards and to the right with respect to the two

persons. The shift reflects the fact that feature 9 (see Fig. 6)

is located to the bottom left of the gaze location. There are

only a few locations in Fig. 7 where the response of feature

9 is low (the dark regions), including those locations in

which the gaze window is situated above and to the right of

a head.

Information in the Visual Inputs

Apparently, ACT-DETECT exploits the visual features as

detected at non-object locations to estimate the location of

the sought-for object. To show that the evolved visual

features indeed carry information about the location of an

object, we determined the relation between visual samples

on the one hand, and the corresponding horizontal and

vertical displacements to an object on the other hand. Local

input samples were gathered by extracting the evolved

features at 30 random gaze locations for each image in a set

of 145 training images (leading to 4,350 input samples) and

storing the relative distance from each gaze location to the

closest object.

The information in the input samples about the required

displacements is determined using the mutual information

measure. To facilitate the calculation of this measure, the

continuous-valued input feature vectors are transformed to

a discrete set by using k-means clustering. In this manner,

the input features can be modelled as a discrete variable C

with cardinality |C| = k. After clustering, every sample

was mapped to the nearest cluster centroid and the relative

distance to the target was stored for that cluster. This

allowed us to determine the mutual information I between

the clusters C and the horizontal displacement DX and the

vertical displacement DY to the closest target: IðC; DXÞ
and IðC; DYÞ. The values of DX and DY were discretised

by binning them in 10 evenly spaced bins, ranging from

their minimum to their maximum value. The mutual

information, expressed in bits, could then be calculated

according to the formula:

IðC; DXÞ ¼ HðDXÞ � HðDX j CÞ; ð4Þ

where H is the Shannon entropy [71]. The variables

involving DY are calculated with analogous formulas. As

can be seen from Eq. 4, I is a symmetric measure. In the

current context, it expresses how much information is

gained about the relative object location in X- or Y-

Response feature 1 Response feature 2 Response feature 3 Response feature 4

Response feature 5 Response feature 6 Response feature 7 Response feature 8

Response feature 9 Response feature 10 Original image

Fig. 7 Responses of the ten

features shown in Fig. 6 in

different parts of the image.

The evolved features have been

extracted at all possible gaze

locations in an image (labelled

‘original image’). Per feature,

we show a darkened version

of the image as the background,

and the feature responses on

the foreground. The feature

responses are scaled to [0,1] and

represented with grey-values.

High intensity represents a high

response, low intensity a low

response. We show the response

at the gaze location, i.e., the

centre of the gaze window when

the feature was extracted

6 Other examples of contextual features are feature 4, which has a

high response when ACT-DETECT is right of a person’s body, and

feature 7, which has a higher response on the wall than further down

in the image where the persons are seated.
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direction, if it is known to which cluster a local sample

belongs. ACT-DETECT uses a neural network to map input

feature vectors to actions. The network does not divide the

input space into discrete subspaces, but maps the inputs to

displacements with a continuous function. Since it is

unknown which number of clusters best approximates the

way in which ACT-DETECT interprets the input space, various

numbers of clusters were used: k ¼ h2; 3; 4; . . .; 15i.
Figure 8 shows the calculated mutual information for the

different numbers of clusters. The mutual information is

shown for the evolved instance of ACT-DETECT (red and blue

lines) and an instance of ACT-DETECT with a random genome

(grey lines with square markers). The mutual-information

results lead to three observations. The first observation is

that the inputs seem to have more information on the ver-

tical distance than on the horizontal distance to the closest

target object (IðC; DYÞ[ IðC; DXÞ). This is likely due to

the fact that the visual environment in the image set is more

organised in the vertical direction than in the horizontal

direction. The second observation is that the evolved visual

features capture more information on DY than the features

corresponding to a random genome, while the information

of DX is comparable. Although the information of only one

random genome is shown in Fig. 8, this finding is valid for

most of the random genomes. More information in the

visual features can lead to a higher performance on the

detection task. The third observation is that the information

of the clustering on DX and DY grows with an increasing

number of clusters. With a further increase in the number of

clusters, the mutual information will continue to grow up to

the point where the number of clusters equals the number of

samples. It is important to remark that (a) the neural net-

work of ACT-DETECT is not able to make such a fine subdi-

vision of the input space, and (b) that such a fine subdivision

of the input space would have negative effects on the gen-

eralisation to unseen local samples.

The results of our information-theoretic analysis confirm

that local image samples contain information about the

global location of the target object. This explains how ACT-

DETECT achieves its detection performance despite the

limited number of visual samples considered.

Spatial Distribution Relative to Closest Object

To gain further insight into how typical image samples map

onto appropriate gaze shifts, we visualise the relative

spatial distribution of each cluster’s inputs with respect to

the closest object. Figure 9 shows these spatial distribu-

tions for k = 6 clusters (the order of the clusters is
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Fig. 8 The relation between the number of clusters and the mutual

information of the clustering with the horizontal distance (DX, solid

line) and vertical distance (DY , dashed line) to the closest object. The

mutual information is expressed in bits and shown for the evolved

instance of ACT-DETECT (red and blue lines) and an instance of ACT-

DETECT with a random genome (grey lines with square markers).

(Color figure online)

Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5 Cluster 6

Fig. 9 Spatial distribution of

six visual input clusters relative

to the closest object. High

occurrence is represented with

high intensity, low occurrence

with low intensity. The location

of the closest object is in the

centre of each inset (shown with

a green cross). The blue arrows
originate at the median of all

locations in the cluster and

represent the actions taken by

ACT-DETECT if it receives the

cluster centroid as visual input.

(Color figure online)

272 Cogn Comput (2011) 3:264–278

123



irrelevant). We represent the closest target object with a

green cross in the centre of every inset, and high intensity

regions indicate regions where the input cluster has a high

probability of occurring (low intensity regions indicate the

opposite). The figure shows that the clusters of inputs have

different relative spatial distributions with respect to the

location of the target object.

Gaze Shifts

To show that ACT-DETECT employs a non-greedy gaze-

shifting strategy, we now turn to the mapping of visual

inputs to gaze shifts.

Figure 9 shows that ACT-DETECT exploits the relative

spatial distributions of the visual inputs, but does not fol-

low a purely greedy strategy. The blue arrows in the figure

represent the direction and size of the gaze shifts taken by

ACT-DETECT when it is provided with the cluster centroids as

inputs. The arrows originate from the median relative

location of the corresponding cluster of sensory inputs.

Clearly, the actions depend on the relative spatial distri-

butions of the sensory input clusters. However, ACT-DETECT

does not seem to apply a greedy action policy: the ideal

greedy action would shift the gaze from any location

directly to the object location. For some clusters, the gaze

shifts deviate from the ideal greedy action. The most

remarkable deviation is that of cluster 1 for which ACT-

DETECT makes a large gaze shift to the top left. This shift

seems to make sense in the context of the rest of ACT-

DETECT’s behaviour: for the clusters above the object

locations it always goes slightly more to the right.

Figure 10 shows the actions of the coarse-scale model in

two different images. The arrows in the figure represent

ACT-DETECT’s gaze shifts at a 12 9 11 grid in the images.

Most of the time ACT-DETECT makes large movements to the

top left for visual inputs that occur below the faces and

smaller movements to the bottom right for those that occur

above the faces. This behaviour attempts to bring ACT-

DETECT close to a face, where it gets caught into a local

behavioural attractor. Please remark that the non-greedy

behaviour of ACT-DETECT is due to the fitness function used

in evolution: the fitness only depends on the locations of

ACT-DETECT at the end of the run.

The fine-scale model always starts at the final locations

of the coarse-scale model. It exploits object context at a

finer scale. Figure 11 shows the actions of the fine-scale

model on a grid of 20 9 21 in the image. From this figure,

it is clear that ACT-DETECT can approach objects on a finer

scale, but that it works best for locations close to the

objects. The arrows in the figure typically point upwards

for locations above the faces in the image. This implies that

if the fine-scale model started at such a location, it would

end up at the top border of the image. It also leads to the

observation that the fine-scale model generally moves

slightly up. This is an indication that the coarse-scale

model has a tendency to end up slightly below the faces in

the image. Since the fine-scale model is evolved for start-

ing its gaze behaviour at the final locations of the coarse-

scale model, it compensates for possible small deviations

between these locations and the object locations.

Computational Efficiency

The main benefit of applying ACT-DETECT to object detec-

tion is its computational efficiency. In this section, we first

make a general comparison of the computational effort of

ACT-DETECT and that of window-sliding methods (section

‘‘Window-Sliding Methods’’). Then, we make a tentative

comparison with recently developed methods, which sig-

nificantly reduced the computational effort with respect to

Fig. 10 Actions taken by the coarse-scale model on a 12 9 11 grid

in two example images
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window-sliding methods (section ‘‘Efficient Subwindow

Search’’).

Window-Sliding Methods

The comparison between ACT-DETECT and window-sliding

methods is possible because both ACT-DETECT and the

window-sliding methods extract features from a local input

window. The computational costs C of a window-sliding

method (WS) and of ACT-DETECT (AD) can be expressed as

follows.

CWS ¼ GHGVðFWS þ ClÞ þ P ð5Þ
CAD ¼ RðS� TÞðFAD þ CtÞ þ RðFWS þ ClÞ þ P ð6Þ

The variables GH and GV are the number of horizontal and

vertical grid points, respectively. Furthermore, FWS is the

number of operations necessary for feature extraction in the

window-sliding approach, Cl stands for the classifier, and P

for preprocessing. For ACT-DETECT, R is the number of

independent runs, S the number of scales, and T the number

of local samples extracted per scale. FAD is the number of

operations necessary for feature extraction, and Ct for the

controller that maps the features to gaze shifts. The cost of

ACT-DETECT includes RðFWS þ ClÞ, since the presence of an

object is verified at the final gaze location.

ACT-DETECT is computationally more efficient than the

window-sliding method. The main reason for this is that

ACT-DETECT extracts far fewer local samples, i.e.,

ðRðS� TÞ þ RÞ � GHGV, while its feature extraction and

controller do not take much more computational effort than

the feature extraction and classifier of the window-sliding

method. For example, in the FGNET-task a window-sliding

method that verifies the presence of an object at every point

of a grid with a step size of two pixels will extract

335 9 248 = 83,080 local samples (based on the image

size, the average face size of 50 9 80 pixels, and the

largest step size mentioned in [78]). In contrast, in the case

of R ¼ 20; S ¼ 2, and T = 5, ACT-DETECT extracts

R(S 9 T ? 1) = 20 9 11 = 220 local samples. Under

these conditions, the window-sliding method extracts

83,080/220 & 378 times more local samples than ACT-

DETECT.

Further speed-ups can be attained by reducing the

number of time steps used by ACT-DETECT. The best results

will be obtained by evolving ACT-DETECT for a smaller

number of time steps T, but here we apply the instance of

ACT-DETECT evolved for T = 5 to other numbers of time

steps. Figure 12 shows the FROC curves when it is applied

to T = 7 (red solid line), T = 5 (blue dotted line), T = 2

(green dashed line), and T = 1 (black dashed-dotted line).

Please remark that T = 1 means that ACT-DETECT makes one
Fig. 11 Actions taken by the fine-scale model on a 20 9 21 grid in

two example images
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Fig. 12 FROC curves for T = 7 (red solid line), T = 5 (blue dotted
line), T = 2 (green dashed line), and T = 1 (black dashed-dotted
line). (Color figure online)
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shift with the coarse-scale model, one shift with the fine-

scale model, and a final check with the object classifier.

With R = 20, this adds up to 60 samples extracted from the

image, resulting in a recall of 70% with on average 0.88

false positives per image. The results in the figure show

that ACT-DETECT’s performance degrades gracefully with a

decreasing number of time steps.

Please note that for the comparison between ACT-DETECT

and window-sliding methods we did not take object

detection at different scales into account. The number of

scales at which an object can occur would imply a new

multiplication factor for the computational costs, which is

most disadvantageous for the window-sliding method. The

straightforward way to detect objects at multiple scales for

ACT-DETECT is to apply the object classifier at the final step

on different scales. The question then becomes whether the

same visual features and behaviours of the coarse-scale and

fine-scale model are evenly adequate for objects of dif-

ferent scales. The matter of the detection of differently

scaled objects is left for future work.

Efficient Subwindow Search

Some recent studies have already considerably improved

the computational efficiency over window-sliding methods.

For example, as mentioned in the introduction, in [40] a

branch-and-bound scheme, Efficient Subwindow Search

(ESS), is used to efficiently maximise a classifier function

over all subregions in an image. The branch-and-bound

scheme does not deteriorate the performance with respect

to a window-sliding method, but dramatically reduces the

number of function evaluations necessary in an image. The

authors mention that for image sizes in the range of

500 9 333 to 640 9 480, ESS performs on average less

than 20,000 evaluations of the bound function per image. A

direct comparison of this method’s computational effort

with ACT-DETECT is difficult, since on the one hand ESS’

preprocessing seems more expensive, while on the other

hand ESS already evaluates objects at different scales. Still,

we can make a tentative comparison based on the

assumption that ACT-DETECT’s object classifier will be

applied at N = 5 different scales. This would lead to the

extraction of R S� Tð Þ þ Nð Þ ¼ 20� ð10þ 5Þ ¼ 300

samples. This number is *67 times smaller than that of the

branch-and-bound method (ignoring any differences in

preprocessing).

Discussion and Conclusion

Our study revealed that the exploitation of an object’s

visual context enhances the computational efficiency of

detecting the object considerably. The implication is that

current object-detection methods could be improved in

terms of efficiency by adopting the local-context guided

sampling of ACT-DETECT. The extent to which this is true

depends on the generalisability of the results, in particular

the degree to which local-context guided sampling can be

successful on other tasks than the FGNET face-detection task.

The success on other tasks depends mainly on the presence

and reliability of the visual cues at non-object locations to

the object location. In the FGNET task, the brightness and

absence of texture on the walls can be used as reliable

visual cues for the face-detection task: the model should

typically shift its gaze downwards. In other tasks, visual

cues may be quite different but still informative. We expect

that most object-detection tasks of interest have visual cues

that can be exploited by ACT-DETECT. Further experiments

are needed to bear out this expectation.

We conclude that object-detection algorithms can

exploit local visual context to improve their efficiency and

that the success of such algorithms depends on (1) the

presence of visual cues at non-object locations to the object

location, and (2) the capability of the gaze-control model to

exploit these cues.

Future work will address the generalisability of the

gaze-control model to a wide variety of detection tasks.

These tasks will have a larger variation both with respect to

the environment as to the object types and scales. In

addition, it will be investigated whether employing a gaze-

control model such as ACT-DETECT can reduce the need for

large training data sets as required by classification-based

methods. While one object in one image only gives one

positive example for a classification-based method (and

many negative ones), it provides a rich training set for a

gaze-control model, consisting of the visual feature values

at all image locations.
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