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Objective. To develop software to assess the potential aggressiveness of an incidentally detected renal mass using images.Methods.
)irty randomly selected patients who underwent nephrectomy for renal cell carcinoma (RCC) had their images independently
reviewed by engineers. Tumor “Roughness” was based on image algorithm of tumor topographic features visualized on computed
tomography (CT) scans. Univariant and multivariant statistical analyses are utilized for analysis. Results. We investigated 30
subjects that underwent partial or radical nephrectomy. After excluding poor image-rendered images, 27 patients remained
(benign cyst� 1, oncocytoma� 2, clear cell RCC� 15, papillary RCC� 7, and chromophobe RCC� 2). )e mean roughness score
for each mass is 1.18, 1.16, 1.27, 1.52, and 1.56 units, respectively (p< 0.004). Renal masses were correlated with tumor roughness
(Pearson’s, p � 0.02). However, tumor size itself was larger in benign tumors (p � 0.1). Linear regression analysis noted that the
roughness score is the most influential on the model with all other demographics being equal including tumor size (p � 0.003).
Conclusion. Using basic CT imaging software, tumor topography (“roughness”) can be quantified and correlated with histologies
such as RCC subtype and could lead to determining aggressiveness of small renal masses.

1. Introduction

Kidney cancer (renal cell carcinoma; RCC) is expected to
account for 3.8% of all new cancers diagnosed in 2017 and
will be responsible for an estimated 14,400 deaths [1]. )e
widespread use of radiologic imaging likely accounts for
the increased incidence of new cancer cases diagnosed in
the United States since the 1970s. Up to 40% of these
incidental masses are localized, and approximately 15–
20% of these small renal masses are ultimately benign.
[2–7].

Small renal masses are typically not aggressive and are
slow growing with low malignant potential; therefore,
urologists have adapted a monitoring program to follow
these masses over time called active surveillance [8]. Active
surveillance heavily relies on growth of tumors in size and
lacks uniform standardization usually citing every 6-month
imaging [9]. While size is an important factor in renal tu-
mors, it does not solely predict the malignant potential of a
small renal mass. In a study by Daugherty et al., proposed the
need for different size cutoffs for the various renal cancer
subtypes indicating the clear cell cancer has the most
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malignant potential and should be smaller than 4 cm and
chromophobe has the lowest malignant potential and could
wait until 7 cm size [10]. While active surveillance in ap-
propriately selected patients is a viable alternative to surgical
intervention, it still carries the burden of uncertainty, patient
anxiety, risk of disease progression, and the associated fi-
nancial cost to the patient [11]. As the diagnosis of small
renal masses remains primarily radiographic, the develop-
ment of software to assess the potential aggressiveness of a
mass would be a useful aid in the clinicians’ armamentarium
for shared decision-making. Previous studies have
attempted to discern tumor histology through the use of
current imaging techniques and automated image analysis
with varying degrees of success [12–16].

In order to provide additional information on malignant
potential of small renal masses without needing a biopsy, we
utilize computed tomographic (CT) scans with image en-
hancement techniques and edge detection to calculate the
surface irregularities of renal masses scheduled for partial
nephrectomy. Using this technology, we create an overall
“Tumor Roughness Score” (TRS) to determine the dis-
tinction of renal tumor subtype and potential aggressiveness.
)e initial assessment of this technique is to determine its
utility in active surveillance clinical follow-up and potential
research trials.

2. Methods

2.1. Patient Population. )irty patients who underwent
nephrectomy for RCC from our institution represent cases
of clear cell RCC (n � 10), papillary RCC (n � 10), and
chromophobe RCC (n � 10). Limited demographic and
follow-up data were available. We excluded patients with
known hereditary disorders and those deemed to have poor
quality CT images.

2.2. Tumor Roughness Measure by UsingMultilevel Voxel Box
Counting. )e “roughness” measure of a kidney tumor
requires contrast-enhanced CT scans, which automatically
detect, quantitatively measure, and distinguish lymph node
involvement and local tumor invasion based on the tumor’s
topography [17]. )e extensive computer simulation vali-
dates the proposed roughness measure acquisition that re-
quires a three-stage algorithm.

2.2.1. Improving the Image Quality and Contrast. In general,
the quality of images is affected by factors such as restricted
image dimension and pixel resolution along with the
compulsive effects caused due to noise and poor contrast. To
overcome these problems, we utilize well-described en-
hancement methods such as guided filtering, edge en-
hancement, and image fusion to improve the contrast and
quality of the image [18, 19].

2.2.2. Enhanced Image Multilevel Segmentation Using Its
Alpha-Trimmed Mean and Variance. Multiple-level seg-
mentation aims to obtain more than one threshold for a

given image and segment the image into specific regions of
interest (tumor) overlying one background [20].)emethod
assumes that the image contains only foreground and
background information. Traditional multilevel segmenta-
tion techniques are usually susceptible to Gaussian and
impulse noise. )e algorithm is a modification of the
multilevel thresholding technique for image segmentation
that eliminates noise and performs a comprehensive search
for a threshold that minimizes the intraclass (foreground
and background) alpha-trimmed variance [21]. )e critical
component of this method is the selection of a threshold
such that it separates the pixels into multiple classes by
maximizing the between-class variance. )e between-class
variance is defined as

σ2 � 
M

i�1
Pi μi − μT( , (1)

where σ2 is the between-class variance, Pi is the probability
of class i, μi is the mean value of class i, and μT is the total
mean of the histogram.

2.2.3. Computation of the Average of Hausdorff’s Measure of
the Regions of Interest (Tumor). )e Hausdorff measure is a
scale of closeness of two groups of points that are subclasses
of a metric space [22]. )e measure assigns a scalar score to
the similarity between two paths, data clouds, or any group
of points. It is defined by equations (2) and (3). Let (A, d) be
a metric space. For any subset M ⊂ A, diam(M) will denote
the diameter of M. For any M ⊂ A, any δ ∈ [0,∞], and any
α ∈ [0,∞], the outer measure is given by

H
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Hence, the Hausdorff α-dimensional measure of M is

H
α
(M) � lim

δ⟶0
H

α
δ(M). (3)

)e system uses the box counting method to generate
feature points based on the presence of edges in the image.
Based on these feature points, the Hausdorff dimension is
estimated and the slope of the best fit line generates a
roughness score. In our case, Hausdorff’s measure is an outer
measure that calculates the roughness of each level and a
combined score is generated. )is score is referred to as the
Tumor Roughness Score.

3. Statistical Analysis

Continuous variables were analyzed with either T-tests or
ANOVA for comparisons of the five renal mass subtype
groups. ANOVA post hoc analysis used least significant
difference (LSD). All p values are two-tailed with a signif-
icance of p< 0.05, unless otherwise specified. )e Pearson
correlation coefficient is used to determine correlation
analysis specifically between renal mass size and tumor
roughness because larger tumors are more likely to be ag-
gressive. We utilized a linear regressionmodel to identify the
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factors that are most influential on predicting tumor
subtype.

4. Results

Of the thirty patients selected, we excluded three patients
due to poor quality CT images. We selected the data from
27 patients for analysis composed of the following sub-
types: benign cyst (n � 1), oncocytoma (n � 2), clear cell
RCC (n � 15), papillary RCC (n � 7), and chromophobe
RCC (n � 2). Overall demographics include median age of
56 (IQR 48–63), median body mass index of 30.4 (27.6–
32.0), median tumor size of 2.5 cm (IQR 1.8–4 cm), and
four positive margins (14.8%, 4/27) and consisted of 93%
men (25/27). Only one tumor was upgraded to pT3a and a
total of three to pT1b, with all other tumors being pT1a.
Race/ethnicity includes 59% of European descent and 41%
of non-European descent. We display the demographics of
each subtype and comparisons in Table 1. At a median
follow-up of 3.9 years (interquartile range (IQR) 2.2,
5.4 years), there were no patient deaths. None of the pa-
tients had a documented recurrence. )e majority of the
cases were stage 1 disease; two cases did not have a
recorded stage, and none of the subjects had documented
metastasis or received neoadjuvant therapy before surgical
resection (Table 1). We display an example of the adaptive
segmentation technique for image processing for the
calculation of the tumor roughness score in Figure 1. We
obtain standard clinical CT scans and segment the kidney
and tumor for surface enhancement separately. To in-
vestigate tumor irregularity, we take the tumor slice by
slice using edge detection and other techniques described
in Methods to obtain a 3-dimensional surface irregularity.
)ese slices are calculated into a composite score of tumor
roughness.

Of the 27 patients, tumor size associated with benign
renal masses (Figure 2, p � 0.01). )e mean roughness
score for each mass is 1.18, 1.16, 1.27, 1.52, and 1.56 units,
respectively (Figure 3(a), p< 0.004). )e mean TRS did
trend along the renal cancer subtype associated with
tumor aggressiveness. )e lowest quartile is 1.32 and
would indicate the lowest risk based on this dataset and is
visually displayed in the waterfall plot of TRS and colored
by the corresponding tumor subtype. )e stage T3a-
upgraded tumor has a TRS of 1.46. )e mean scores of
positive and negative margins were identical (p � 0.9), but
both above the lowest quartile. We investigated those
tumors with Furman score (n � 23) and did not show
significant differences between high grade tumors vs. low
grade tumors (p � 0.7); however, 83% (19/23) were
documented as Furman Grade 2 (low grade) and there-
fore, there was not an acceptable range of tumor cellular
aggressiveness based on histopathology. Renal masses size
correlates with tumor roughness (Pearson’s, p � 0.02,
Figure 4). However, tumor size itself was larger in benign
tumors rather than malignant tumors (p � 0.01) giving
the indication that size would not be a significant factor
for aggressiveness. Linear regression analysis noted that
the roughness score is the most influential on the model

with all other demographics being equal including tumor
size (p � 0.003) (Table 2).

5. Discussion

Herein, we describe a data image processing technique to
provide a tumor roughness score that can have additional
information beyond tumor size. Currently, physicians use
tumor size and growth rate in active monitoring strategies.
However, this strategy has not shown to be accurate re-
garding tumor subtype or tumor aggressiveness. We show
that the TRS can be a useful adjunct to image assessment and
has the potential for automation using artificial intelligence
and machine learning. TRS provides additional information
regarding tumor subtype which correlates with the tradi-
tional RCC aggressiveness without a renal mass biopsy. )is
information is already available to physicians; however,
computer-assisted techniques remain limited for evaluation.
)e roughness scoring could provide information regarding
those tumors that may be less aggressive from the clear cell
and papillary cancers. We plan on using these techniques in
future clinical trials and to potentially implement machine
learning protocols, which would enhance its predictive
ability with more comprehensive datasets.

We distinguish our analysis from previous manuscripts
describing the surface contact area, which has also been
shown to predict postoperative outcomes but was not in-
vestigated regarding tumor subtype [23, 24]. Tumor surface
contact areas only represent how much tumor is touching
the kidney parenchyma, and essentially, the test is an in-
dicator of how exophytic a renal tumor is to its surrounding
tissue. Our technique enhances and outlines the entire tu-
mor surface for irregularity not based on exophytic or en-
dophytic which is usually reserved for surgical resection
planning. Another utilization of CT imaging is the texture
analysis performed by Khene and colleagues noting the
texture on CT could predict malignant or benign tumors as
well as adherent perinephric fat during surgical intervention
[25, 26]. Closure to our analysis is the work performed by
Linguraru et al. who developed semiautomated quantifica-
tion and classification of renal tumors to classify benign or
malignant tumors especially those patients with genetic
abnormalities prone for forming multiple kidney tumors
[27]. Considerable effort has been placed to detect papillary
renal cancer from clear cell including subtypes based on
contrast enhancement largely because papillary renal neo-
plasms have a poor or delayed enhancement that can be
difficult to discern from hyperdense renal cysts [28, 29]. In
addition, papillary subtype tumors are less likely to have a
thick pseudocapsule around the tumor which would co-
incide with having more irregular edges to the tumor [30].
Our technique could assist with this particular question in
more extensive studies.

Data science with the use of deep learning based-
automated methods is ever increasing and merging with
clinical care [31]. Other authors have utilized similar
techniques for image analysis. Pattern recognition is es-
sential in radiology; however, utilization of quantitative
image analysis will provide objective additional data on
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Figure 1: Tumor roughness score image analysis. Adaptive segmentation technique developed to segment the kidney and tumor for surface
enhancement and investigate tumor irregularity.)e summary irregularity score (Ravg � 1.0413) is averaged across all segments of the tumor.

Table 1: Demographics by tumor subtype.

Renal cancer subtype Benign cyst Oncocytoma Chromophobe Clear cell Papillary p value
Number of patients (N) 1 2 2 15 7
Age 60 45 (42–45) 54 (51–54) 56 (42–66) 57 (51–63) 0.9
Body mass index 24.9 26.3 (24.1–26.3) 31.8 (31.3–31.8) 30.1 (27.3–31.6) 32.01 (29.9–40.7) 0.05
Race/ethnicity (white %) 1/1 (100%) 1/2 (50%) 0/2 (0%) 9/15 (60%) 5/7 (71%) 0.4
Biologic gender (male %) 0/1 (0%) 1/2 (50%) 2/2(100%) 15/15 (100%) 7/7 (100%) 0.001
Tumor size (cm) 1.8 5.3 (4.0–5.3) 4.45 (4.4–4.45) 2.3 (1.5–3.8) 2.5 (2.0–2.7) 0.01
Tumor stage (stage 3) 0/1 (0%) 0/2 (0%) 0/2 (0%) 1/15 (7%) 0/7 (0%) 0.3
Tumor surface roughness 1.18 1.16 (1.12–1.16) 1.27 (1.21–1.27) 1.52 (1.38–1.55) 1.56 (1.43–1.66) 0.004
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Figure 2: Box and whisker plot of renal mass size compared to the renal tumor subtype for trend.
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Figure 3: Continued.

Advances in Urology 5



tumor aggressiveness.)ese techniques have been applied in
lung cancer and others [32–34]. A review on other tech-
niques for small renal mass characterization will be utilized
in further evaluation and improvements [35, 36]. We seek to
add to the expanding literature using image analysis tech-
niques to utilize data science to implement actionable data to
physicians and patients.

)ere are some limitations to this study. First, while we
identified some potentially significant associations, this is a
pilot study in a small cohort of patients without validated
findings. Secondly, our cohort included CTscans performed
at different institutions using different CT scanners, which
could insert variability into the quality of the roughness
score. However, in practical use, this would be the norm as
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Figure 3: (a) Box and whisker plot displaying the tumor surface roughness score compared to each renal mass subtype for trend. (b)
Waterfall plot for tumor roughness score with each renal tumor subtype listing less aggressive tumors to the left and more aggressive tumors
to the right.
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Figure 4: Scatter plot noting the correlation between renal mass size and tumor roughness score (Pearson’s p � 0.02).
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other clinicians would utilize CT images from their home
institutions. We assume that the tumor roughness score will
have more applicability in small renal masses to have more
influence on future decision making. Unfortunately, we are
unable to compare our method with methods of previous
authors because specific algorithms have not been published
[37]. We acknowledge the fast moving field of image analysis
and new techniques to separate target lesions in imaging
with new techniques such as topographical assessments [38].
We included all renal mass types because until surgical
removal, the subtype is completely unknown, giving us
impetus for this study. We are currently developing vali-
dation profiles of our work and development of AI tech-
nology that can provide visual tumor characteristics in
quantitative form as a biomarker.

6. Conclusion

Using existing CT imaging in this proof of concept study,
renal mass tumoral topography can be quantified and
correlated with histology and biological aggressiveness in
small renal masses. We provide preliminary data to suggest
the use of imaging topography could provide additional
information in the selection of patients for active surveil-
lance or monitoring of renal masses compared to more
aggressive therapy. A larger study is warranted to validate
these findings and to determine if radiographic tumor
surface analysis can obviate the need for conventional serum
or urine biomarkers.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by the SA Cancer Council Circle of
Hope.

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,
2019,” CA: A Cancer Journal for Clinicians, vol. 69, no. 1,
pp. 7–34, 2019.

[2] D. C. Johnson, J. Vukina, A. B. Smith et al., “Preoperatively
misclassified, surgically removed benign renal masses: a
systematic review of surgical series and United States pop-
ulation level burden estimate,” Journal of Urology, vol. 193,
no. 1, pp. 30–35, 2015.

[3] C. J. Kane, K. Mallin, J. Ritchey, M. R. Cooperberg, and
P. R. Carroll, “Renal cell cancer stage migration,” Cancer,
vol. 113, no. 1, pp. 78–83, 2008.

[4] A. Kutikov, L. K. Fossett, P. Ramchandani et al., “Incidence of
benign pathologic findings at partial nephrectomy for solitary
renal mass presumed to be renal cell carcinoma on pre-
operative imaging,” Urology, vol. 68, no. 4, pp. 737–740, 2006.

[5] B. R. Lane, D. Babineau, M. W. Kattan et al., “A preoperative
prognostic nomogram for solid enhancing renal tumors 7 cm
or less amenable to partial nephrectomy,” Journal of Urology,
vol. 178, no. 2, pp. 429–434, 2007.

[6] A. Mathew, S. S. Devesa, J. F. Fraumeni Jr., and W.-H. Chow,
“Global increases in kidney cancer incidence, 1973–1992,”
European Journal of Cancer Prevention, vol. 11, no. 2,
pp. 171–178, 2002.

[7] M. M. Nguyen, I. S. Gill, and L. M. Ellison, “)e evolving
presentation of renal carcinoma in the United States: trends
from the surveillance, epidemiology, and end results pro-
gram,” Journal of Urology, vol. 176, no. 6, pp. 2397–2400,
2006.

[8] I. S. Gill, M. Aron, D. A. Gervais, andM. A. S. Jewett, “Clinical
practice. Small renal mass,”New England Journal of Medicine,
vol. 362, no. 7, pp. 624–634, 2010.

[9] C. W. Liaw, J. S. Winoker, and R. Mehrazin, “Imaging pro-
tocols for active surveillance in renal cell carcinoma,” Current
Urology Reports, vol. 19, no. 10, p. 81, 2018.

[10] M. Daugherty, D. Sedaghatpour, O. Shapiro, S. Vourganti,
A. Kutikov, and G. Bratslavsky, “)e metastatic potential of
renal tumors: influence of histologic subtypes on definition
of small renal masses, risk stratification, and future active
surveillance protocols,” Urologic Oncology: Seminars and
Original Investigations, vol. 35, no. 4, pp. 153 e115–153 e120,
2017.

[11] S. Campbell, R. G. Uzzo, M. E. Allaf et al., “Renal mass and
localized renal cancer: AUA guideline,” Journal of Urology,
vol. 198, no. 3, pp. 520–529, 2017.

[12] M. G. Linguraru, S. Wang, F. Shah et al., “Automated non-
invasive classification of renal cancer on multiphase CT,”
Medical Physics, vol. 38, no. 10, pp. 5738–5746, 2011.

[13] R. Papalia, A. L. De Castro Abreu, V. Panebianco et al., “Novel
kidney segmentation system to describe tumour location for
nephron-sparing surgery,” World Journal of Urology, vol. 33,
no. 6, pp. 865–871, 2015.

[14] F. Chen, M. Gulati, D. Hwang et al., “Voxel-based whole-
lesion enhancement parameters: a study of its clinical value in
differentiating clear cell renal cell carcinoma from renal
oncocytoma,” Abdominal Radiology, vol. 42, no. 2, pp. 552–
560, 2017.

[15] H. Coy, J. R. Young, M. L. Douek, M. S. Brown, J. Sayre, and
S. S. Raman, “Quantitative computer-aided diagnostic algo-
rithm for automated detection of peak lesion attenuation in
differentiating clear cell from papillary and chromophobe
renal cell carcinoma, oncocytoma, and fat-poor angiomyo-
lipoma onmultiphasic multidetector computed tomography,”
Abdominal Radiology, vol. 42, no. 7, pp. 1919–1928, 2017.

[16] N. J. Farber, Y. Wu, L. Zou, P. Belani, and E. A. Singer,
“Challenges in RCC imaging: renal insufficiency, post-
operative surveillance, and the role of radiomics,” Kidney
Cancer Journal, vol. 13, no. 4, pp. 84–90, 2015.

Table 2: Multivariable linear regression model or the outcome of
kidney cancer subtype.

Demographic Coefficient (95% CI) t score p value
Constant 2.59 (−5.8–0.58) −1.709 0.1
Age 0.004 (0.17–0.025) 0.9 0.69
Body mass index 0.049 (0.008–0.107) 2.7 0.09
White (yes vs. no) 0.114 (0.364–0.592) 0.5 0.62
Tumor size 1.71 (−0.351–0.009) −1.2 0.06
Roughness score 2.601 (0.977–4.225) 4.2 0.003

Advances in Urology 7



[17] J. W. Cho, S. C. Choi, J. Y. Jang et al., “Lymph node metastases
in esophageal carcinoma: an endoscopist’s view,” Clinical
Endoscopy, vol. 47, no. 6, pp. 523–429, 2014.

[18] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 6, pp. 1397–1409, 2013.

[19] K. Panetta, Y. Yicong Zhou, S. Agaian, and H. Hongwei Jia,
“Nonlinear unsharp masking for mammogram enhance-
ment,” IEEE Transactions on Information Technology in
Biomedicine, vol. 15, no. 6, pp. 918–928, 2011.

[20] S. Arora, J. Acharya, A. Verma, and P. K. Panigrahi, “Mul-
tilevel thresholding for image segmentation through a fast
statistical recursive algorithm,” Pattern Recognition Letters,
vol. 29, no. 2, pp. 119–125, 2008.

[21] K. M. Kamath, R. Rajendran, K. Panetta, and S. Agaian, “A
human visual based binarization technique for histological
images,” in Proceedings of the Mobile Multimedia/Image
Processing, Security, and Applications, Anaheim, CA, USA,
April 2017.
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