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Abstract

The manner in which information is encoded in neural signals is a major issue in Neuroscience. A common distinction is
between rate codes, where information in neural responses is encoded as the number of spikes within a specified time
frame (encoding window), and temporal codes, where the position of spikes within the encoding window carries some or all
of the information about the stimulus. One test for the existence of a temporal code in neural responses is to add artificial
time jitter to each spike in the response, and then assess whether or not information in the response has been degraded. If
so, temporal encoding might be inferred, on the assumption that the jitter is small enough to alter the position, but not the
number, of spikes within the encoding window. Here, the effects of artificial jitter on various spike train and information
metrics were derived analytically, and this theory was validated using data from afferent neurons of the turtle vestibular and
paddlefish electrosensory systems, and from model neurons. We demonstrate that the jitter procedure will degrade
information content even when coding is known to be entirely by rate. For this and additional reasons, we conclude that
the jitter procedure by itself is not sufficient to establish the presence of a temporal code.
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Introduction

A fundamental question in sensory neuroscience is how

information is encoded in spike trains. The question often takes

the form of distinguishing between rate codes, in which

information is encoded in terms of the number of spikes within

an encoding window, and temporal codes, in which the position of

spikes within an encoding window carries information beyond that

available from the number of spikes in the window [1]. Temporal

codes are usually associated with nonlinear relations between the

Fourier components of a stimulus and a neuronal response [1,2],

i.e. correlations between a particular frequency component of a

stimulus and higher-frequency components of the response. These

nonlinear relations provide information about the stimulus beyond

that provided by linear correlations within the frequency band of

the stimulus. In contrast, rate coding can be nonlinear, but it is

characterized by a lack of correlation between Fourier components

of the stimulus and higher-frequency components of the response,

or by the fact that such nonlinear correlations, when present, do

not provide any additional information about the stimulus. The

pioneering work of Adrian [3] provided clear evidence that

cutaneous sensory afferents use firing rate to encode stimulus

intensity (a concise history of this work and related issues is in [4]).

More recent work on a number of sensory systems has provided

equally compelling evidence that precise spike timing can carry

information beyond that available from measures of firing rate

(e.g., [5–17] among many others).

An additional consideration is that primary afferent neurons in

a variety of sensory systems exhibit an ongoing background

discharge. Examples include vestibular afferents [18,19], and

electroreceptor afferents in several aquatic species [20–22]. Such

background firing can arise from a variety of mechanisms

including intrinsic oscillators, intrinsic noise, or random synaptic

events. The resulting discharges span the spectrum from highly

periodic to completely random spike sequences. Several studies

have attempted to relate the properties of this background

discharge to the stimulus encoding properties of afferents, by

stimulating a system with time-varying Gaussian noise, and

assessing information transmission based on various information

metrics calculated from their responses (reviewed in [4,10,23]).

To assess the relative importance of firing rate versus precise

spike timing in stimulus encoding, a computational procedure is

often used in which the time of each spike is ‘‘jittered’’ by the

addition of a variable time offset, chosen randomly from a zero-

mean distribution [6,20,24–26]. The jittering produces a surrogate

data set for which information metrics can be computed and

compared to the same metrics computed from the original data. If

the addition of jitter significantly decreases the information

transmission and/or encoding efficiency of the afferent, as

happens, for example, for some vestibular afferents [24], then

the existence of a temporal encoding scheme is inferred.

However, the distinction between a rate code and a timing code

can be problematic for a number of reasons. First, as discussed by

Theunissen and Miller [1], the use of spike timing to encode

transient or high frequency components of a stimulus can be

consistent with a rate coding scheme, e.g. [6,27]. Nor does the use

of a temporal encoding scheme require high spike timing
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precision. Even in the case of a highly periodic spontaneously

firing neuron, which like all self-sustained oscillators is inherently

nonlinear, the response magnitude at different points in the

neuron’s cycle (its phase response curve) can be closely related to

its linear response function [28,29]. Weak stimuli can be linearly

encoded in the instantaneous firing rate of a periodically firing

neuron, and this encoding can be accounted for within the

framework of linear response theory [28,29]. Thus, the intrinsic

timing precision of a periodically firing neuron is not necessarily

indicative of a temporal code as understood in the current

neuroscience literature.

Second, the linear stimulus reconstruction technique [1,23,30]

that is typically used in conjunction with the jitter procedure treats

a neuron as a linear ‘‘black box’’ whose transfer function is tuned to

minimize the mean square error of stimulus estimation. This

technique essentially assumes a rate code, since the stimulus is

estimated by convolving a spike train with the response function of

the optimal linear filter. Adding external noise in the form of jitter is

equivalent to a distortion of the transfer function of the optimal

filter. Thus, conclusions about the existence of a nonlinear time

code drawn solely from application of a linear stimulus

reconstruction technique may be questionable.

Third, the rationale for jitter analysis is based on the assumption

that the standard deviation (SD) of the jitter distribution is small

relative to the duration of an ‘‘encoding window’’, so that the

number of spikes within the window is unaffected, and only their

temporal position within the window is altered. Thus, the SD of

the jitter is normally chosen to be much smaller than the

characteristic time scale of the stimulus on the assumption that this

will be less than the duration of the encoding window. However,

since the duration of the encoding window itself is never

determined, this assumption cannot be validated, and so the

results of artificial jittering should be interpreted with caution.

Here, we develop an analytical framework that provides a

detailed, quantitative assessment of the effects of artificial jitter on

spike train metrics commonly used to analyze sensory encoding:

coefficient of variation, serial correlations, power spectral density,

transfer functions, and coherence functions. This theoretical

analysis allows us to specify precisely the relationships between

these metrics as calculated for original and jittered spike trains.

Using this framework, we show that jitter alters the higher order

statistics of spike trains by introducing spurious serial correlations

among interspike intervals. This can alter encoding properties.

More importantly, we show that for weak stimuli and linear

responses, jitter merely increases the noise in the background

discharge. This occurs independently of any applied lower-

frequency stimulus, and with minimal effects on stimulus-response

gain. The additional noise from jitter results in suppression of the

stimulus-response coherence (or the linear reconstruction kernel),

and consequently of the mutual information rate, as estimated

with the linear reconstruction technique. We illustrate these

theoretical results by applying them to a model neuron with

gamma-distributed interspike intervals, to a phase model of a

periodically firing neuron, and to experimental data from

vestibular and electroreceptor afferents. Although we focus on

spontaneously active neurons, the theory, results, and conclusions

we develop have broad applicability to analyses of sensory

encoding.

Methods

Experimental
Turtle. The activity of vestibular posterior canal afferents was

recorded in in vitro preparations of red-eared turtles, Trachemys

(Pseudemys) scripta elegans, of 10–13 cm carapace length, as in [31].

Turtles were sacrificed by decapitation, and further dissection was

done in a bath of oxygenated turtle Ringer’s solution. After

removal of the dorsal cranium, the brainstem was transected at the

meso-thalamic junction, and the rostral portions discarded. A

small hole was drilled in the bone overlying the posterior canal,

approximately 2–3 mm from the posterior ampulla, to allow

placement of a mechanical probe on the posterior semicircular

duct. Stimuli consisted of indentations of the posterior semicircular

duct using this probe. The head was then placed in a humidified

recording chamber that was continuously infused with mixture of

95% O2/5% CO2. All procedures were approved by the Ohio

University Institutional Animal Care and Use Committee

(IACUC) (protocol number L01-35). Afferent spikes were

recorded with glass micropipettes filled with 2 M NaCl and

having electrical impedances of 50–100 MV. The electrodes were

inserted into the posterior division of the VIIIth nerve along the

antero-dorsal margin [32]. Signals from the electrodes were

amplified, digitized at 10 kHz, and stored for offline analysis using

Spike2TM software (Cambridge Electronic Design, CED).

Paddlefish. The spontaneous firing of electroreceptor

afferents of paddlefish (Polyodon spathula) was recorded in in vivo

preparations, as in [21]. This passive electrosensory system has

cutaneous electroreceptors of the cathodally excited

‘‘Lorenzinian’’ ampullary type, like sharks and rays. Paddlefish

are named for their ‘‘rostrum’’, a flattened sensory appendage

shaped like a canoe paddle, covered with electroreceptors,

projecting forward from the head. A fish was held in an all-

plastic chamber, maintained by a stream of oxygenated 22uC
water into the mouth. A special advantage of paddlefish is that

water flow or turbulence around electroreceptors on the rostrum,

which might disturb spontaneous afferent firing, could be stilled by

partitioning the chamber bath using a slab of agarose across the

base of the rostrum. The cranium was opened dorsally to expose

the sensory ganglion of the anterior lateral line cranial nerve, on

one or both sides. A tungsten microelectrode was advanced into

this ganglion to record single-unit spikes from an afferent’s cell

body. If used, electrical stimuli were applied from a 2 mm dipole

electrode, or between two large chlorided Ag plates at the

chamber ends, connected to a low-noise linear constant-current

electrical isolator, commanded by a CED computer interface

replaying arbitrary waveforms such as band-limited Gaussian

noise. Data acquisition was similar to that for turtle. Data were

from experiments at University of Missouri-St. Louis, under an

IACUC-approved animal use protocol (W01-13) there.

The duration of Gaussian stimuli was 300–500 s for the turtle

posterior canal afferents and 180 s for the paddlefish electro-

receptor afferents.

Data analysis
Data analyses were performed offline using custom software

programmed in MATLAB. The same analyses were used for both

experimental recordings and numerical simulations. Definitional

equations for the analyses are included for clarity.

Spontaneous discharge statistics. Three metrics were used

to characterize spontaneous discharge: the coefficient of variation

of the interspike interval distribution, serial correlation coefficients

in ISI sequences, and the power spectral density of a spike train.

Given a sequence of spike times t1,t2,...,tK, the corresponding

sequence of interspike intervals (ISIs) is Ik~tkz1{tk. The

variability of an ISI distribution was characterized using the

coefficient of variation, CV~s0=�II , where �II~SITk is the mean

ISI, s0~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SI2Tk{�II2

p
is the SD of the ISI distribution, and STk

denotes averaging over k intervals. The mean firing rate is �rr~1=�II .

Rate vs. Temporal Codes in Sensory Neurons
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Serial correlation coefficients (SCCs) are derived from the

normalized ISI autocorrelation function, and estimate the average

degree to which ISIs are correlated or anticorrelated with other

ISIs in the sequence. SCC values were calculated as

rm~ SIkzmIkTk{�II2
� �

=s2
0, where m denotes the number of

intervening intervals (lags), and ranged from 0 to 100 [33]. SCCs

can range from 21 (perfect anticorrelation) to +1 (perfect

correlation), while a value of 0 signifies no correlation. Spike

generation is referred to as a renewal process if all SCCs in the

spike sequence for m$1 are 0, i.e., the ISIs are statistically

independent.

Power spectral density (PSD), G fð Þ, is a measure of the

distribution of a signal’s energy in the frequency domain. It is

particularly useful for identifying periodicities in a signal,

expressed by peaks at particular frequencies. For purposes of

PSD calculations, each neuronal spike train was represented as a

sequence of Dirac delta functions centered at spike times tk from

which the mean firing rate �rr has been subtracted,

r tð Þ~
PK

k~1 d t{tkð Þ{ r
{

. The PSD of a spike train, Grr fð Þ,
has units of (spikes/s)2/Hz or simply Hz. The delta functions were

approximated by rectangular pulses of height 1=Dt, where Dt is

the sampling interval, 1|10{4s. The PSD was then estimated

using the Welch method (function pwelch in the MATLAB

Statistical Toolbox) with a 2.048 s Hamming window.

Information measures. We used two approaches to assess

information encoding in neural responses to external stimuli. The first

was a conventional linear reconstruction technique that estimates the

lower bound of the mutual information rate, ILB [23,34]. In this

approach, a Gaussian stimulus, s(t), is applied to a neuron, and an

estimate of the stimulus, sest tð Þ, is obtained from the neural response

by convolving the output spike train with an optimal linear filter that

minimizes the SD of the noise in the reconstruction, calculated as

N tð Þ~s tð Þ{sest tð Þ. The characteristics of the optimal filter are

specified by its transfer function, K fð Þ~Gsr fð Þ=Grr fð Þ, where

Gsr fð Þ is the cross-spectral density of the stimulus and response, and

Grr fð Þ is the PSD of the stimulated spike train (response). The lower

bound of the mutual information rate is estimated from the SR

coherence function [35] as:

ILB~{

ðfc

0

log2 1{CSR fð Þ½ �df ; ð1Þ

where fc is the stimulus cutoff frequency. SR coherence is a

normalized measure of stimulus-response cross-correlation at

different frequencies, defined as:

CSR fð Þ~ Gsr fð Þj j2

Gss fð ÞGrr fð Þ ; ð2Þ

where Gss fð Þ is the PSD of the stimulus. Calculations of SR

coherence were done using the MATLAB function mscohere, with

windowing as for PSDs.

The quality of the reconstruction is quantified by the coding

fraction, c, defined [30] as:

c~1{ sN=Að Þ; ð3Þ

where A is the SD of the stimulus, and sN is the SD of the

reconstruction noise, which can be calculated from the SR

coherence [30] as: s2
N~

Ð fc
0

Gss fð Þ 1{CSR fð Þ½ �df . The coding

fraction ranges from 0 (encoding on a chance level) to 1 (perfect

encoding).

The second information metric we used was response-response

(RR) coherence, which provides an estimate of the upper limit of

the mutual information rate [26,36,37]. In this method, a neuron

is stimulated by a sequence of identical segments of a Gaussian

noise stimulus. Each stimulus segment results in a response Rn tð Þ.
The average coherence between responses is:

CRR fð Þ~
SGm,n fð ÞTm,n=m

��� ���2
SGm m fð ÞT2

m

; ð4Þ

where Gm,n fð Þ is the cross-spectral density of m-th and n-th

responses, Gm m fð Þ is the PSD of m-th response, and angled brackets

indicate averaging over the ensemble of responses. The square root

of RR coherence serves as the upper bound of SR coherence, so that

the following inequality holds: CSR fð Þƒ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRR fð Þ

p
.

Numerical jitter analysis
A jittered response was obtained by adding independent zero-

mean Gaussian random time offsets jk to each spike time. After

computing the SR coherence for the jittered spike train, eCCSR fð Þ,
we obtained the lower bound of the mutual information rate, eILB,

and the coding fraction, ecc, and compared them to ILB and cof the

original spike train. This was repeated for various values of jitter

SD, sJ, its magnitude. The tilde symbol denotes measures

calculated from the jittered spike train.

Theory for jittered spike trains
The derivations of equations used in this section to express the

exact relationships between statistical metrics of original and

jittered spike trains are given in Appendix S1. In the analysis that

follows, we assumed that both the stimulus and response are

stationary stochastic processes, and we used zero-mean Gaussian-

distributed jitter with values that followed the real-valued

characteristic function:

ĝg fð Þ~exp {2p2f 2s2
J

� �
:

. (5)

The coefficient of variation of a jittered spike train is:

eCV ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2z 2s2

J

.
�II2

� �r
:

The SD of the jitter can conveniently be expressed in units of the

SD of the original ISIs, sJ~es0, where e is a dimensionless scaling

parameter. Using this substitution, the CV of a jittered spike train

becomes:

eCV~CV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z2 e2
p

:

. (6)

The serial correlation coefficients of the jittered ISIs, expressed in

terms of the SCCs of the original ISI sequence, are given by:

err m~
rmz2e2dm,0{e2dm,1{e2dm,{1

1z2e2
; ð7Þ

where dm,n is the Kronecker delta function: dm,n~1 for m~n, and

0 otherwise. The power spectral density function of a jittered spike

train is:

ð6Þ

ð5Þ

Rate vs. Temporal Codes in Sensory Neurons
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eGGrr fð Þ~ 1{ĝg2 fð Þ
� 	

�rrzĝg2 fð ÞGrr fð Þ; ð8Þ

where Grr fð Þ is the PSD of the original spike train. For normally

distributed jitter with the characteristic function given by Eq.(5),

the PSD of a jittered spike train will be:

eGGrr fð Þ~ 1{e
{4p2f 2s2

J

� �
�rrze

{4p2f 2s2
J Grr fð Þð9Þ

The cross-spectral density of a stimulus and a jittered spike train

is:

eGGsr fð Þ~Gsr fð Þĝg fð Þð10Þ

The SR coherence of a jittered spike train is:

eCCSR fð Þ~CSR fð Þ 1{
1{ĝg2 fð Þ
� �

�rr

1{ĝg2 fð Þð Þ �rrzĝg2 fð ÞGrr fð Þ


 �
; ð11Þ

and the RR coherence of a jittered spike train is:

eCCRR fð Þ~CRR fð Þ 1{
1{ĝg2 fð Þ
� �

�rr

1{ĝg2 fð Þð Þ �rrzĝg2 fð ÞGrr fð Þ


 �2

ð12Þ

Equations 6–12 are exact and allow an investigator to calculate

the metrics of a jittered spike train while bypassing the actual

numerical procedure of jittering. For example, Eq. 11 with Eq. 1

allow analytical computation of the lower bound estimate of the

mutual information rate for jittered spike trains, based solely on

measures of coherence, firing rate and PSD of the original spike

train.

Model neurons with gamma-distributed ISIs
In a class of models, we simulated a spike train as a renewal

process, i.e., where all ISI durations are independent, with an ISI

probability density function (PDF) given by the gamma distribu-

tion, P Ið Þ~ IL{1e{I=h
� ��

C Lð ÞhL
� �

, where the parameter L,

called the order of the gamma distribution, sets its shape, and h is a

scaling parameter. The CV, mean ISI, and the ISI variance are,

respectively, CV~ Lð Þ{1=2
, �II~Lh, and s2

0~Lh2. The PSD of the

gamma spike train can be calculated exactly as:

Grr fð Þ~

1

Lh

1{ 1z4p2f 2h2
� �{L

1{2 1z4p2f 2h2
� �{L=2

cos LQð Þz 1z4p2f 2h2
� �{L

,

Q~ tan{1 2pf hð Þ

ð13Þ

For large values of L (i.e., small values of CV), the PSD shows a

sharp peak at a frequency corresponding to the mean firing rate,

and smaller peaks at higher harmonics. Thus, for large L, the

gamma neuron serves as a simple model of a regularly firing

neuron. The special case where L~1 corresponds to a Poisson

(random) spike train with a uniform power spectrum

Grr fð Þ~h{1.

A stimulus, s tð Þ, was introduced as Gaussian modulation of the

firing rate, r tð Þ~ Lh tð Þ½ �{1
~r0 1zs tð Þ½ �, where r0 is the sponta-

neous firing rate, set to 50 or 100 spk/s. The Gaussian stimulus

was band-limited to below a cutoff frequency fc~20Hz, and had a

flat PSD, Gss fð Þ~A2
�

2fcð Þ, where A is the stimulus SD. Using

this stimulus for a total duration of 600 s, we numerically

generated sequences of ISIs for a rate-modulated gamma

distribution.

Phase model for neuronal oscillator
The dynamics of a periodically firing neuron responding to a

stimulus, s tð Þ, can be represented in terms of its phase

[28,29,38,39] as:

dQ

dt
~2pr0zZ Qð Þs tð Þz

ffiffiffiffiffiffiffi
2D
p

g tð Þ; ð14Þ

where Q is the phase, r0 is the spontaneous firing rate, Z Qð Þ is a 2

p-periodic function known as the phase resetting curve (PRC),

g tð Þis a white Gaussian noise, and D is the noise intensity. Such a

model generates a spike when the phase variable crosses the value

of p with a positive slope. We used the so-called type-I PRC where

Z Qð Þ~2pr0 1{ cos Qð Þ, with spontaneous rate r0~100spk/s. The

noise intensity was D~4, so that in the absence of any stimulus the

model generated a spike train with CV = 0.045. The stimulus s(t)

was identical to the one used for the gamma neuron, i.e. Gaussian,

band-limited to below 20 Hz, with SD = A. The equation for Q
was solved numerically using the explicit Euler method with a time

step of 0.01 ms.

Results

We developed an analytical framework (Methods, Appendix S1)

to investigate the effects of jitter on spike train metrics commonly

used to analyze sensory encoding and higher order statistics. We

applied this analytical framework to data from model neurons and

also experimental data from two types of sensory afferent neurons,

to test the efficacy of jitter in distinguishing rate coding from

temporal coding.

Examples of jitter influences on stimulus encoding
To set the stage, Fig. 1 illustrates the effects of jitter on

experimental data from two representative examples of afferent

neurons stimulated by relatively weak external Gaussian noise.

The first example is a turtle posterior canal afferent (PCA)

stimulated by mechanical indentation of the posterior semicircular

duct. The stimulus had a SD of 6.7 mm and was band limited with

an upper cutoff frequency fc~10 Hz (see Methods). The second

example is a paddlefish ampullary electroreceptor afferent (EA)

stimulated by a spatially uniform electric field with SD = 0.70 mV/

cm and cutoff frequency fc~20 Hz. The PCA, with a background

firing rate of 21.6 spk/s and CV = 0.21, had a higher intrinsic

noise level than the EA which had a background firing rate of

49.0 spk/s and CV = 0.13. These differences are representative of

the two afferent populations (see legend of Fig. 2).

SR coherence functions for these two afferents illustrate the

effects of jitter in the frequency domain. For the PCA, jitter with

SD$10 ms resulted in a significant decrease of SR coherence, but

smaller (e.g. 3 ms) jitter had minimal effects (Fig. 1a). In contrast,

the EA showed a high sensitivity to jitter: SDs as small as 3–5 ms

suppressed coherence dramatically (Fig. 1b). Note the excellent

correspondence between the results obtained by numerically

jittering the afferent spike times (shading) and the results obtained

by analytic calculations using Eq. 11 (dotted and dashed lines).

ð8Þ

ð9Þ

ð10Þ

ð11Þ

ð12Þ

.

.

.
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Jitter analysis applied to samples of 10 PCAs and 10 EAs

confirmed that, for a given jitter SD, PCAs were less sensitive to

jitter than EAs. For the original responses, the lower bound of the

mutual information rate (ILB) was 16:4 + 2:7 bit/s for the PCA

sample, and 32:0+ 14:7 bit/s for the EA sample, while the coding

fraction (c) was 0:43+ 0:05 for the PCAs, and 0:39+ 0:12 for the

EAs (mean 6 SD). Small jitter (SD = 5 ms) had little effect on

PCAs, producing a 6:9+ 5:6% reduction of ILB values, and a

4:2+ 4:4% reduction of c values (circles, Fig. 2a,d). However, for

the EAs (triangles, Fig. 2a,d), jitter of identical SD had a much

larger effect, reducing ILB by 64:5+ 9:2% and c by 59:6+ 9:5%.

Because the SD of this jitter was much shorter than the time scale

of the stimulus (1=fc = 100 ms for PCAs, 50 ms for EAs), this result

could indicate that EAs employ a temporal code to adequately

represent the stimulus. In contrast, precise spike timing seems to be

less important for PCAs [31].

The percent reduction for both the lower bound of the mutual

information rate and the coding fraction increased sigmoidally

with increasing jitter SD (Fig. 2). When jitter SD is expressed in

units of time, most effects are seen to occur over a 10-fold size

range, although the boundaries of the effective range differs

between the two types of afferents (Fig. 2a,d). To determine if jitter

effects were simply related to the cutoff frequency of the stimulus,

the reductions of ILB and c were also plotted (Fig. 2b, e) after

Figure 1. Effects of external spike time jitter on stimulus-response (SR) coherence. Data are shown for a turtle posterior canal vestibular
afferent (PCA) (a), and for a paddlefish electroreceptor afferent (EA) (b). Stimuli were weak Gaussian noise, band-limited to below 10 Hz (a) or 20 Hz
(b). sJ : SD of jitter, 3 or 10 ms. Exper.: experimental results, for original spike trains (black solid lines), and also direct application of jitter to spike times
(cyan or gray shading) repeated 10 times using different seeds of a random number generator. Analyt.: the dotted or dashed black lines show
analytical results calculated from Eq.11, for 3 or 10 ms jitter SD.
doi:10.1371/journal.pone.0027380.g001

Figure 2. Reduction of mutual information and coding fraction due to spike time jitter. Percentage loss of the mutual information rate (a–
c) and coding fraction (d–f), due to jitter, are shown over a wide range of jitter SD, expressed in 3 different ways (left, center, and right columns; see
text), for n = 10 different EAs and n = 10 different PCAs. Eqs. 2, 3, and 11 were applied to spike time data from each afferent, to calculate analytically
the effects of different-size jitter. This approach gave results indistinguishable from direct jittering of spike times. Symbols and error bars: mean 6 SD,
n = 10, for analytical results at evenly spaced (on logarithmic scales) values of jitter SD. Continuous black or grey lines: mean (n = 10) analytical results at
intermediate values of jitter SD. PCA sample: spontaneous firing CV~0:53+ 0:23, mean firing rate �rr~17:68+ 6:39 spikes/s, and SD of ISIs
sspont~37:2+ 6:72 ms. EA sample: spontaneous firing CV~0:16+ 0:03, �rr~50:6+ 6:15 spikes/s, and sspont~3:23+ 0:64 ms. Stimuli were Gaussian
noise, band-limited to below 10 Hz for PCAs, or 20 Hz for EAs.
doi:10.1371/journal.pone.0027380.g002

Rate vs. Temporal Codes in Sensory Neurons
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normalizing the jitter SD to the time scale of the stimulus, 1=fc.

The fact that the curves for the PCA and EA (in Fig. 2b, e) do not

superimpose indicates that jitter effects are not simply related to

the proximity of the jitter SD to 1=fc. To assess any relationship

between jitter size and the intrinsic variability of a neuron, we also

normalized jitter SD to the SD of the afferent ISI distributions.

This type of normalization resulted in nearly identical information

and coding loss curves for the two afferents (Fig. 2c,f). This

indicates that the intrinsic variability of a neuron is the principal

determinant of its sensitivity to external jitter. For both afferent

samples, decreases in the mutual information rate and the coding

fraction exceeded 50% at the point where the jitter SD equaled the

SD of the afferent ISI distributions. Since both ILB and c showed a

similar strong dependence on jitter SD, we consider only ILB in the

following sections.

Influences of jitter on serial correlations among ISIs
Adding jitter to a spike train indeed increases the variability of

its ISI distribution, which is reflected in the increase of CV with

jitter SD according to Eq. 6. For renewal processes of similar

mean firing rate, the effect of jitter is stronger for less variable

spike trains, i.e., those with smaller CV values (more uniform

ISIs).

Jitter also alters the serial correlation coefficients among ISIs in two

different ways. First, the striking result of Eq. 7 is that jitter introduces

negative serial correlations into ISI sequences that were originally generated

by a renewal process. For example, with jitter, the SCC of adjacent

ISIs, i.e., where lag, m = 1, becomes ~r1r1~ r1{e2
� ��

1z2e2
� �

, where

r1 is the SCC of the adjacent ISIs in original spike train, and

e~sJ=s0, where sJ is the jitter SD and s0 is the SD of the original ISI

distribution. If the original spike train is a renewal process, where

rm~0, m§1, then the first SCC of the jittered spike train,

~r1r1~{e2= 1z2e2
� �

, becomes negative and approaches 20.5 for

large values of e sJ&s0ð Þ. Thus, jitter converts a renewal process to a

non-renewal process in which adjacent ISIs are negatively correlated,

i.e., short ISIs will tend to be followed by long ISIs and vice versa. This

introduction of anti-correlated sequential ISIs can be understood

qualitatively as a consequence of the jitter values that are added to spike

times being drawn from a distribution with a mean. For any pair of

spikes, a large absolute value of jitter added to the first spike time is

more likely to be followed by a jitter value closer to the mean being

added to the second spike time, due to the phenomenon of regression

(reversion) to the mean. Thus, the interval between the spike pair is

modified by a pair of numbers that themselves tend to be anti-

correlated.

Second, a quite different effect of jitter is observed for spike

trains that are originally generated by a non-renewal process. In

this case, the non-zero SCC values of the original spike train are

suppressed by jitter: ~rmrm~rm

�
1z2e2
� �

, mw1. Since e~sJ=s0, this

scaling parameter in the denominator means that larger jitter

brings the SCC values ~rmrm closer to zero. This effect is also stronger

for less-variable spike trains.

Fig. 3 illustrates these effects of jitter on SCCs of spontaneous

spike trains of a typical turtle PCA and a typical paddlefish EA.

These data are complementary in that turtle PCAs show renewal

statistics [40] whereas paddlefish EAs exhibit extended-range

serial correlations due to interaction of two distinct types of

embedded oscillators [21,41]. Jitter introduced a negative SCC at

the first lag (m = 1) for the renewal afferent (PCA, Fig. 3a), and the

value of this SCC became more negative for larger jitter SD, as

expected. By contrast, for the non-renewal afferent (EA, Fig. 3b),

larger jitter resulted in greater suppression of SCCs for m.1, as

expected.

Influences of jitter on spike train power spectra
The power spectrum of a regularly firing neuron has a main peak

at a fundamental frequency corresponding to the mean firing rate,

and broader peaks at harmonics of the fundamental, as seen in Fig. 4

(labels F and H) for a model neuron with gamma-distributed ISIs,

and in Fig. 5 for spontaneous PCA and EA spike trains. As the CV

decreases, the peak at the fundamental frequency becomes

narrower and higher (Fig. 4, red line in a1 vs. b1, for CVs of 0.05

vs. 0.18), other factors being equal. The discharges of the gamma

neuron model (Fig. 4) and the PCA (Fig. 5a1) are both renewal

processes, i.e. lacking any serial ISI correlations. In contrast, the

EA’s spontaneous discharge is non-renewal due to the interaction of

multiple internal oscillators [21], and so the PSD of the EA (Fig. 5a2)

shows several additional peaks besides at the mean firing rate (asterisk

at 44.3 Hz), including one due to the epithelial oscillations (dot at

26 Hz), and peaks at second-order combinations of these

fundamentals (44.3626 Hz) [21].

As Figs. 4 and 5 show, the PSDs of original and jittered spike

trains converge for extremely low frequencies (f?0). They also

converge for very high frequencies (f??) because the PSD,

Grr fð Þ, approaches �rr for original as well as jittered spike trains

(Eq.11). At intermediate frequencies, jitter increases power, except

around the mean firing rate and its higher harmonics, where

power is suppressed by the jitter. In other words, external jitter

both enhances intrinsic variability and suppresses intrinsic

periodicity of discharges.

A non-obvious outcome of our analysis is that, for a regularly

firing neuron, even small millisecond-level jitter results in a

dramatic increase in PSD power at frequencies below the mean

firing rate, if f%1=sJ. This increase of power is important for our

purposes because the major fraction of stimulus power often lies in

this low frequency range. To further quantify this, we considered

the power ratio of the PSDs of the jittered and original spike trains,

P fð Þ~eGGrr fð Þ=Grr fð Þ, where P fð Þw1 indicates a power gain

produced by jitter. The power enhancement at low frequencies is

more dramatic for afferents with more regular discharge, as seen in

comparing P fð Þ for the gamma neuron with CV = 0.05 (Fig. 4a2)

or CV = 0.18 (Fig. 4b2).

Small (2–5 ms) jitter caused analogous changes in the PSD of an

EA (Fig. 5a2), including a more than 10-fold power gain at low

frequencies (Fig. 5b2). Similar but less pronounced effects were

observed for the PCA for small jitter (2–5 ms) (Fig. 5a1 and 5b1).

This EA and PCA had matching CV = 0.18. Larger jitter (10 ms)

completely abolished this EA’s PSD peaks.

Our analytical results provide a clear explanation of this power

gain at low frequency, as indicated by the excellent correspondence

between numerical results from direct jittering procedures and

analytical results from Eq. 9 (gray shading vs. superimposed lines in

Figs. 5a1 and 5a2). For low frequencies and small jitter, f sJ%1, the

Taylor expansion of Eq. 9 with terms up to f sJð Þ2 gives a PSD for

the jittered spike train of: eGGrr fð Þ&4p2f 2�rrs2
Jz 1{4p2f 2s2

J

� �
Grr fð Þ. The first term in this expansion indicates an increase in

power at low frequencies for the jittered spike train, proportional to

the square of the frequency. This is visible in Figs. 4a1 and 4b1 in

the steep initial slopes of jittered curves, just above zero frequency. A

similar Taylor expansion of the power ratio gives:

P fð Þ&1z4 p2f 2s2
J

�rr

Grr fð Þ{1


 �
; ð15Þ

which shows that at low frequencies the power ratio also scales as

the square of the frequency.

ð15Þ
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The magnitude of the power gain is determined jointly by the

jitter SD and by the variability of the original spike train, i.e. the

term inside brackets in Eq.15. At zero frequency, the PSD of a

spike train is determined by the CV, the mean firing rate, and the

sum of the SCCs: Grr 0ð Þ~�rr CV2 1z
P?

m~1 rm

� �
[33]. For a

regular neuron with a small CV, Grr fð Þ%�rr at low frequencies

(f%�rr). Thus, from Eq. 15, the increased power gain due to jitter is

more dramatic both for more-regular neurons with smaller values

of CV, and for neurons with higher values of the mean firing rate.

If present, negative SCCs further suppress low-frequency

variability, resulting in reduced spectral power at low frequencies,

compared to a renewal process of equal CV and mean firing rate

[42,43]. Consequently the presence of negative SCCs will cause

the effects of jitter to be stronger even if the CV is relatively large,

e.g. for the EA in Figs. 3 and 5.

Comparison of jitter effects on SR coherence and transfer
functions

Besides reshaping the PSD of spontaneous spike trains (Figs. 4

and 5), the addition of jitter also decreases a response metric to

external stimulation, the SR coherence. This is easy to see from

the definition of the SR coherence function, Eq. 2, where the spike

train PSD is in the denominator, such that the jitter-induced

increase of power within the frequency band containing the

stimulus leads to a decrease of SR coherence.

Figure 3. Influence of spike time jitter on serial correlation coefficients (SCCs). SCCs of spontaneous firing of one PCA (a) and one EA (b),
are shown for the listed values of jitter SD, sJ , also expressed as a multiple, e, of the SD of the original ISI distribution. Open circles, (a): theoretical
predictions of Eq. 7. Abscissa, (b): note the logarithmic scale of the ISI lag number, m.
doi:10.1371/journal.pone.0027380.g003

Figure 4. Effect of spike time jitter on the power spectral density (PSD) of spontaneous neural discharge of two different model
gamma neurons calculated from Eq.13. For both, the mean firing rate was set to 50 spike/s. a1, a2. The gamma distribution’s order was L~400
resulting in CV = 0.05 and s0~1ms for the SD of the original ISIs. b1, b2. L~30:8 resulting in CV = 0.18 and s0~3:6ms. (a1, b1) Red lines: PSD of
original spike trains given by Eq.13. Black, green, blue lines: PSDs of jittered spike trains given by Eq.9, for the listed values of jitter SD, sJ . In (a1), the
fundamental (F) peak and its harmonic (H) are labeled. (a2, b2) Corresponding power ratios, R fð Þ, of PSDs for jittered 4 original spike trains.
doi:10.1371/journal.pone.0027380.g004
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For low frequencies and Gaussian jitter, f sJ%1, the SR

coherence function of a jittered spike train can be expanded to a

Taylor series,

eCCSR fð Þ&CSR fð Þ 1{
�rr

Grr fð Þ 2pf sJð Þ2

 �

This shows that the reduction of SR coherence by jitter is

lessened by neuron-specific variability, which is proportional to

�rr=Grr fð Þ as discussed above. For a given value of jitter SD, the

reduction of SR coherence and the mutual information rate will be

greater for a regular spike train, because the magnitude of spike

train power Grr fð Þ will be smaller (%�rr) within the low frequency

band of a stimulus (f%�rr). This explains the difference between the

magnitude of the jitter effects at low frequencies observed for the

PCA and EA in Fig. 1.

On the other hand, another metric of responses to stimulation,

the transfer function H fð Þ~Gsr fð Þ=Gss fð Þ, is less affected by

jitter. H fð Þ is a ratio expressing the response magnitude of a linear

system relative to the power of a stimulus, at different frequencies.

It is not normalized to the spike train PSD, and so is less affected

by jitter. The expansion of fð Þ to a Taylor series for f sJ%1,eHH fð Þ&H fð Þ 1{2p2f 2s2
J

� 	
, shows that the effect of jitter on the

transfer function does not depend on the variability of the original

spike train at all, and is small for f sJ%1. This has been observed

experimentally [24].
Considerations from Linear Response Theory. Further

insight into the effects of jitter came from using linear response

theory [44] to approximate the SR coherence function [28,43,45].

In this approach, for weak stimuli, the PSD of a stimulated spike

train is approximated as the sum of the PSD of the spontaneous

discharge G0
rr fð Þ and the PSD of the stimulus weighted with the

square of the transfer function H fð Þ: Grr fð Þ&G0
rr fð Þz

H fð Þj j2Gss fð Þ. Consequently the SR coherence becomes:

CSR fð Þ& H fð Þj j2Gss fð Þ
G0

rr fð Þz H fð Þj j2Gss fð Þ
:

At low frequencies and small jitter magnitudes, f sJ%1, only the

term for the PSD of the spontaneous discharge is strongly affected

by the jitter. Thus, for weak stimuli, the suppression of SR

coherence at low frequencies by jitter is explained entirely by

jitter’s effect on the PSD of spontaneous discharge, without any

reference to the stimulus.

Model neuron with gamma-distributed ISIs. To

demonstrate explicitly that information carried by rate-modulation

of a spike train is sensitive to small external jitter, we constructed

spike trains from ISI sequences generated from a gamma

distribution, with the spike rate modulated by a slow Gaussian

stimulus (Methods). To mimic the situation of the mammalian

vestibular afferents studied in Sadeghi et al. [24], we constructed

spike trains with a spontaneous rate of �rr~100 spk/s and

CV~0:044. The firing rate was modulated by Gaussian noise

with a cutoff frequency of fc~20 Hz (Methods). Fig. 6a shows that

jitter with SD as small as 1 ms significantly suppressed the SR

coherence and, consequently, the mutual information rate. This

demonstrates clearly that reduced stimulus encoding resulting

from the addition of small external spike time jitter can be

observed in the absence of any temporal code.

Figure 5. Effect of spike time jitter on PSD of spontaneous discharge of one PCA (a1) and one EA (a2). Grey shading: direct application of
jitter to spike times, with listed values of jitter SD, sJ , using 10 different seeds of a random number generator. Red lines: PSD of original spike trains.
Black, green, blue lines: analytical results from Eq. 9, for the listed values of jitter SD, sJ , superimposed on corresponding grey shading for each. (b1,
b2) Corresponding power ratios R fð Þ. Same afferents as for Fig. 3. The PCA and EA had matching CV = 0.18, but different mean firing rates,
19.6 spike/s for PCA and 44.3 spike/s for EA, yielding SD values of spontaneous ISI distributions of 9 ms and 4 ms, respectively. Asterisk, dot: see text.
doi:10.1371/journal.pone.0027380.g005

.
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How does stimulus magnitude affect the sensitivity of a spike

train to external jitter? For a weak Gaussian noise stimulus alone,

the low-frequency power in the spike train will increase with

stimulus amplitude and the CV of the spike train will increase

quadratically with stimulus SD (Fig. 7a). The effect of jitter alone

can be represented as an increase in ISI variability (CV).

According to our analysis (above, Fig. 2c,f), the sensitivity of a

spike train to external jitter decreases as the variability of the

original spike train increases. Thus, our analysis predicts that the

effects of jitter of a given magnitude will become smaller as

stimulus SD increases. This prediction was borne out for a model

gamma neuron (Fig. 6b), and for an EA (Fig. 7b): for a fixed value

of jitter SD, the percentage of information loss due to the jitter

decreased for larger values of stimulus SD.

Effect of jitter on nonlinear responses
Finally, we wish to determine if the effects of jitter on linear

responses can be dissociated from the effects of jitter on non-linear

responses, where precise spike timing carries information in

addition to that carried by firing rate. As the amplitude of a

stimulus grows, the response of a neuron becomes progressively

nonlinear, and a linear encoding model is no longer optimal [36].

One approach to revealing such nonlinear responses in neurons is

to repeatedly present an identical segment of a noise waveform, so-

called ‘‘frozen noise’’. If the stimulus is strong enough, individual

spikes become time locked to particular stimulus features resulting

in stereotypical neural responses to repeated stimulus presentations

[46–49]. We studied the effects of jitter on stimulus-induced

synchronization using a phase neuron model (Eq. 14). Fig. 8 shows

raster plots of this phase model’s spike times in response to

repeated presentations of 600 s segments of weak or strong ‘‘frozen

noise’’ stimuli, as well as the effects of adding 2 ms jitter. For the

weak stimulus alone (8a, upper block), spike times varied across

stimulus trials because of intrinsic noise in the system, and the jitter

has no apparent effect (8a, lower block). However, for the stronger

stimulus (8b, upper block), the phase model’s firing was tightly locked

to the stimulus so that spike times were synchronized into well-

defined temporal patterns, reproduced reliably across the

ensemble of stimulus trials. For this stronger stimulus, the 2 ms

jitter clearly degraded the spike time synchronization (8b, lower

block).

We quantified the effects of jitter on this cross-trial synchroni-

zation by comparing SR and RR coherences for the original and

jittered spike trains (Eqs. 2, 4, 11, 12). For a weak stimulus, SR and

RR coherence were essentially identical and can hardly be

distinguished in Fig. 9a (black vs. blue solid lines), indicating that a

linear stimulus encoding model is appropriate. Small (2 ms) spike

Figure 6. Effects of small-magnitude spike time jitter on stimulus–response (SR) coherence for a model gamma neuron. (a)
Reductions observed for two values of jitter. Background firing rate, r0 , was 100 spikes/s, modulated by a Gaussian noise stimulus that was band-
limited to below 20 Hz. CV = 0.044 for background firing, corresponding to a parameter value of L = 520 for this gamma distribution (see Methods).
(b) Percentage loss of mutual information rate as a function of jitter SD, sJ , for the 3 listed values of stimulus SD = A.
doi:10.1371/journal.pone.0027380.g006

Figure 7. Effect of stimulus SD on coefficient of variation (CV)
and mutual information. (a) CV of a spike train, vs. SD of a noise
stimulus, without jitter, for one EA. (b) Percentage loss of mutual
information rate due to 3 ms jitter; same data as in panel (a). The solid
line in each panel shows a least squares fit with quadratic polynomials.
Same EA as in Fig. 1.
doi:10.1371/journal.pone.0027380.g007
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time jitter resulted in identical and significant reduction of both

coherence functions (Fig. 9a, black vs. blue dotted lines), that was

nearly complete by the stimulus cutoff at fc~20 Hz.

For a stronger but otherwise identical noise stimulus (Fig. 9b),

the response was clearly nonlinear, indicated by RR coherence

(blue solid line) being larger than SR coherence (black solid line) across

the whole frequency range. The large values of RR coherence at

high frequencies up to 500 Hz, well beyond the stimulus cutoff at

fc~20 Hz, clearly reflected the stimulus-induced spike synchro-

nization and the resulting small trial-to-trial spike time variability

seen in Fig. 8b (upper block). For this nonlinear response, small jitter

(SD = 2 ms) affected SR and RR coherence in different ways.

There was insignificant suppression of SR coherence (Fig. 9b, black

dotted line) by such small jitter across the entire frequency range,

due to the large intra-trial variability of ISIs, that is, their large CV

imposed by the stimulus. On the other hand, RR coherence (blue

dotted line) was strongly suppressed, but only in the high-frequency

band, f wfc, indicating that small jitter values contaminated only

the trial-to-trial spike synchronization.

Discussion

Spike generation is an inherently noisy process, due to various

internal sources of noise in neurons [46,50–52]. Consequently the

Figure 8. Effects of spike time jitter on linear (a) and nonlinear (b) responses from a phase neuron model (Eq.14). The parameters of
the model were chosen to match the model gamma neuron of Fig. 6: meanfiringrate�rr~100spike/s, CV = 0.045, and 20 Hz cutoff frequency of a
Gaussian noise stimulus. The upper block of panels (a) and (b) shows 100 raster plots of spike times (dots) during 100 presentations of an identical
180 ms stimulus segment (c), taken from a 600 s stimulus waveform that was repeated. The raster plots in the lower block of each panel show the
effect of adding 2 ms jitter to spike times, for the same stimulus SD, A, which was ‘weak’ (A = 0.05) for the responses in (a), and ‘strong’ (A = 1.0) for the
responses in (b).
doi:10.1371/journal.pone.0027380.g008

Figure 9. Stimulus-response (SR) and response-response (RR) coherence for the linear and nonlinear regimes shown in Fig. 8. Solid
lines: original data. Dotted lines: with small spike time jitter (SD = 2 ms) added. SR coherence is shown by black lines and dots. RR coherence is shown
by blue lines and dots.
doi:10.1371/journal.pone.0027380.g009
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temporal precision of neuronal responses is always somewhat

degraded by intrinsic spike time jitter. Indeed, estimating and

removing this inherent jitter from neural responses has been

shown to significantly improve stimulus reconstructions and

estimates of neural transfer functions computed from spiking

responses [9]. A reverse approach is often used to assess the degree

to which the application of artificial jitter (noise) to the timing of

spikes in a spike train degrades stimulus encoding [6,20,24–26].

We have developed an analytical framework that allows

quantitative assessment of the effects of artificial spike timing jitter

on both the spontaneous and stimulus-driven discharges of sensory

neurons. This framework allows an efficient and analytical

assessment of the effects of jitter on various spike train metrics,

without requiring the actual numerical jittering procedure. In

particular, our theory applies to information metrics estimated

using the linear stimulus reconstruction technique, as in numerous

neuroscience studies.

We have applied this analytical framework to experimental data

from turtle vestibular and paddlefish electroreceptor afferents, as

well as to model neurons. Our main results regarding the effects of

added spike time noise on sensory encoding are: 1. Jitter increases

the variability of spontaneous discharges, as measured by the CV.

However, jitter also drastically reshapes the correlation metrics of

a spike train, e.g. serial correlation coefficients, and the power

spectrum. 2. The relative size of jitter is a critical parameter, as jitter

reduces stimulus-response coherence in proportion to the ratio of

the jitter SD to the intrinsic variability of the neuron’s discharge.

3. Jitter reduces both the mutual information rate and the coding

fraction of neuronal responses, even in cases where information is

linearly encoded. For example, a gamma model neuron with the

rate modulated by the stimulus (that is, with a strict rate-coding

scheme explicitly imposed) is sensitive to jitter in the same manner

as sensory afferents. 4. For non-linear responses, where spikes are

synchronized to stimulus events, small amounts of jitter that have

minimal effect on SR coherence can indeed significantly reduce

the cross-trial (RR) coherence of repeated responses, and non-

linear encoding. Based on these results, we conclude that the

degradation of sensory encoding resulting from added spike time

noise, as estimated with the linear reconstruction technique, does

not provide unequivocal evidence for a temporal code.

Distortions from jitter
We showed that jitter alters the correlation structure of spike

sequences. Jitter introduces negative serial ISI correlations into

renewal processes, due to the zero-mean nature of the jitter size

distribution. On the other hand, jitter degrades serial ISI

correlations that are already present. Such distortions by jitter

have not been described previously, but since the distinction

between renewal and nonrenewal processes is considered funda-

mental by computational neuroscientists (reviewed in [53,54]),

these distortions may complicate the interpretation of jitter effects.

Although negative serial correlations have been shown to reduce

background noise in neural discharges [42,43,55–58], which can

enhance linear encoding, the full impact of ISI correlations on

CNS processing of sensory information and animal behavior is not

known.

What determines a neuron’s susceptibility to small
external jitter, and what is a meaningful criterion for
‘‘small’’?

The rationale behind the use of jitter to demonstrate temporal

encoding is that the jitter SD, sJ, is assumed to be small relative to

the duration of the neuron’s encoding window. Thus, jitter alters

the position of spikes within the window (a temporal code), but not

the number (a rate code). In the absence of any direct information

about the length of the encoding window, the jitter amplitude is

typically chosen to be smaller than the characteristic time scale of

the stimulus. For a Gaussian noise stimulus that is band-limited to

a cutoff frequency fc, this criterion for small jitter is then: sJvf {1
c ,

or sJfcv1. For example, jitter with an SD of 3 ms would be

considered to be small for a stimulus with a cutoff frequency of

20 Hz, since sJfc~0:06.

In our results, jitter of this small magnitude resulted in a

significant reduction of information measures for electroreceptor

afferents, but not for vestibular afferents (Fig. 2a,d). This appears

consistent with the degree of jitter-induced suppression of

information metrics being determined by the intrinsic variability

of a spontaneously active neuron, such that neurons with a more

regular discharge appear more susceptible to small jitter.

The suppressive effect of jitter on stimulus encoding becomes

obvious when the jitter SD is approximately equal to the standard

deviation of the neuron’s ISI distribution, s0, that is, when

sJ=s0*1 (Fig. 2c,f). This result establishes a completely different

criterion for what constitutes small jitter. For the example of the

electroreceptor afferents with s0~3–5 ms, jitter with sJ~3 ms is

not small by the new criterion, and indeed significantly reshapes

the power spectrum and the SR coherence function of the afferent.

On the other hand, for the vestibular afferents, a 3 ms jitter is

small relative to its s0 value (10–40 ms), and consequently it does

not significantly affect the afferent’s response.

Normalizing the magnitude of the jitter to the value of s0,

e~sJ=s0, provides a universally applicable means of scaling the

jitter magnitude for purposes of evaluating its effects on

information theoretic metrics, as shown in Fig. 2c,f. This suggests

that the effect of jitter is essentially independent of spontaneous

discharge regularity per se, if normalized to it, and that the

appropriate criterion for considering jitter to be small is unrelated

to the time scale of the stimulus, sJfc. Thus, if scaled

appropriately, artificial spike time noise has consistent effects on

sensory encoding no matter whether a neuron’s spontaneous firing

is noisy or highly periodic, high or low frequency, renewal or non-

renewal.

Why does small-amplitude jitter affect the encoding of
low-frequency stimuli?

We examined this question in detail. With the linear

reconstruction technique, both the lower bound estimate of

mutual information rate and the coding fraction are expressed in

terms of SR coherence (Eqs. 1–3). Thus, the suppression of

information encoding due to artificial jitter can be understood

entirely in terms of the relationship between SR coherence and

jitter SD. Our analysis shows that for low frequencies and small

jitter amplitudes, i.e. when the product of the frequency and the

jitter SD is small (f sJ%1), the suppression of SR coherence is due

to an increase in the power spectral density of the jittered response,

while the cross-spectrum is relatively unaffected. That is, artificial

jitter significantly enhances power at frequencies lower than the

mean firing rate of a regularly firing neuron, and much lower than

the inverse of the jitter SD. For progressively weaker stimuli, this

jitter-induced power gain is increasingly stimulus independent.

Since the response PSD increases without any corresponding

increase in the cross-spectrum, the SR coherence is reduced for

the jittered responses, and consequently the lower bound estimate

of the mutual information rate, and the coding fraction, are

reduced also.

The same argument can be made for the optimal reconstruction

filter, K fð Þ, which is calculated as the ratio of the cross-spectrum
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to the response PSD (Methods), in the frequency domain. Here

also, jittered responses exhibit enhanced power in the background

noise, which reduces the magnitude of the reconstruction filter,

and leads to a reduction of the mutual information rate and the

coding fraction. Thus, the sensitivity of an encoding process to

small-amplitude jitter, as estimated with the linear reconstruction

technique, can be explained completely by jitter-induced trans-

formations of the response spectral characteristics.

The example of Fig. 9a clearly shows that for a weak stimulus

and a neural response in which all information is linearly encoded,

dramatic suppression of the lower bound mutual information rate

by 2 ms jitter can occur. Our example with a rate-modulated

gamma neuron (Fig. 6a) further demonstrates that small jitter has

essentially the same effect on responses that are explicitly rate

encoded as it does on the afferent neurons used in this study. Thus,

the sensitivity to small external jitter of stimulus encoding, as

estimated by linear reconstruction, cannot per se be taken as

evidence for a temporal encoding scheme.

Jitter effect on nonlinear encoding
The effects of jitter on linear and non-linear encoding were

quite distinct. For non-linear responses manifested as stimulus-

induced synchronization of neuronal firing (as Fig. 8b), estimates

of the lower bound of the mutual information rate were essentially

unaffected by jitter (Fig. 9b). Instead, jitter dramatically reduced

the cross-trial (RR) coherence between responses to a repeated

stimulus, but only at frequencies above the stimulus band,

corresponding to the time scale of the trial-to-trial spike

synchronization induced by the stimulus. Thus, jitter does disrupt

coding schemes based on spike timing, when present.

A full assessment of the effects of jitter requires that it also be

applied to measures of non-linear encoding, such as direct

estimates of the mutual information rate [7,8,59], or RR

coherence and the upper bound of the mutual information rate

associated with it [23,26,37].

The variability of neurons with sparse spontaneous activity, e.g.

thalamic neurons [8] or whisker primary afferents [25,27], as

estimated from a single presentation of a noise stimulus, is mainly

determined by the stimulus itself. Although our theory also applies

to such neurons, the use of cross-trial (RR) variability to assess

intrinsic variability may be more appropriate than the CV metric

used here for afferents with robust spontaneous activity. Indeed,

for neurons with sparse spontaneous activity, lower bound

information estimates may significantly underestimate the true

mutual information rate [10]. Measures of nonlinear encoding

must be implemented instead [7,8,26,37,59].

Supporting Information
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