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Abstract

Motivation: Long tandem repeat expansions of more than 1000 nt have been suggested to be associated with dis-
eases, but remain largely unexplored in individual human genomes because read lengths have been too short.
However, new long-read sequencing technologies can produce single reads of 10 000 nt or more that can span such
repeat expansions, although these long reads have high error rates, of 10–20%, which complicates the detection of
repetitive elements. Moreover, most traditional algorithms for finding tandem repeats are designed to find short tan-
dem repeats (< 1000 nt) and cannot effectively handle the high error rate of long reads in a reasonable amount of
time.

Results: Here, we report an efficient algorithm for solving this problem that takes advantage of the length of the re-
peat. Namely, a long tandem repeat has hundreds or thousands of approximate copies of the repeated unit, so des-
pite the error rate, many short k-mers will be error-free in many copies of the unit. We exploited this characteristic to
develop a method for first estimating regions that could contain a tandem repeat, by analyzing the k-mer frequency
distributions of fixed-size windows across the target read, followed by an algorithm that assembles the k-mers of a
putative region into the consensus repeat unit by greedily traversing a de Bruijn graph. Experimental results indi-
cated that the proposed algorithm largely outperformed Tandem Repeats Finder, a widely used program for finding
tandem repeats, in terms of sensitivity.

Availability and implementation: https://github.com/morisUtokyo/mTR.

Contact: moris@edu.k.u-tokyo.ac.jp or myers@mpi-cbg.de

1 Introduction

Tandem repeats are prevalent in genomes, and expansions of short
tandem repeats (STRs), repetitive elements of 2–6 nt in length, are
known to be associated with several brain diseases (Mirkin, 2007).
For example, the triplet repeat ðCAGÞn in the coding region of the
Huntington gene is short (n < 28) in normal samples, but it
becomes long (n > 40) in patients with Huntington’s disease
(MacDonald et al., 1993). Short-read sequencing technologies that
produce reads of 150 nt are able to identify the strings of these rela-
tively short STR expansions. However, longer STRs of 1000 nt or

more remain largely unexplored.
Despite this sequencing difficulty, a number of long STRs have

been reported to be associated with brain diseases using a restriction
enzymes strategy. Specifically, an STR can be enriched if it does not
contain the recognition sites of a set of restriction enzymes that di-

gest genomic regions other than the focal STR. This technical ap-
proach has uncovered a number of STR expansions associated with
brain diseases in exons, introns and untranslated regions (UTRs).
For example, a (CGG) repeat in the 50-UTR is correlated with

fragile-X syndrome (Kremer et al., 1991; Sherman et al., 1985;
Verkerk et al., 1991) and with neuronal intranuclear inclusion dis-
ease and oculopharyngodistal myopathy (Ishiura et al., 2019), a
(CTG) repeat in the 30-UTR is associated with myotonic dystrophy
type 1 (DM1) (Brook et al., 1992; Mahadevan et al., 1992), a
(CCTG) repeat in an intron causes myotonic dystrophy type 2
(DM2) (Liquori et al., 2001), a (GGGGCC) repeat in an intron is
correlated with amyotrophic lateral sclerosis/frontotemporal demen-
tia (ALS/FTD) (DeJesus-Hernandez et al., 2011; Orr, 2011; Renton
et al., 2011). Although this restriction enzyme approach is cost-
efficient, it requires prior knowledge of the details of the focal STRs
and is therefore not capable of searching the entire genome for de
novo STRs.

The recent advances in sequencing long DNA fragments of more
than 10K nt has made it possible to capture many novel tandem
repeats in genomes, including STRs. Loomis et al. first demonstrated
the usefulness of Pacific Bioscience’s single-molecule real-time
(SMRT) long-read sequencing technology by reading an instance of
the fragile X locus with 750 tandem copes of the (CGG) unit
(Loomis et al., 2013), a region with 100% GC-content. Recently,
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Ishiura et al. uncovered novel intronic (TTTCA) and (TTTTA) tan-
dem repeat expansions of �5K nt for benign adult familial myoclon-
ic epilepsy using both Nanopore and PacBio sequencers, and
showed that their repeat length correlates with the onset age of epi-
lepsy (Ishiura et al., 2018).

Another relevant application of long-read sequencing is the de
novo assembly of genomes of many species, including humans.
Chaisson et al. attempted to close gaps in the human genome using
SMRT sequencing and found that many of the gaps were filled with
long tandem repeats, including centromeric tandem repeats
(Chaisson et al., 2015). Although sequencing human centromeres
with thousands of alpha-satellite monomers and their higher order
structures is still a daunting challenge, a recent study did determine
the centromere sequence of chromosome Y by sequencing several
BAC clones covering the region with Nanopore reads (Jain et al.,
2018).

In another project (Yoshimura et al., 2019), strain VC2010 of
Caenorhabditis elegans was sequenced with long-read technologies
in an attempt to produce a gapless reconstruction, the motivation
being in part to rectify the mounting evidence that the original N2-
genome, originally reported to be gap-free, is missing sequence seg-
ments. Widely used genome assemblers such as Canu (Koren et al.,
2017), FALCON (Chin et al., 2016) and miniasm (Li, 2016) output
assemblies of PacBio reads with 76–202 gaps, all but 5 of which
could be closed by semi-manual means using the combined evidence
of all the assemblies. Ultra-long Nanopore reads were then gener-
ated, and these closed three and partially filled the remaining two
gaps, further revealing that these gaps involved very long tandem
repeats. For example, Figure1 shows one of the gap-spanning
Nanopore reads with two tandem repeats. Some of these tandem
repeats have more than 1000 copies of 3–50 nt units or over 50 cop-
ies of more than 100 nt units. It is fair to say that current state-of-
the-art long read assemblers are weak at reconstructing long tandem
repeats.

These two applications of long-read sequencing emphasize the
importance of detecting tandem repeats of more than 1000 nt from
long reads. However, both commercially available long-read
sequencers (PacBio and Nanopore) have high error rates, 12–20%,
for raw reads (Bowden et al., 2019; Weirather et al., 2017; Wei and
Zhang, 2018), implying that one encounters a substitution, insertion
or deletion every five to eight nucleotides on average. To solve this
problem, we exploit the characteristic that long tandem repeats have
many occurrences of the representative unit, e.g. hundreds of copies
of a nearly identical 3–200 nt unit, and we present a statistical solu-
tion to estimate the representative unit and the number of its copies
from a very noisy long read.

1.1 Formal definitions of tandem repeats
Here, we give formal definitions for the terms relevant for describing
tandem repeats, which intuitively are the repeated concatenation of
a specific unit string with some level of variation amongst the instan-
ces. We start first with the case of perfect tandem repeats:

DEFINITION 1. Let R denote a set of symbols, and Rþ be the set of non-

empty strings over R. For string u 2 Rþ, a perfect tandem repeat of u is a

concatenation of k � 1 occurrences of u, denoted by uk. We extend this

definition by also considering ukup, where up is a prefix of u, to be a per-

fect tandem repeat. h

EXAMPLE 1. Several examples of perfect tandem repeats are:

• ACGACGACG ¼ ðACGÞ3 and ACGACGAC ¼ ðACGÞ2AC are perfect

tandem repeats.
• ACGACGACGACG has two decompositions, ðACGÞ4 and

ðACGACGÞ2. The former representation is more informative as

the latter unit has two copies of the former unit.
• ACGACGACACGACGAC is a perfect tandem repeat with two occur-

rences of unit ACGACGAC ¼ ðACGÞ2AC, and the unit has also a

shorter perfect tandem repeat ðACGÞ2.

One can enumerate all perfect tandem repeat occurrences in a
string of size n in O(n)-time (Kolpakov and Kucherov, 1999). In
reality, however, each unit occurrence of a tandem repeat typically
has some low level of substitutions, insertions and deletions because
the unit instances can evolve and accumulate mutations, and/or are
likely to have sequencing errors. To take this into account, we define
an approximate tandem repeat as a string that is sufficiently similar
to an underlying perfect repeat:

DEFINITION 2. For two strings a1 and a2 in Rþ, let similarityða1; a2Þ be the

length of the longest common subsequence (LCS) between a1 and a2 div-

ided by the average of the lengths of a1 and a2. We say that a1 and a2 are

s-similar when for s � 1; similarityða1; a2Þ � s. Given a threshold cri-

terion s, we call a an s� approximate tandem repeat if and only if there

exists a perfect repeat that is s-similar to a. h

For example, consider the following approximate tandem repeat
similar to perfect tandem repeat ðACGÞ4:

ACAACGACGGCG

The 3rd and 10th nucleotides are respectively substituted with A
and G. So the similarity is 10=12 ¼� 83:3%. If we set our threshold
s for similarity to 85%, then ACAACGACGGCG would not be consid-
ered an approximate tandem repeat. However, the first nine charac-
ters, ACAACGACG, have a similarity of 8=9 ¼� 88:8% to ðACGÞ3 as
do the last nine letters, ACGACGGCG. This illustrates that there can
be more than one longest approximate tandem repeat of a string and
that these can overlap. Moreover, these depend on the stringency s,
e.g. the six letters in the middle ACGACG ¼ ðACGÞ2 are a perfect tan-
dem repeat but is shorter than the above two substrings of length
nine. Figure 1 shows two approximate tandem repeats. The upper
left tandem repeat has a similarity of �87:7% with its predicted per-
fect tandem repeat, while the lower right repeat has a similarity of
�69:7%.

Enumerating all approximate tandem repeats is in general in-
tractable as the time complexity increases exponentially with the
number of mutations (Domaniç and Preparata, 2007; Pellegrini
et al., 2010).

1.2 Related work
There have been a variety of heuristic methods developed for finding
tandem repeats. Tandem Repeats Finder (TRF) is widely used to
enumerate tandem repeats in genomes as well as in raw reads
(Benson, 1999). TRF first finds candidate regions containing tandem

Fig. 1. A self dot plot of a �92K nt Nanopore read with two different types of neigh-

boring long tandem repeats. The upper left tandem repeat has 1124 copies of a 25 nt

unit and matches its corresponding perfect tandem repeat at an identity of �87.8%.

The lower right has 1216 copies of a 27 nt unit and matches at �69.7%, though its

plaid pattern may imply the presence of several shorter tandem repeats
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repeats and then searches these candidate regions extensively for
tandem repeats. This two-step filter-and-verify strategy has been
adopted by many software programs such as ATRHunter
(Wexler et al., 2005), TRStalker (Pellegrini et al., 2010) and
TideHunter (Gao et al., 2019). A number of useful heuristic
algorithms have been proposed to improve the filtering step. For
example, gapped q-grams (or k-mers) (Burkhardt and
Kärkkäinen, 2003) are more sensitive than common ungapped
q-grams, and are used by TEIRESIAS (Floratos et al., 2002)
and TRStalker (Pellegrini et al., 2010). Fourier transform and
other methods based on signal processing theory have also been
employed in the literature (Brodzik, 2007; Buchner and
Janjarasjitt, 2003; Gupta et al., 2007; Sharma et al., 2004).
After the advent of next-generation short-read sequencers, effi-
cient programs have been also developed to process numerous
short reads; for example, lobSTR, TRhist and Dot2dot (Doi
et al., 2014; Genovese et al., 2019; Gymrek et al., 2012). These
traditional studies were designed to detect approximate tandem
repeats of relatively short length in relatively low error rate
sequences.

2 Materials and methods

To gain computational efficiency while retaining sensitivity, hun-
dreds or thousands of approximate copies of the representative unit
are quite informative, and we will utilize this characteristic to design
an efficient and accurate program named mTR (a tool for mining
Tandem Repeats). Like other filter-and-verify methods, we first find
candidate regions in a noisy long read that are likely to contain a
tandem repeat, and then for each candidate we estimate a unit con-
sensus and copy number if such exist. Although the error rate of a
long read is assumed to be quite high, upwards of 20%, having
plenty of unit copies in a tandem repeat is informative for estimating
the boundaries of the tandem repeat because a unit copy is likely to
share significantly more short substrings (k-mers) with another copy
than with other irrelevant sequences outside the tandem repeat
(Fig. 2A). Using these heuristic ideas, we design novel statistical
methods for predicting the boundaries of a tandem repeat and for
deciding upon the most likely repeat unit.

2.1 Estimating tandem repeat boundaries
To approximate the start and end positions in a tandem repeat, we
define several terms.

DEFINITION 3. A string of length k> 0 in Rþ is called a k-mer. When R is

the set of four nucleotides fA, C, G, Tg, we encode k-mers by mapping

the nucleotides to the digits 0, 1, 2 and 3 and then viewing them as k-

digit quaternary numbers in the range 0 to 4k � 1. Given a read R ¼
r1r2 � � � rn we consider position i to be the point between ri and riþ1. So,

the substring between positions a and b, R½a; b�, is raþ1raþ2 � � � rb and its

length is b – a. We call Ww
i ¼ R½i; iþw� the window of size w at position

i and for k � w, the k-mer frequency vector of the window is:

~f
w

i ¼ ðf0; . . . ; fj; . . . ; f4k�1Þ;

where fx is the number of occurrences of the k-mer with quaternary code

x in the window. Finally, for two frequency vectors ~f and ~h, let nð~f ; ~hÞ 2
½0; 1� be a general normalized measure of similarity between them further

defined below.

We will consider the similarity, Sw
ði;jÞ between two windows Ww

i and
Ww

j of the same size, to be the similarity of their respective fre-
quency vectors. That is,

Sw
ði;jÞ ¼ nð~f

w

i ;
~f

w

j Þ:

In this study, we considered using both the Pearson Correlation
coefficient and the Manhattan distance metric as possible measures

of similarity. Specifically, we tried nð~f ; ~hÞ ¼ ðqð~f ; ~hÞ þ 1Þ=2 2 ½0;1�
where q is the normalized Pearson correlation coefficient,

qð~f ; ~hÞ ¼

Pn
i¼1

ð~f i � f Þð~hi � hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ð~f i � f Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

ð~hi � hÞ2
s ;

for n ¼ 4k; f ¼
Pn
i¼1

~f i=n and h ¼
Pn
i¼1

~hi=n. We also used nð~f ; ~hÞ ¼

1� jj~f � ~hjj1=2w 2 ½0;1� where jj~f � ~hjj1 is the Manhattan or L1

distance between ~f and ~h, which is
Pn
i¼1

j~f i � ~hij. h

Although the two similarity measures have different charac-
teristics, experimental results in a later section will show that
both have similar sensitivities for prediction of tandem repeats
(see Fig. 4).

B

C

A

Fig. 2. Estimating the start and end positions of tandem repeats. (A) A dot plot of

the input sequence. Dotted lines parallel to the diagonal represent tandem repeats in

the input, and the distance between neighboring dotted lines is the unit length of the

tandem repeat. The boundaries of a tandem repeat are predicted by comparing k-

mer frequency vectors of neighboring windows of size w. We move the triplet of

windows base-wise to detect the start and end positions that optimize the formulae

given in Definition 4. We may need windows of different sizes to determine the

boundaries of individual tandem repeats. (B) Four tandem repeats (colored red,

blue, green and orange) separated by random sequences in the sample input. (C) B(i,

w) for k ¼ 3 in the left column and 5 in the right, for window size w¼20, 80, 320

and 1280 from the top, and for position i
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EXAMPLE 2. Let w¼ 4, k¼ 1 and R ¼ TCAGACACACACGGTC. Consider

the following four non-overlapping windows of size w, and their k-mer

frequency vectors:

As we set k¼1, the respective elements in a vector show
the frequencies of 1-mers A, C, G and T. Among all pairs of
neighboring windows, the frequency vectors of the second and

third windows, ~f
4

4 and ~f
4

8, are the most similar in terms of the
Manhattan similarity:

S4
ð8;12Þð¼ 0:25Þ < S4

ð0;4Þð¼ 0:5Þ < S4
ð4;8Þð¼ 1Þ (

The idea of k-mer frequencies has been widely used in string
processing for over a quarter of century. For example, Esko
Ukkonen used them to lower bound edit distance for approximate

search (Ukkonen, 1992). Computing ~f
w

i for i 2 ½0; jRj �w� can be
performed in time linear in the length of R because the frequency

vector of the next window, ~f
w

iþ1, can be computed incrementally

from ~f
w

i in a constant time. Precisely, in ~f
w

i , decrement the fre-

quency of k-mer R½i; iþ k� and increment that of k-mer
R½ðiþ 1þwÞ � k; iþ 1þw�.

The similarity between two windows can be greatly affected by
the error rate of the data if the underlying value of k is not chosen
carefully. Specifically, the larger k, the more likely an error will ‘knock
out’ k-mers that would correlate if the data were perfect, resulting in a
rapid degradation of the correlation score between windows that
would highly correlate in the case of perfect data. Let � denote a
sequencing error rate. With the simplified assumption that sequencing
errors are independent and identically distributed with a probability of
�, the probability that a k-mer has no sequencing errors is ð1� �Þk.
The typical average error rate of long-read sequencing ranges from 11
to 20%, so we will assume that � ¼ 20% in order to capture the worst
case scenario. For k ¼ 1; . . . ; 6, the probability ð1� �Þk is 80, 64,
51.2, 41.0, 32.8 and 26.2%. So for long read data, we find it desirable
to use short k-mers of length 3, 4 or 5 for better detection of tandem
repeats, and to use longer windows with more k-mer occurrences to
further reduce the effect of sequencing error.

We now describe how to estimate the boundaries of a tandem
repeat. Suppose that position s is at the start boundary of a tandem
repeat. Window Ww

s at the start is likely to be more similar to the
next non-overlapping window Ww

sþw than to its previous window
Ww

s�w if the window size w is longer than the tandem repeat unit
and if the tandem repeat spans more than 2w nucleotides, both con-
ditions one expects to meet empirically for some choice of w
(Fig. 2A). So, we definE

Bði;wÞ ¼ Sw
ði;iþwÞ � Sw

ði�w;iÞ;

which is the difference between the correlations of the two sequen-
tial windows to the right of position i and the two windows sepa-
rated by position i. We expect this value to peak at the start of the
left boundary of a tandem repeat. Symmetrically, let

Eði;wÞ ¼ Sw
ði�2w;i�wÞ � Sw

ði�w;iÞ ¼ �Bði�w;wÞ;

which is the difference between the two sequential windows to the
left of position i and the two windows separated by position i,
whose value we expect to peak at the end or right boundary of a tan-
dem repeat. So given a choice of window and k-mer sizes, w and k,

we define the start- and end points of a putative tandem repeat as
follows:

DEFINITION 4. The start and end points of a putative tandem repeat for w,

denoted by b(w) and e(w), are required to meet:

• b(w) locally maximizes B(j, w) within distance w of it, i.e.

Bðj;wÞ � BðbðwÞ;wÞ for jj� bðwÞj � w.
• e(w) is the closest point to b(w) such that bðwÞ þw � eðwÞ, and

e(w) locally maximizes E(j, w) within distance w of it (i.e.

Eðj;wÞ � EðeðwÞ;wÞ for jj� eðwÞj � w).

Computing these values for a given w and k takes OðjRjÞ time as
it suffices to compute B(i, w) and E(i, w) at every value of i and this

is done easily if one precomputes ~f
w

i for i ¼ 0; . . . ; jRj �w also in
OðjRjÞ beforehand. We will show shortly that the start and end posi-
tions returned depend significantly on w and to a lesser extent k, so
to utilize this approach, a good choice of w is needed.

It remains to select ‘good’ choices of w and k as a function of the
unit-size and underlying error rate. Consider as an example the situ-
ation in Figure 2B where R has four tandem repeat types with differ-
ent unit lengths and frequencies, and the read itself has 10%
mismatch, 5% insertion and 5% deletion rates. Figure 2C shows the
distributions of B(i, w) for k ¼ 3 and 5, and for w ¼ 20, 80, 320
and 1280, showing how B(i, w) depends on the values of k and w.
When w¼20 in the top row, the distributions are too noisy to
detect peaks at the boundaries of any of the tandem repeats. Peaks
at the starts become evident when w ¼ 80 and 320 because windows
have plenty of 20-nt unit occurrences. When w ¼ 1280, however,
peaks at the starts of the red, blue and green tandem repeat
disappear because 1280-nt windows are longer than the tandem
repeats.

Conceptually, one can see that we seek a value of w, say w�,
such that Bðbðw�Þ;w�Þ is maximal. Ideally one would try all values
of w but this would require excessive amount of calculation.
Instead, we sample a geometric progression of w, such as w ¼ a2l

for l ¼ 0;1; . . . and for some starting value a. Here, we explain the
rationale to support this sampling. To detect a tandem repeat of
length L with unit u, it is important to meet the following conditions
for positive constant c ð< 1Þ:

2juj � w � L=2 and k � juj < c	 4k:

The first condition implies that windows of size w contain two
or more occurrences of unit u, and the entire repeat has at least two
windows of size w. The second condition demands that the unit size
is greater than or equal to k, and the number of different k-mers in a
tandem repeat of u, which is � juj, is also smaller than c	 4k, to
characterize the unit in terms of a relatively small subset of k-mers
for say c¼1/4. To accommodate varying error rates, we sample
k¼5 for repeats with a large span, whereas we sample k¼1, 3 for
potentially small repeats. In a typical setting when juj � 500 and
L < 105, these requirements are met by one of twenty patterns,
ðk;wÞ ¼ ð5; 5	 2lÞ for l ¼ 0; 1; . . . ;11, ðk;wÞ ¼ ð3; 5	 2lÞ for l ¼
0; 1;2; 3; 4 and ðk;wÞ ¼ ð1; 5	 2lÞ for l ¼ 0; 1; 2.

2.2 Assembling k-mers into tandem repeat units
After predicting candidate tandem repeat ranges for various values
of w and k, for each range ½s; e� we attempt to identify the consensus
repeat unit that in tandem spans the range. To do so we utilize the
characteristic that there are enough copies of the unit in tandem so
that many short k-mers of this unit will be preserved even if the error
rate is �20%. The de Bruijn graph of k-mers for some value of k is a
widely accepted approach for assembling a genome from accurate
short reads (Compeau et al., 2011; Pevzner et al., 2001; Zerbino
and Birney, 2008) and has also been used for long read error correc-
tion (Tischler and Myers, 2017). For an auspicious value of k, fre-
quent k-mers will be parts of exact copies of the unit, while
infrequent k-mers will contain sequencing errors. Thus, conceptually

W4
0

¼ R½0;4� ¼ TCAG ~f
4

0
5 ð1; 1; 1; 1Þ

W4
4

¼ R½4;8� ¼ ACAC ~f
4

4
¼ ð2; 2; 0; 0Þ

W4
8 ¼ R½8;12� ¼ ACAC ~f

4

8
¼ ð2; 2; 0; 0Þ

W4
12 ¼ R½12; 16� ¼ GGTC ~f

4

12 ¼ ð0; 1; 2; 1Þ
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we seek the heaviest cycle in a k-mer de Bruijn graph over R½s; e� for
an appropriate value of k.

Proceeding more formally, there is an edge v!az from k-mer v to
k-mer z if v¼bx and z¼xa for some a; b 2 R and k� 1-mer x. Given a
set of vertices V, let next(V)¼f z : v!az for some v 2 V; a 2 R and z
has maximum frequency g. Note that most of the time nextðfvgÞ is a
singleton set as ties for the heaviest successor are rare. Let nexthðVÞ ¼
nextðnexth�1ðVÞÞ for h>1. With these preliminaries, our heuristic al-
gorithm for finding a heavy cycle is as follows:

Procedure 1. For each k (say, k ¼ 2; . . . ;15), find a cycle in the k-mer de

Bruijn graph as follows (see Fig. 3A and B):

1. Count the frequency of each k-mer in the range R½s; e�, select the

most frequent k-mer j as the start vertex in the underlying de

Bruijn graph, and initialize the consensus unit string u to the

empty string.

2. If the search is at vertex v, compute successive values of

nexthðfvgÞ until its cardinality is 0 or 1, or j is in the set. If 0,

the search fails. Otherwise, let z ¼ nexthðfvgÞ if it is a singleton,

or j if it contains it. Traverse the h edges from v to z concatenat-

ing their labels to u and advance v to z.

3. Repeat the above step until the initial k-mer j is reached. The unit

string u is now a potential consensus repeat unit for the repeat.

If there is more than one most frequent k-mer, then each is exam-
ined as the start vertex and the heaviest weight cycle that maximizes
the sum of the frequencies of the k-mers in the cycle is taken if more
than one search is successful. From the start vertex, we also search
the k-mer de Bruijn graph backward, traversing an edge v az from
z¼xa to v¼bx for some a; b 2 R and k� 1-mer x. If the search fails
at some point because there is no move available, then no unit is
produced for the given value of k. If the procedure fails for all values
of k attempted, then the proposed repeat range is ignored. As the
last step, for each search with a given value of k that succeeded in
producing a cycle u, u is aligned to R½s; e� using wraparound dynam-
ic programing (Fischetti et al., 1993; Miller and Myers, 1988), to
calculate rðu;R½s; e�Þ which is the maximum of the number of
matches minus the number of differences over all possible align-
ments between a tandem repeat of u and R½s; e�, i.e. ðe� sÞ �
dðu;R½s; e�Þ where d is Levenshtein distance. If multiple candidate
units j are obtained for different values of k, we select the one that
has the best alignment score r. h

The above procedure may use a very low-frequency k-mer in
order to be able to find a cycle for u. For the case where the fre-
quency of the unit is quite low (e.g. 10 or less), it could be that the
low-frequency k-mers are correct, but in other instances they may
indicate an error in the consensus for u as the difference in frequency
between k-mers with and without error is typically significantly
large for the case of high copy number tandem repeats. Most often
the difference is a single substitution, insertion or deletion. A typical
observation is that, when scanning the k-mers along the cycle spell-
ing u from the beginning to end, the k-mer frequency is low when
the k-mer has an error, but rises sharply toward the average fre-
quency of k-mers in u when the k-mer becomes free of error
(Fig. 3C). So we search the path spelling u for such transition posi-
tions indicating errors by scanning it both forward and backward.
Let cj denote the nucleotide at position j. After locating a position i
with a potential error, we modify k-mers having ci of the form
cj . . . ci . . . cjþl�1 by substituting ci with other nucleotides, by deleting
ci or by inserting another nucleotide after ci:

To fix the error, from one of the above substitutions, deletions
and insertions, we select the operation best able to maximize the
sum of the frequencies of all k-mers in the operation for
j ¼ i� l þ 1; . . . ; i.

After correcting some errors in u, we try to remove additional
errors using the traditional multiple alignment approach. We align
R½s; e� to u using the wraparound dynamic programming algorithm,
derive a multiple alignment of unit occurrences with errors, examine
each column of the multiple alignment, and revise u if needed. In de-
tail, let j be a position in u, and let na

j , delj and insa
j , respectively, de-

note the number of a 2 R aligned at position j, the number of times
that cj is deleted and the number of a 2 R inserted after j. We con-
sider replacement of cj with another að6¼ cjÞ, deletion of cj and inser-
tion of a if na

j , delj, insa
j are significantly high. To examine the

significance, we set � to the average error rate in the alignment, and
make the assumption that cj is replaced with another nucleotide or
deleted at the identical probability �=4, and that a 2 R is inserted
after position j at the probability �=4. The significance is also de-
pendent on the number (or, depth) of units in the multiple align-
ment, and let d denote the depth. When we observe K replacements
of cj with a (deletions of cj, insertions of a, respectively), let p(K) de-
note the probability that na

j (delj, insa
j ) is K or more. Thus, we have:

pðKÞ ¼ Rd
k¼K dCkð1� �=4Þd�kð�=4Þk:

Let juj denote the length of u; thus, we have 8	 juj hypotheses
that substitutions, deletions and insertions are required to fix errors
in u. It is not necessary to correct u if it is the underlying unit, but it
may be necessary to correct a small number of errors in u if u is
nearly identical to the true unit. To determine whether u needs cor-
rection, we test the null hypothesis that none of the 8	 juj hypothe-
ses is true by checking pðKÞ � 1%=ð8	 jujÞ for each hypothesis
according to the Bonferroni correction. We perform a correction
when p(K) exceeds the significance level 1%=ð8	 jujÞ.

2.3 Computing non-overlapping multiple tandem

repeats
After applying the procedures described in Sections 2.1 and 2.2, we
effectively have a collection of, say n, candidate tandem repeats
fTign

i¼1 where Ti ¼ ðsi; ei; ui; ri) designating that ui matches R½si; ei�
with alignment score of ri ¼ rðui;R½si; ei�) as defined earlier. Often
these candidates overlap, so the final task is to find a subset of these
candidates and if necessary subranges of some, so that the resulting
disjoint tandem models reasonably explain all the tandem repeats in
R. In the disjoint version of the problem we say that Ti can be
chained to Tj if and only if ei � sj, written Ti ! Tj. The problem is
then effectively that of finding a chain of maximal weight.
Computing an optimal, disjoint chain that maximizes the chain
weight is solvable in Oðn log nÞ time, where n is the number of can-
didates (Myers and Miller, 1995).

A complexity occurs when Ti and Tj overlap by some amount,
typically small, i.e. si < sj < ei < ej where ei � sj is not too large.
In this case, we would like to pick a point x at which Ti should end
and Tj begin. Let the score of splitting the overlap at x be:

oðxÞ ¼ rðui;R½si; x�Þ þ rðuj;R½x; ej�Þ

and choose the split point x� as the value of x 2 ½sj; ei� that maxi-
mizes o(x). We can compute o(x) in Oðjei � sjjðjuij þ jujjÞ by storing
rðui;R½si; x�Þ for x ¼ si; . . . ; ei in the initial computation of
rðui;R½si; ei�Þ described in Section 2.2 for each candidate, and simi-
larly rðuj;R½x; ej�Þ for x ¼ sj; . . . ; ej

We could then go on to pose a non-disjoint chaining model,
where Ti can be chained to Tj at weight r� if and only if si < sj and
r� ¼ rj � rðui;R½x�; ei�Þ where x� ¼ ei when Ti and Tj do not over-
lap (ei � sj), written Ti!r�Tj. A chain in this construction has
weight equal to the sum of each unit aligned to the intervals defined
by the sequence of optimal division points between the candidates in
the chain. Unfortunately, it comes at the cost of Oðn2Þ time to
compute.

No operation cj . . . ci�1ci ciþ1 . . . cjþl�1

Substitutions cj . . . ci�1a ciþ1 . . . cjþl�1 (a 2 R and a 6¼ ci)

Deletion cj�1 . . . ci�1 ciþ1 . . . cjþl�1

Insertions cj . . . ci�1cia ciþ1 . . . cjþl�1 (a 2 R)
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To retain an efficient algorithm, we instead heuristically solve a
‘pseudo-disjoint’ chaining problem, by considering Ti and Tj to be
disjoint if their overlaps is less than some small limit l, say 10 nt.

Thus we retain Oðn log nÞ performance. Then if the optimal chain
produced contains a pair of T’s that overlap slightly we choose the

division point between them as above to produce a truly disjoint list
of tandem repeats and their consensus units.

3 Experimental results

3.1 Synthetic datasets for performance analysis
To measure the computational performance of our program, we first
generated synthetic datasets with 1000 strings such that each string
had an approximate tandem repeat of a single unit within it. We

generated the tandem repeats in each dataset by setting the follow-
ing three parameters to representative values:

• The unit length is one of 2, 5, 10, 20, 50, 100 or 200.
• The frequency of the unit is one of 10, 20, 50, 100 or 200.
• We generated synthetic long reads using Badread, a program

widely used for simulation PacBio and Nanopore reads with de-

fault settings (Wick, 2019).

Before and after each tandem repeat, we inserted random strings
of the same length as the tandem repeat, to examine whether the
program was able to predict the boundary of the focal tandem re-

peat correctly. The synthetic datasets and programs for evaluating
the sensitivity of processing the data are available at https://github.
com/morisUtokyo/mTR.

3.2 Comparison with TRF and TideHunter
Using the synthetic benchmark datasets, we compared the sensitivity
and computational performance of our program, mTR and TRF
(Benson, 1999). We selected TRF for comparison for several rea-
sons. First, TRF has been maintained and updated for about 20 years
(since 1999). Second, it can handle long reads with long tandem
repeats in a reasonable amount of time. Lastly, it is the most widely
used software program to detect tandem repeat expansions. We
used the latest version of TRF (version 4.09). We also performed a
comparison using TideHunter, which is capable of handling long
reads (Gao et al., 2019). We did not evaluate tools designed for
small tandem repeats such as TEIRESIAS (Floratos et al., 2002),
ATRHunter (Wexler et al., 2005), TRStalker (Pellegrini et al.,
2010), lobSTR (Gymrek et al., 2012), TRhist (Doi et al., 2014) and
Dot2dot (Genovese et al., 2019), as we seek tandem repeats in ex-
cess of 1000 nt. To empirically measure performance we used a ser-
ver with an Intel(R) Xeon(R) CPU E5-2680 v3 with a clock rate of
2.5 GHz, and GCC (version 4.9.3) to compile the source codes. In
passing we note that mTR requires less than 100 MB of main mem-
ory, even when the input read is 1 million nt in size and thus can ac-
tually be run on conventional laptops.

To determine the sensitivity, each approximate tandem repeat
was associated with its original perfect tandem repeat and unit
string. Due to the high error rates, it is difficult to accurately predict
the frequency of a unit in an approximate tandem repeat. However,
estimating the consensus unit string is more feasible. Therefore, we
assessed the ability of the programs to perfectly predict the unit
string in each synthetic read. Figure 4 plots the sensitivity and com-
putational performance of mTR and TRF as a function of unit
length for a number of choices of unit frequency. We applied TR
and mTR with Manhattan similarity and Pearson’s correlation coef-
ficient to the synthetic datasets. Overall, mTR outperformed TRF in
terms of sensitivity on all trials. The two similarity measures of
mTR were comparable in terms of sensitivity and computational ef-
ficiency in most cases. Both mTR and TRF are in principle linear in
the span of the repeat interval (unit length x unit frequency), but
mTR appears to have a higher constant term and a smaller linear
term due to the number of parameter ranges explored in both the de-
tection and consensus phases offset by the simplicity of the linear
computation for each parameter setting. This implies that mTR is
slower than TRF for small tandem repeats and vice versa for large
ones as seen in Figure 4. Not seen in this figure, is the fact that TRF
stops searching earlier more often than mTR for large tandem
repeats, implying that in fact mTR is doing more work actually find-
ing and listing large tandem repeats.

The top graphs in Figure 4A and B show the sensitivity when the
estimated and true units match at identity 100%. It is also inform-
ative to know how many of predicted units approximate the true
units if we relax the sensitivity of the unit. The middle graphs in
Figure 4A and B show the sensitivity when the identity is 95% or
more, i.e. allowing at most two, five and ten errors in units of length
50 nt, 100 nt and 200 nt, respectively. Under this relaxed condition,
mTR still outperformed TRF in most cases except in a few where
the unit frequency was 10 and the identity was 95% or more (see
Fig. 4B). Essentially, when the unit frequency is sufficiently large,
mTR is capable of producing repeat units nearly identical to the true
underlying units.

Although the Pearson correlation coefficient and Manhattan
similarities, have different characteristics, Figure 4 shows that their
sensitivities for prediction of the true representative unit are similar
and it is difficult to state which has the best computational
performance.

We also examined highly accurate reads. In this setting of a low
error rate, no significant difference between mTR and TRF was
observed because tandem repeats were easily detected. Specifically,
we randomly generated 1000 synthetic reads for 65 patterns at an
error rate of 2% (respective substitution, deletion and insertion rates
were 1, 0.5 and 0.5%), the unit length was one of 2, 3, 4, 5, 6, 7, 8,
9, 10, 20, 50, 100 or 200; and the frequency of the unit was one of
10, 20, 50, 100 or 200. In all the 65 cases, both mTR and TRF

A

B

C

D

Fig. 3. Estimating the unit of a hidden tandem repeat in a noisy long read. (A) Select

a value for k such that many short k-mers have no sequencing errors in an approxi-

mate range of a hidden tandem repeat, allowing us to reconstruct the unit string of

the tandem repeat based on the de Bruijn graph approach. (B) Searching the de

Bruijn graph of k-mers (e.g. l¼6) in raw reads to assemble k-mers into the original

tandem repeat unit. Our greedy algorithm selects the next node of the maximum fre-

quency until reaching the initial node and outputs the best path (denoted by u). (C)

Frequency of each k-mer of u in the focal range. The frequency of a k-mer becomes

much lower than the average frequency when it has an error. (D) This example illus-

trates how the consensus sequence with a k-mer of frequency one is fixed by our al-

gorithm. In the top, a read with tandem repeats is shown. Red underlined characters

represent sequencing errors that are either substitutions, deletions or insertions. In

the middle, the de Bruijn graph of 3-mers in the input read shows the heaviest path

(bold line) that our greedy algorithm outputs. The algorithm moves from the most

frequent node rst to stu with an error of frequency 3 rather than to the error-free stu

of frequency 2, thereby going through the three consecutive nodes with errors. Our

algorithm revises the consensus by scanning it forward and backward and fixes the

sequencing error u colored red. Although the tandem repeat unit is quite short in

this illustrating example, such erroneous patterns are typical of long tandem units >

50 nt in size, and our greedy algorithm is effective in reducing such errors
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A

B

Fig. 4. Sensitivity and computational performance of mTR, TRF and TideHunter, as applied to two types of datasets with different error patterns (A and B). The first had an

error pattern typical of Nanopore sequencers, and the second dataset had an error pattern typical of PacBio sequencers. The graphs show the experimental results obtained by

mTR when using Manhattan similarity (blue) and Pearson’s correlation coefficient (red), and those obtained by TRF (green) and TideHunter (orange). The frequency of units

in each synthetic dataset is shown above each graph. In each graph, the x-axis shows the unit length. The y-axes in the top and middle graphs of A and B show the sensitivity,

while the y-axes in the bottom graphs show the average computation time. The top graphs of A and B show the sensitivity when the predicted and true units match at identity

100%, while the middle graphs match at identity � 95%. The middle graphs do not show sensitivity for unit length ranging from 2 to 10 because the unit identity of 100%

and that of � 95% are equivalent in this range
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output results of � 99% sensitivity, mTR was the winner in 22 cases,
TRF won in 14 cases and mTR and TRF were tied in 29 cases.

We then investigated how much portion of the true tandem re-
peat was covered by a predicted tandem repeat. Suppose that tan-
dem repeat TRpred is predicted for a given tandem repeat TRtrue in a

noisy long read, let lenðTRpredÞ and lenðTRtrueÞ be their lengths, and

let jlenðTRpredÞ � lenðTRtrueÞj denote the difference of the two

lengths. The error rate of predicting the tandem repeat length is

defined as
jlenðTRpredÞ�lenðTRtrueÞj

lenðTRtrueÞ : We consider the conditions when the

match rate between the units of TRpred and TRtrue is either 100% or

> 95%, and the error rate of predicting tandem repeat length is
bounded by 1, 5 or 10%. We evaluated the sensitivity of individual
tools to predict tandem repeats that met each of the above condi-
tions using synthetic Nanopore and PacBio reads (Fig. 5), and found
that mTR outperformed TRF in most cases except for PacBio syn-
thetic reads when the unit frequency was 10.

3.3 Finding neighboring multiple tandem repeats
We also assessed whether mTR could detect multiple adjacent tan-
dem repeats using synthetic and in the next subsection on real data.
Determining the sensitivity and efficiency of mTR when applied to
all possible synthetic datasets is intractable, because of the exponen-
tial number of combinations of neighboring tandem repeats, differ-
ing in units and unit frequencies. We simply generated five typical
tandem repeats according to the parameter values given in Table 1.
These are all detectable with a probability of > 98% under the
Nanopore error pattern. We tested all 10 combinations of pairs of
these 5 tandems and confirmed that mTR could detect both for all
pairs.

3.4 Applications to real examples
We have been using mTR to enumerate tandem repeats from PacBio
and Nanopore raw reads collected from individual human genome
data (Ishiura et al., 2018) and C.elegans (Yoshimura et al., 2019).
We applied mTR and TRF to real PacBio long reads filled with tan-
dem repeats of typical higher order repeats (HOR) in human
chromosome X. These reads were collected from CHM13 (haploid
sample) using PacBio CLR and CCS (HiFi) modes (Vollger et al.,
2020). The HOR unit consists of 12 occurrences of a �171-bp alpha
satellite and is �2 kbp in size. Both mTR and TRF could detect tan-
dem repeats of the �171-bp alpha satellite; however, neither was
able to capture the tandem repeats of HORs.

We examined whether mTR could detect well-known tandem re-
peat expansions, such as the (CGG) repeats in the 50UTR region of
FMR1 (in human chromosome X) and the (CAG) repeats in the first
exon of HTT (in human chromosome 4) from real PacBio continu-
ous long reads (CLR) collected from HG002, which is a diploid
sample (Aaron Wenger et al., 2019). CLRs were used in place of
CCS/HiFi reads because CLRs contain many more sequencing
errors, compared with CCS/HiFi reads. mTR could detect both
repeats from the raw reads. In the case of the (CGG) repeat in
FMR1, the median repeat length in 19 reads was 170 bp, which was
consistent with the 169 bp length in the reference hg38. For the
(CAG) repeat in HTT, two repeat lengths were observed, �80 and
�60 bp in 41 reads, which would represent two individual
haplotypes.

Figure 6 shows another Nanopore read, �120k nt in length,
which has three large tandem repeats. The longest tandem repeat
has 1123 copies of a 27-nt unit and matches its corresponding per-
fect tandem repeat at an identity of �73.5%, which is fairly low due
to several long insertions into the tandem repeat. In general, mTR

A

B

C

D

Fig. 5. Sensitivity of mTR (Manhattan similarity, blue; Pearson’s correlation coefficient,

red), TRF (green) and TideHunter (orange), as applied to two types of datasets with dif-

ferent error patterns typical of Nanopore (A, B) and PacBio sequencers (C, D). In each

graph, the x-axis shows the unit length, and the y-axis shows the sensitivity when the pre-

dicted and true units match at identity 100% (A, C) or 95% (B, D) and the error rate be-

tween the true and predicted tandem repeat lengths is bounded by 1, 5 or 10%

Table 1. Parameter values for generating the units of five tandem

repeats

Size 3 5 10 20 50

Frequency 50 50 100 200 200
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assumes the presence of SNVs and short or long insertions/deletions
in a tandem repeat that can be shown and examined in the align-
ment between the input sequence and the tandem repeats of the rep-
resentative unit. Although we assumed that both of the long-read
sequencing technologies (PacBio and Nanopore) have an error rate
of 12% � 20%, we often observe long approximate tandem repeats
that match their unit model at an identity of only �70% (Yoshimura
et al., 2019). This is because the unit copies in a long tandem often
vary slightly from one another. Therefore, to identify tandem
repeats from noisy reads, one must allow an error rate greater that
of the read itself in order to accommodate the natural variation in
the unit across the length of the tandem repeat.

4 Conclusion and discussion

Although long tandem repeats of more than 1000 nt have been
largely unexplored, long-read sequencing technologies make it pos-
sible to sequence the entire length of many tandem repeats. As long-
read sequencing technologies, such as PacBio and Nanopore, suffer
from high sequencing error rates, we developed an efficient method
for extracting tandem repeats in the face of such high error. Our
method is based on leveraging k-mers short enough to occur error
free with sufficient frequency to be detected and then using the fre-
quency profile vectors of the k-mers to detect potential tandem re-
peat boundaries. We further used a de Bruijn graph of the k-mers in
a candidate interval to reconstruct the representative unit. The ex-
perimental results demonstrated that our program, mTR, outper-
formed TRF, a widely used program for detecting tandem repeats,
in terms of sensitivity. Our algorithm aligns the representative unit
to the input sequence using wraparound dynamic programming and
estimates the repeat boundaries. This dynamic programming may
shift the repeat boundaries by at a maximum of one repeat unit.

As revealed in Figure 4, mTR’s performance weakens as the
number of units decreases and their length increases. Primarily this
is due to the unit consensus portion of our method failing to find a
long cycle of short k-mers that occur with low frequency. This prob-
lem is relevant to genome science because many unresolved regions
in genomes are known to be filled with such ‘macro’ tandem repeats,
including the centromeres and the histone and rRNA clusters. A fu-
ture line of research is to explore other methods specifically tuned to
solve for the case of these macro-tandem repeats.

Another research target is the reuse of tandem repeat informa-
tion in noisy long reads for genome assembly. Traditional genome
assembly strategies ignore tandem repeats (by masking them), to
avoid any effect thereof when overlapping different reads into con-
tigs. Although most of the nucleotide differences in tandem repeats
are unlikely to be informative in overlapping raw reads, some

nucleotide patterns contained therein may be unique and can serve
as markers when assembling tandem repeats.
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