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Abstract: Peanuts (Arachis hypogaea) is an important and affordable source of protein in most of
Sub-Saharan Africa (SSA) and a popular commodity and raw material for peanut butter, paste and
cooking oil. It is a popular ingredient for foods used at the point of weaning infants from mother’s
milk. It is at this critical point that childhood undernutrition occurs and the condition manifests
as stunting, wasting and growth restriction and accounts for nearly half of all deaths in children
under five years of age in SSA. Undernutrition is multi-factorial but weaning foods contaminated
with microbiological agents (bacteria and fungi) and natural toxins have been shown to play a big
part. While peanuts may provide good nutrition, they are also highly prone to contamination with
mycotoxigenic fungi. The high nutritive value of peanuts makes them a perfect substrate for fungal
growth and potential aflatoxin contamination. Aflatoxins are highly carcinogenic and mutagenic
mycotoxins. This article reviews the nutritional value and aflatoxin contamination of peanuts, the role
they play in the development of childhood malnutrition (including the different theories of aetiology)
and immunological problems in children. We also discuss the control strategies that have been
explored and advocacy work currently taking shape in Africa to create more awareness of aflatoxins
and thus combat their occurrence with the goal of reducing exposure and enhancing trade and
food safety.
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1. Introduction

In sub-Saharan Africa (SSA), one in seven children die before their fifth birthday [1]. Nearly half
of these under five deaths are attributable to underlying undernutrition which manifests as stunting,
wasting and growth restriction in utero and micronutrient deficiencies [2]. Wasting is an indicator of
acute malnutrition and is defined as inadequate weight for age and height while stunting which is an
indicator of the cumulative effects of chronic undernutrition and infection is defined as inadequate
height for age [2,3]. According to the United Nations, nearly 25% (or 162 million) of children under
the age of five globally had stunted growth in 2014 [3]. SSA and Southern Asia accounts for more
than 75% of these stunted children and more than 90% of all the under five deaths [1,3]. Apart from
death, the consequences of undernutrition are wide and include substantial morbidity, loss of quality
of life, long-term developmental problems, and poor performance in school which leads to diminished
ability to work, hence reducing the potential for contribution towards national development [1,4].
Thus, the economies of SSA are partly affected by a labour force that is hobbled by the effects of poor
nutrition in childhood.
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Development of childhood malnutrition usually coincides with the introduction of complementary
foods during weaning [5]. Most of the complementary foods are usually nutritionally deficient with
poor nutrient density and diversity, and fail to meet the dietary demands for the development of an
infant into a child [6]. These complementary foods may also be contaminated by microbiological agents
(bacteria and fungi), and environmental toxins (bacterial toxins; fungal toxins such as mycotoxins;
metals and their complexes; and organic chemicals) [6]. Infants are also exposed to contaminated water,
poor sanitation and hygiene which result in ingestion of microbes leading to high rates of diarrhoea
and other infections that damage the small intestine. Damaged intestines are characterized by altered
barrier integrity, mucosal inflammation and reduced nutrient absorption, which all contribute to
malnutrition [6].

There seems to be a relationship between malnutrition, poverty and food security and safety [6].
Food security and safety interventions can influence nutrition and growth in young children by
providing adequate micronutrients and dietary diversity, as well as eliminating microbial contaminants.
This will lead to reduced exposure to environmental chemicals and toxins and reduced cases of
diarrhoea, all from foodborne pathogens. Promotion of nutrient rich complementary weaning foods
(e.g., peanuts) while discouraging over-reliance on carbohydrate dense staples is also recommended to
prevent malnutrition in weaned children [2]. Research has shown dietary diversity to be associated
with micronutrient adequacy and better anthropometric status of children [5].

2. Nutritional Value of Peanuts

Peanuts, which are sometimes called poor men’s food, are affordable and adaptable to a variety
of culinary uses making them the most consumed nut in most SSA regions [7]. They can be consumed
raw, boiled, roasted or mixed with other dishes such as vegetables, porridge, and meat, and spread on
bread [8]. In nutritional terms, peanuts are ranked sixth among oil producing crops and eighth among
nutritional crops [9]. They are rich in nutrients (carbohydrates, lipids, proteins, vitamins, minerals,
fibre and some organic acids) that are essential to human health and are adequate to meet energy and
protein nutritional needs of populations at risk of malnutrition (see Table 1) [10,11]. They contain all the
essential amino acids (lysine, leucine, isoleucine, tryptophan, threonine, phenylalanine, methionine,
tyrosine, valine and histidine) making them a critical component of the human diet especially in
communities where animal derived protein sources are not readily available [10,11]. The peanut
protein is plant based, most of the fat is unsaturated and the fibre is a complex carbohydrate which
makes peanuts the best form of human nutrition [11]. Since peanuts are legumes, they have higher
protein content compared to other nuts, with levels comparable to beans [11].

A number of compounds (e.g., coenzyme Q10, several B group vitamins, vitamin E and
antioxidant minerals) with added health benefits beyond basic nutrition have been identified in
peanuts and their skins [11]. Consumption of peanuts or peanut oil has been linked to reduced risk of
cardiovascular disease. That is achieved through probable improvement in serum lipid profile with
decreased low-density lipoprotein (LDL) cholesterol oxidation that exerts a cardiovascular protective
effect [11,12]. Peanuts also contribute to reduced risk of blood pressure, diabetes, Alzheimer’s,
gallstones and obesity [11].

In most Southern African countries, peanuts and their products are used as weaning food for
children, supplementing diets where maize is the major energy staple food [9,13]. In a study in
Eastern Zimbabwe, about 54% of the farmers interviewed cultivated peanuts for making peanut butter
while another 14% cultivated peanuts for extracting oil [14]. The peanut butter is used in porridge,
sandwiches and as a sauce in vegetables and other relishes while the extracted oil is used for cooking,
replacing the more expensive commercial cooking oil. Thus, peanuts are an important nutritional
source in many rural communities especially among infants and children who are most vulnerable to
malnutrition. Peanuts are ground up into butter which is then mixed with maize meal porridge and
commonly used for infant feeding. Peanut butter is also used as the main ingredient in ready-to-use
therapeutic food (RUTF), an energy dense paste that does not require cooking and can be stored for
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months [15]. In Malawi, RUTF was found to be a more effective supplementary feed compared to the
fortified corn/soy supplement [15].

Table 1. Nutritional value of peanuts per 100 g (adapted from Arya et al. [11]).

Nutrient Nutrient Value Percentage of RDA

Energy 567 Kcal 29
Carbohydrates 16.13 g 12

Protein 25.80 g 46
Total Fat 49.24 g 165

Dietary Fibre 8.5 g 22

Vitamins

Folates 240 µg 60
Niacin 12.066 mg 75

Pantothenic acid 1.767 mg 35
Pyridoxine 0.348 mg 27
Riboflavin 0.135 mg 10
Thiamin 0.640 mg 53

Vitamin E 8.33 mg 55.5

Electrolytes

Sodium 18 mg 1
Potassium 705 mg 15

Minerals

Calcium 92 mg 9
Copper 1.144 mg 127

Iron 4.58 mg 57
Magnesium 168 mg 42
Manganese 1.934 mg 84
Phosphorus 76 mg 54

Selenium 7.2 µg 13
Zinc 3.27 mg 30

In recent years, peanut allergy has become a major concern. There is general uncertainty about
the prevalence of food allergies in general [16]. A meta-analysis of various studies has shown the
prevalence to range 0–2% [16,17]. No peanut consumption studies in Africa were readily available in
the literature and studies on prevalence of peanut allergies are few and far between [18].

However, studies have shown that early exposure to peanuts in infancy is associated with lower
allergy prevalence, so the popularity of peanut-based weaning foods in Africa may work to reduce
peanut allergies [19].

3. Aflatoxin Contamination of Peanuts

The high nutritive value of peanuts makes them a perfect substrate for fungal growth and potential
mycotoxin contamination. Aflatoxins are a highly carcinogenic and mutagenic group of mycotoxins
produced by Aspergillus species, mainly A. flavus and A. parasiticus [20]. A. flavus and A. parasiticus
are abundant in the tropical and subtropical regions, the same regions where peanuts are primarily
produced [21]. Hot and humid climates, prevalent in the tropics promote fungi which infect the crop
in the field and/or immediately after harvest during storage [22]. Drought stress, and insect damage
increase the susceptibility of the crops to fungal infection leading to contamination before harvest while
improper drying and poor storage conditions lead to contamination in storage facilities [20]. In some
African communities, peanuts are traditionally shelled by hand, a painful and time consuming task but,
to ease the process, the peanuts are soaked in water to soften the shells then shelled and stored without
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proper drying before being taken to the market [23]. The moisture introduced during shelling and
improper drying creates a conducive environment for fungal proliferation and aflatoxin production.

There are four major aflatoxins, aflatoxin B1 (AFB1), AFB2, AFG1, and AFG2, of which AFB1
is the most potent natural carcinogen and mutagen known and has also been classified as a Group
1 human carcinogen by the International Agency for Research on Cancer [22,24]. Several studies
conducted in the last 10 years point to a widespread problem of aflatoxin contamination in peanuts
in many Southern African countries including Zimbabwe [25], The Democratic Republic of Congo
(DRC) [7,8], South Africa [7], Zambia [26,27], and Malawi [9]. Weaned children are more vulnerable to
aflatoxicosis since their diet is monotonous, alternating between breast milk and weaning foods like
maize porridge and local vegetables, usually served with a dash of peanut butter [28]. The level of
contamination found in these countries as reported in the studies generally exceeded the maximum
regulatory limits for peanuts and peanut products meant for human consumption set by the Codex
Alimentarius at 5 µg/kg (AFB1) and 20 µg/kg (total) which SSA countries also adhere to in their
national protocols [25].

Njoroge et al. conducted a comprehensive multi-year analysis of aflatoxin contamination in
24 peanut butter brands sold in Zambia (locally produced and imported) between 2012 and 2014 [26].
The number of brands contaminated varied from year to year with 73% (8/11), 87% (13/15) and
53% (10/19) having AFB1 levels >20 µg/kg in 2012, 2013 and 2014, respectively. In 2013, some of
the peanut butter samples were found with levels of up to 10,000 µg/kg AFB1. The brands tested
included locally manufactured peanut butter and imported peanut butter from Malawi, South Africa
and Zimbabwe. This implies that the problem of AFB1 contamination in peanut butter is regional
even though the imported brands had significantly lower AFB1 contamination levels compared to
local brands. Imported brands are usually from formal manufacturers who have quality management
systems in place. The same research group also reported high levels of AFB1 in peanut kernels (up to
11,100 µg/kg) and milled peanut powder samples (up to 3000 µg/kg) collected between 2012 and 2014
from the major peanut growing regions of Zambia [27]. In Zambia, milled peanut powder is used as a
paste in vegetables, mixed with cereals for making porridge and as an ingredient in complementary
foods for HIV and AIDS patients.

Mupunga et al. carried out a survey to determine the extent of fungal and aflatoxin contamination
of peanuts and peanut butter bought from both the formal and informal markets of Bulawayo,
Zimbabwe’s second largest city [25]. Eighteen peanut and 11 peanut butter samples were purchased
in total. Aspergillus species were isolated in 27% of the peanut butter samples with up to 100 CFU/g
and 67% of the peanut samples ranging from 3–20% of the kernels examined. Of the 18 peanut
samples, three (27%) were contaminated with total aflatoxins (range: 6.6–622.1 µg/kg) and AFB1
(range: 6.3–528 µg/kg). Ninety-one per cent of the peanut butter samples were contaminated with
total aflatoxins, ranging 6.1–247 µg/kg, with average AFB1 levels of 55.73 µg/kg. A worrying finding
from this study was that contamination levels in homemade peanut butter were similar to levels in
commercial peanut butter implying that quality management systems are not being implemented or
are being compromised by commercial manufacturers. It is critical to note this was a small sample
size; however, these findings still show that peanuts and peanut butter from southern Zimbabwe were
contaminated with unacceptably high aflatoxin levels, placing consumers at risk.

Kamika et al. compared fungal and aflatoxin occurrence in peanuts sold at informal markets
from Kinshasa, Democratic Republic of Congo (DRC) and Pretoria, South Africa [7]. All samples
from Pretoria and 95% (19/20) from Kinshasa were contaminated with Aspergillus species with total
colony counts ranging 40–21,000 CFU/g and 20–49,000 CFU/g for Pretoria and Kinshasa, respectively.
The level of fungal contamination was significantly higher for Kinshasa than for Pretoria (p < 0.001) and
this was attributed to poor storage conditions and longer storage in climatic conditions conducive to
fungal growth. All samples from Kinshasa and 90% (18/20) from Pretoria were contaminated with total
aflatoxins ranging from 2.19–1258 µg/kg and 2.1–73.5 µg/kg for Kinshasa and Pretoria respectively.
AFB1 was the predominant isomer accounting for nearly half of the total aflatoxin concentration
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in each sample. Overall, the samples from Pretoria had significantly lower (p < 0.001) AFB1 levels
compared to Kinshasa samples. Kamika and Takoy also assessed AFB1 contamination levels in raw
peanuts collected from the rural areas of Kinshasa, DRC during both the dry and the rainy seasons [8].
Predictably, AFB1 was detected in higher concentration and more samples during the rainy season
compared to the dry season. The main limitation of this study is that the authors only report single
year data, when it is known that contamination can vary between seasons depending on the rainfall
received and drought stress experienced by the crops in the field [20].

In a study in Malawi, AFB1 contamination has been reported in all the 11 major peanut producing
districts, with contamination levels ranging up to 2197 µg/kg and 3240 µg/kg in 2008 and 2009
respectively [9]. Forty-six per cent (46%) of the 212 peanut samples (including peanut butter) collected
after 8–11 months storage in 2008 and 23% of the 1185 fresh peanut samples collected after 1–2 months
in storage in 2009 were contaminated. Of these, 21% of the 2008 and 8% of the 2009 samples had
AFB1 levels above 20 µg/kg. Aspergillus species contamination was also observed in soil samples
collected from the different farms. Higher Aspergillus colony forming units (>3000 CFU/g) was directly
correlated with an increased chance of peanut contamination with AFB1.

4. Aflatoxins and Malnutrition

Several nutritional and growth effects have been observed in animal studies where several
animal species including ducks, ducklings, mice, quail, pigs and fish were exposed to aflatoxins.
These include reduced feed intake, poor weight gain, and decreased food conversion rate in older
animals [29]. Growth retardation including reduced body weight, delayed physical and behavioural
development pre-weaning and poor locomotor coordination and other impairments post-weaning
have been observed in baby animals whose mothers were exposed to aflatoxins during pregnancy [29].
These deleterious effects in animals are mirrored in humans exposed to aflatoxins.

Children in sub-Saharan Africa are exposed to aflatoxins very early in life including in utero
through maternal food intake, during breastfeeding, through weaning and post-weaning periods
through foods like peanuts and maize [29,30]. Most of these children are exposed to high aflatoxin
levels throughout their lives since most communities rely on subsistence farming and have little
appreciation of the presence of mycotoxins (or alternative food options for that matter). Most of the
subsistence farmers have limited dietary diversity and little or no interventions to control aflatoxin
contamination [31]. Evidence from West Africa at the beginning of the millennia showed that chronic
exposure to aflatoxins in children under five was linked to poor growth (underweight and stunted)
and poor immune status [32,33]. In this region, weaning status was associated with high levels of
aflatoxin exposure, suggesting contamination of weaning foods with aflatoxins, which led to growth
faltering, particularly stunting [32].

Turner et al. investigated the relationship between aflatoxin exposure in utero and growth faltering
in Gambian children [30]. All the maternal blood samples collected during pregnancy had detectable
levels of aflatoxin–albumin adducts, implying all mothers enrolled in the study were exposed to
aflatoxins during pregnancy. Nearly half of the cord blood samples had detectable aflatoxin-albumin
adduct levels, and these were significantly correlated (p < 0.001) with maternal aflatoxin-albumin
levels. Higher maternal aflatoxin-albumin levels were significantly correlated (−0.249 SD, p = 0.012) to
lower weight for age, and also significantly correlated (−0.207 SD, p = 0.044) to stunting. The presence
of aflatoxin metabolites in cord blood as well as the growth faltering observed provide evidence
that aflatoxins can cross the maternal placental barrier exposing the unborn child to biochemical
toxicities whose effects become apparent in early infancy. Similarly, in Ghana, the risk for low birth
weight increased with increasing levels of aflatoxin exposure in pregnant women, however this was a
cross-sectional study with limited ability to draw causal or temporal relationships [34].

Chronic aflatoxin exposure has also been linked with kwashiorkor, a severe Protein Energy Malnutrition
(PEM) disease. Studies carried out in the last three decades have shown higher aflatoxin levels
in the blood and urine of children with kwashiorkor compared to healthy children or children
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with other forms of PEM (e.g., marasmus) [29]. AFB1 was detected in the urine and blood of
malnourished children with kwashiorkor and marasmic kwashiorkor in a four-year study conducted
in Cameroon [35]. A link was established (p < 0.05) between kwashiorkor and the presence of AFB1
in urine when comparing malnourished children and the control group. In a study in Nigeria,
aflatoxins were detected more frequently in patients and at higher concentrations in children with
kwashiorkor and marasmic kwashiorkor compared to control groups [36]. An Egyptian study
found that aflatoxins and their metabolites were more prevalent with a significantly higher serum
concentration in Kwashiorkor patients than in Marasmic patients while no aflatoxins were detected
in control patients [37]. Aflatoxins are known to inhibit protein synthesis and immune factors and
exposure to aflatoxins may delay recovery from kwashiorkor even if the aflatoxins did not cause the
condition [38].

Leeroy et al. analysed the socio-economic determinants of aflatoxin exposure. All the predictors
of poverty were associated with high levels of aflatoxin exposure [39]. These include lack of disposable
income for household expenditure, food insecurity and severe hunger, lack of capacity to procure and
use inorganic fertilizer and pesticides, owning very little land or none at all and a lack of education.
Households that had no disposable income were facing food safety and insecurity issues, were most
likely to consume visibly mouldy food whether self-produced or bought from the market [14,39]. There
is a high probability that farmers who can afford inorganic fertilizer and pesticides also practice good
agricultural practices which limit fungal and aflatoxin contamination in the fields, post-harvest and in
storage. On the contrary, poorer farmers might not have the knowledge or the capacity to implement
good agricultural practices, hence their crops might be contaminated at every stage of the value chain,
i.e., in the fields due to drought stress and pest infection, post-harvest due to improper drying, or poor
storage practices that allow pest infestation and moisture build-up which encourage fungal growth
and aflatoxin production [20,39].

Children from poor households are usually fed diets that are deficient in essential micro- and
macronutrients and also lack clean drinking water and proper sanitation facilities. This leaves
them more prone to diarrhoeal diseases, pneumonia, malaria, measles and other infections [29,39].
Leeroy et al. concluded that the growth stunting observed in children exposed to aflatoxins might be
partially due to the confounding effects of their socioeconomic status especially poverty [39]. In the
same vein, the association with kwashiorkor may be more complex: a systems analysis approach to
malnutrition is probably more appropriate due to the multi-factorial nature of vulnerability. It has
also been observed elsewhere that the proportion of stunted children is directly correlated with the
proportion of the population living below the poverty line and inversely correlated to the gross
domestic product [29]. Even though the role aflatoxins play in the pathogenesis of kwashiorkor
remains unclear, the common symptoms, and the fact that aflatoxicosis and kwashiorkor occurrence
follow similar geographic, socio-economic and climatic factors, point to a possible causal role [5].

5. Aflatoxins and Immunity

It is not clear how aflatoxin exposure results in malnutrition (stunting, growth faltering and
kwashiorkor). Several mechanisms have been proposed:

(i) Aflatoxins have been shown to damage the intestinal tract leading to impaired intestinal barrier
function and malabsorption and consequently zinc deficiency which causes growth faltering and
immune dysfunction [40].

(ii) Enterocyte damage and increased intestinal permeability leading to systemic immune activation.
The changes in intestinal integrity induced by aflatoxins may leave the hosts with poor nutritional
absorption capability and more vulnerable to intestinal pathogens. When combined with poor
nutrition, poor sanitation and hygiene, children exposed to aflatoxins are faced with a multiplicity
of assaults ranging from infection and poor nutritional absorption from poor food quality leading
to growth impairment [40].
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(iii) Inhibited synthesis of proteins, enzymes, clotting factors and impaired glucose metabolism,
phospholipid synthesis and fatty acid synthesis [6].

(iv) Aflatoxins mediate immune system dysfunction increasing risk of infections (e.g., gastroenteritis)
in children, which may lead to impaired growth from loss of energy caused by the infection or
energy expended recovering from illness [6].

(v) Aflatoxins may cause growth retardation through the same mechanisms leading to malignant
transformation and tumour growth [6].

Thus, central to the symptomatic effects of aflatoxin are its immunotoxic and immunosuppressant
effects [41], which are well known, particularly in other mammals. Qian et al. found that one-week
post exposure to AFB1, CD8+ lymphocytes and Natural Killer (NK) cells were decreased in rats [41].
Prolonged exposure led to an inflammatory response and apoptosis (via upregulation of cytokines and
pro-inflammatory genes), and so both exposure times negatively impacted on cell-mediated immune
responses. A similar conclusion was reached by Meissonnier et al. based on work done in pigs [42].
These effects were cited in support of the Gambian study by Turner et al., which found decreased IgA
in the saliva of children exposed to high amounts of AFB1 [33].

Because of the immunotoxic and hepatotoxic effects discussed above, aflatoxins have also been
implicated in infectious disease modulation [43]. The rate of progression from HIV infection to
AIDS has been shown to be faster in low income countries compared to the developed world [44].
The suspected cause is aflatoxin induced immunosuppression since a large number of people exposed
to aflatoxin are also HIV positive in most low income countries. An association between high HIV
viral load count and high levels of aflatoxin exposure has been observed [45]. Both HIV virus and
aflatoxins are known to be immunosuppressive agents targeting cellular immunity [43]. Aflatoxins are
metabolized to the highly reactive AFB1-8, 9-epoxide in the liver, which binds to nucleic acids and
proteins forming adducts [22]. The result is inhibition of nucleotides and protein synthesis [6,45] which
impacts on immune cell synthesis. Apart from this, aflatoxins (as previously alluded to) also impair
micronutrient utilization which also impairs the immune system leaving patients more vulnerable to
opportunistic infections hence high viral loads. The liver is the most important organ for protein and
immune cell synthesis and when it is compromised this affects not only immune surveillance, but also
nutrition and xenobiotic (pharmaceutical) metabolic processes. Thus aflatoxin exposure may cause
vulnerability to disease and also poor outcomes to pharmacotherapeutic interventions.

6. Aflatoxin Control Strategies

Goal number 2 of the United Nations Sustainable Development Goals (SDGs) aims to end hunger
and all forms of malnutrition by 2030 through universal access to safe, nutritious and sufficient food
throughout the year [3]. The World Health Organisation (WHO) targets a “40% reduction in the number
of children under-5 who are stunted” by 2025 [4]. Given the need to achieve the SDGs and meet WHO
targets, the weight of evidence pointing to the link between aflatoxin exposure and malnutrition and
the knowledge that aflatoxins contaminate important/staple food commodities (e.g., peanuts and
grains) that are a critical solution to malnutrition, it is imperative that measures to reduce aflatoxin
contamination in food be put in place. Since the aflatoxin problem lies at the interphase of agriculture,
health and trade, all relevant stakeholders need to be involved when strategies to reduce aflatoxin
contamination in food commodities are being interrogated. It is critically important that the reduction
strategies formulated are cost effective, safe and technically feasible to be used by communities
burdened by the aflatoxin problem [29]. These strategies should also be standard and scalable while
taking into account local resources and cultural practices [29].

Aflatoxin control strategies should encompass pre-harvest and post-harvest practices. Pre-harvest
strategies may include use of genetically modified crop varieties that are resistant to aflatoxigenic fungal
infection (though these may not be culturally acceptable, or affordable), reduction of crop stress in the
field (through use of irrigation, fertilizer, insecticides and fungicides), and biocontrol through use of
non-aflatoxigenic fungi to compete with aflatoxigenic fungi [21]. Post-harvest strategies involve proper
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drying of crops, sorting to remove visibly contaminated, broken and shrivelled kernels and controlling
transportation and storage conditions to avoid insect damage and moisture accumulation [21,31].

Turner et al. assessed the use of improved post-harvest storage methods for peanuts in rural
Guinea [31]. This involved using a package of post-harvest intervention measures introduced
to farmers from 10 villages at peanut harvest time and comparisons were made with farmers in
10 neighbouring villages that used the usual storage practices. The intervention strategies included:

(i) hand sorting to remove visibly mouldy or damaged peanuts;
(ii) drying on mats to prevent moisture accumulation from the soil and also to make it easier to

gather in case of unexpected rain;
(iii) complete sun drying which was confirmed by shaking the kernels;
(iv) storage in natural fibre bags for good air circulation;
(v) storage on raised wooden pallets to avoid humidity from earthen floors; and
(vi) use of insecticide to prevent pests and insects from accumulating in storage facilities.

Aflatoxin–albumin adduct levels were measured in a subsample from both groups at the beginning
of the intervention and there was no difference between group means. However, at five months
post-harvest, the biomarker levels in the intervention group were significantly lower (more than half)
than the control group. About 20% of the individuals from the intervention villages had undetectable
aflatoxin albumin adduct levels compared to only 2% from the control villages. This study showed
that simple, cheap and culturally-acceptable technological interventions appropriately targeted can
have substantial effects on the overall aflatoxin exposure.

Early harvesting has been suggested as a solution to reduce aflatoxin pre-harvest contamination [46].
However early harvesting results in poorer yield and poor seed grades which would directly
impact farmers’ livelihoods. Further, peanut contamination usually worsens in storage where poor
phytosanitary conditions and poor ventilation create ideal fungal colonization conditions. This points
to the fact that more mitigation efforts should be concentrated on the post-harvest phase of the peanut
value chain.

From an advocacy point of view the African Union Commission has set up the Partnership for
Aflatoxin Control in Africa (PACA) which work with works with a steering committee representing
farmers, consumers, research and technology organizations, healthcare and trade professionals and
the private sector to combat aflatoxins at continent level and foster health, trade and food safety.
One of the key result areas of the PACA strategy is facilitating the adaptation and wider adoption of
available technologies and knowledge including biocontrol through use atoxigenic fungal strains like
AFLA-SAFE and development of aflatoxin resistant crop varieties [47].

7. Recommendations

Raising awareness and public education on occurrence, health effects and prevention of
mycotoxins in general and aflatoxins in particular should be prioritized in rural farming areas. These
awareness programmes should also focus on how post-harvest storage practices can influence food
safety among peanut farmers and consumers. This can be achieved through the use of multimedia
platforms like radio and television, social media like Facebook and incorporation of education on
good agricultural practices in to the curriculum of Agricultural institutes, primary and secondary
school [14]. In Zimbabwe, Dube and Mutetwa found that communal farmers and other players in the
peanut value chain displayed a lack of knowledge/awareness of aflatoxins, their presence in peanuts
or their health effects [14]. Thus, even though 46% of them believed inadequate drying of peanuts
resulted in mould formation, the farmers in the study had no idea that peanuts could be a source
of disease including aflatoxicosis and allergic reactions. Agricultural Extension workers were more
informed but did not seem to be continuously raising awareness around this issue. These findings
mirror the perceptions of farmers in Nigeria and Tanzania who also showed low levels of knowledge
of aflatoxins [13]. On the other hand, 65% (684/1053) of farmers in Malawi had some knowledge of
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aflatoxins and they associated aflatoxins with rotten and mouldy peanuts [9]. Most of this knowledge
was acquired from other farmers, radio programmes and agricultural institutions, pointing to a critical
role public education/awareness may play in addressing the aflatoxin problem.

As a result of lack of knowledge, about 63% of the Zimbabwean farmers said they will consume
mouldy peanuts as long as they were not bitter [14]. The bitter taste may be caused by high levels of
aflatoxins. Some of the farmers cited prevention of food wastage as the reason for consuming mouldy
peanuts. This points to a case of food insufficiency surpassing food safety concerns in most poor
communities [5]. Most people in these communities consume their own food with very little left over
to trade and when trade does happen it is usually limited to local informal markets where quality
is not managed. It has always been noted that it is difficult to prioritize food safety in communities
where food security remains challenging [28].

Investing in research and development of innovative, safe and economically viable uses for
contaminated products will also go a long way in reducing aflatoxin exposure risk in vulnerable
communities [23]. One of the examples is production of oil from contaminated peanuts which is being
piloted in Malawi. Aflatoxin contamination is then reduced to safe levels through a simple filtration
process that removes proteins. This value addition to contaminated peanuts leads to a nutritious
product for domestic consumption and export markets, with the potential to uplift whole communities
out of poverty in most African countries.

8. Conclusions

Childhood malnutrition results in a number of developmental issues and these diminish one’s
ability to be productive and contribute to personal and national economic development later in
life. Aflatoxins contaminate peanuts and peanut products consumed by many communities in SSA.
The hot and humid conditions prevalent in tropical Africa provide a conducive environment for the
growth of Aspergillus species and aflatoxin production [20]. Aflatoxins contribute to malnutrition by
interfering with intestinal integrity and hepatic metabolism. This leads to malabsorption, micronutrient
deficiencies, impaired immune function, and vulnerability to gut infections, which all lead to impaired
growth and malnutrition. It is therefore important that aflatoxin control and other food safety measures
be considered as part of the solution to eliminate childhood malnutrition.

Research should focus on new innovations (such as resistant peanut varieties) but also modifying
socio-cultural practices in how peanuts are harvested, stored and handled. Both initiatives require
lobbying and advocacy and creating awareness among African farmers and policymakers on the major
contribution which peanuts can make to the socio- status economic (through enhanced trade of high
quality product) and food and nutrition security of the region, but also the risk that poor quality
crop poses.

In compiling this paper, it has also become apparent that there is a paucity of information regarding
peanut consumption and peanut allergy among African consumers. Such data do not even exist for
high peanut consuming countries such as Ghana, Nigeria and the Democratic Republic of Congo.
Exposure studies and risk assessment studies cannot be done in light of these gaps. Therefore, there
should be research thrust in these areas as a base for future research.

Acknowledgments: No external funding was accessed for this article.

Author Contributions: D.K., I.M. and P.M. conceived the idea, I.M. wrote the first draft with inputs from all
authors. All authors were involved in editing the paper and finalizing it.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Walton, E.; Allen, S. Malnutrition in developing countries. Paediatr. Child Health 2011, 21, 418–424. [CrossRef]
2. Kramer, C.V.; Allen, S. Malnutrition in developing countries. Paediatr. Child Health 2015, 25, 422–427.

[CrossRef]

http://dx.doi.org/10.1016/j.paed.2011.04.004
http://dx.doi.org/10.1016/j.paed.2015.04.002


Nutrients 2017, 9, 1287 10 of 12

3. United Nations. Progress towards the Sustainable Development Goals—Report of the Secretary General.
2016. Available online: https://unstats.un.org/sdgs/files/report/2016/secretary-general-sdg-report-2016-
-EN.pdf (accessed on 9 July 2017).

4. World Health Organisation. Global Nutrition Targets 2025: Stunting Policy Brief (WHO/NMH/NHD/14.3);
World Health Organization: Geneva, Switzerland, 2014.

5. Katerere, D.R.; Shephard, G.S.; Faber, M. Infant malnutrition and chronic aflatoxicosis in Southern Africa:
Is there a link? Int. J. Food Saf. Nutr. Public Health 2008, 1, 126–136. [CrossRef]

6. Wild, C.P.; Miller, J.D.; Groopman, J.D. (Eds.) Mycotoxin Control in Low- and Middle-Income Countries; IARC
Working Group Reports, 9; International Agency for Research on Cancer: Lyon, France, 2015; Available
online: http://www.iarc.fr/en/publications/pdfs-online/wrk/wrk9/IARC_publicationWGR9_full.pdf
(accessed on 26 May 2017).

7. Kamika, I.; Mngqawa, P.; Rheeder, J.P.; Teffo, S.L.; Katerere, D.R. Mycological and aflatoxin contamination of
peanuts sold at markets in Kinshasa, Democratic Republic of Congo and Pretoria, South Africa. Food Addit.
Contam. Part B Surveil. 2014, 7, 120–126. [CrossRef] [PubMed]

8. Kamika, I.; Takoy, L.L. Natural occurrence of Aflatoxin B1 in peanut collected from Kinshasa, Democratic
Republic of Congo. Food Control 2011, 22, 1760–1764. [CrossRef]

9. Monyo, E.S.; Njoroge, S.M.C.; Coe, R.; Osiru, M.; Madinda, F.; Waliyar, F.; Thakur, R.P.; Chilunjika, T.;
Anitha, S. Occurrence and distribution of aflatoxin contamination in ground nuts (Arachis hypogaea L) and
population density of aflatoxigenic aspergilli in Malawi. Crop Prot. 2012, 42, 149–155. [CrossRef]

10. Setalluri, V.S.; Kandal, C.V.K.; Puppala, N.; Sunadaram, J. Peanuts and their nutritional aspects—A review.
Food Nutr. Sci. 2012, 3, 1644–1650. [CrossRef]

11. Arya, S.S.; Salve, A.R.; Chauan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41.
[CrossRef] [PubMed]

12. Fraser, G.E.; Sabate, J.; Beeson, W.L.; Strathan, T.M. A possible protective effect of nut consumption on risk
of CHD. Arch. Intern Med. 1992, 152, 1416–1424. [CrossRef] [PubMed]

13. Nayaran, T.; Belova, N.; Haskell, J. Aflatoxins: A negative nexus between agriculture, nutrition and
health. In Proceedings of the Agricultural & Applied Economics Association’s 2014 AAEA Annual Meeting,
Minneapolis, MN, USA, 27–29 July 2014.

14. Dube, L.; Mutetwa, M. Assessment of aflatoxin awareness by players in the case of Dora in Mutare, Zimbabwe.
Int. J. Innov. Res. Dev. 2015, 4, 90–100.

15. Patel, M.P.; Sandige, H.L.; Ndekha, M.J.; Briend, A.; Arshon, P.; Manary, M.J. Supplemental feeding with
ready-to-use therapeutic food in Malawian children at risk of malnutrition. J. Health Popul. Nutr. 2005, 23,
351–357. [PubMed]

16. Rona, R.J.; Keil, T.; Summers, C.; Gislason, D.; Zuidmeer, L.; Sodergren, E.; Sigurdardottir, S.T.; Lindner, T.;
Goldhahn, K.; Dahlstrom, J.; et al. The prevalence of food allergy: A meta-analysis. J. Allergy Clin. Immunol.
2007, 120, 638–646. [CrossRef] [PubMed]

17. Kagan, R.S.; Joseph, L.; Dufresne, C.; Gray-Donald, K.; Turnbull, E.; St Pierre, Y.; Clarke, A.E. Prevalence of
peanut allergy in primary-school children in Montreal, Canada. J. Allergy Clin. Immunol. 2003, 112, 1223–1228.
[CrossRef] [PubMed]

18. Kung, S.-J.; Steenhoff, A.P.; Gray, C. Food allergy in Africa: Myth or reality? Clin. Rev. Allergy Immunol. 2014,
46, 241–249. [CrossRef] [PubMed]

19. Du Toit, G.; Katz, Y.; Sasieni, P.; Mesher, D.; Maleki, S.J.; Fisher, H.R.; Fox, A.T.; Turcanu, V.; Amir, T.;
Zadik-Mnuhin, G.; et al. Early consumption of peanuts in infancy is associated with a low prevalence of
peanut allergy. J. Allergy Clin. Immunol. 2008, 122, 984–991. [CrossRef] [PubMed]

20. Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [CrossRef] [PubMed]
21. Dorner, J.W. Management and prevention of mycotoxins in peanuts. Food Addit. Contam. 2008, 25, 203–208.

[CrossRef] [PubMed]
22. International Agency for Research on Cancer (IARC). IARC Monographs on the evaluation of carcinogenic

risks to humans. In Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; IARC; WHO:
Lyon, France, 2002; Volume 82.

23. Emmott, A. Market-led aflatoxin interventions: Smallholder groundnut value chain: Value chains in Malawi.
In Aflatoxins: Finding Solutions for Improved Food Safety; Unnverh, L., Grace, D., Eds.; International Food
Policy Research Institute (IFPRI): Washington, DC, USA, 2013; pp. 23–26.

https://unstats.un.org/sdgs/files/report/2016/secretary-general-sdg-report-2016--EN.pdf
https://unstats.un.org/sdgs/files/report/2016/secretary-general-sdg-report-2016--EN.pdf
http://dx.doi.org/10.1504/IJFSNPH.2008.023013
http://www.iarc.fr/en/publications/pdfs-online/wrk/wrk9/IARC_publicationWGR9_full.pdf
http://dx.doi.org/10.1080/19393210.2013.858187
http://www.ncbi.nlm.nih.gov/pubmed/24914597
http://dx.doi.org/10.1016/j.foodcont.2011.04.010
http://dx.doi.org/10.1016/j.cropro.2012.07.004
http://dx.doi.org/10.4236/fns.2012.312215
http://dx.doi.org/10.1007/s13197-015-2007-9
http://www.ncbi.nlm.nih.gov/pubmed/26787930
http://dx.doi.org/10.1001/archinte.1992.00400190054010
http://www.ncbi.nlm.nih.gov/pubmed/1627021
http://www.ncbi.nlm.nih.gov/pubmed/16599106
http://dx.doi.org/10.1016/j.jaci.2007.05.026
http://www.ncbi.nlm.nih.gov/pubmed/17628647
http://dx.doi.org/10.1016/j.jaci.2003.09.026
http://www.ncbi.nlm.nih.gov/pubmed/14657887
http://dx.doi.org/10.1007/s12016-012-8341-z
http://www.ncbi.nlm.nih.gov/pubmed/23179518
http://dx.doi.org/10.1016/j.jaci.2008.08.039
http://www.ncbi.nlm.nih.gov/pubmed/19000582
http://dx.doi.org/10.1128/CMR.16.3.497-516.2003
http://www.ncbi.nlm.nih.gov/pubmed/12857779
http://dx.doi.org/10.1080/02652030701658357
http://www.ncbi.nlm.nih.gov/pubmed/18286410


Nutrients 2017, 9, 1287 11 of 12

24. Reddy, K.R.N.; Salleh, B.; Saad, B.; Abbas, H.K.; Abel, C.A.; Shier, W.T. An overview of mycotoxin
contamination in foods and its implications for human health. Toxin Rev. 2010, 29, 3–26. [CrossRef]

25. Mupunga, I.; Mnqgwawa, P.; Rheeder, J.P.; Lebelo, S.L.; Katerere, D.R. Mycoflora and natural occurrence
of aflatoxins in peanuts and peanut butter from Bulawayo, Zimbabwe. J. Food Prot. 2014, 77, 1814–1818.
[CrossRef] [PubMed]

26. Njoroge, S.M.C.; Matumba, L.; Kanenga, K.; Siambi, M.; Waliyar, F.; Maruwo, J.; Monyo, E.S. A case for
regular aflatoxin monitoring in peanut butter in Sub-Saharan Africa: Lessons from a 3-year survey in Zambia.
J. Food Prot. 2016, 79, 795–800. [CrossRef] [PubMed]

27. Njoroge, S.M.C.; Matumba, L.; Kanenga, K.; Siambi, M.; Waliyar, F.; Maruwo, J.; Machinjiri, N.; Monyo, E.S.
Aflatoxin B1 levels in groundnut products from local markets in Zambia. Mycotoxin Res. 2017. [CrossRef]
[PubMed]

28. Owaga, E.; Muga, R.; Mumbo, H.; Aila, F. Chronic dietary aflatoxins exposure in Kenya and emerging public
health concerns of impaired growth and immune suppression in children. Int. J. Biol. Chem. Sci. 2011, 5,
1325–1336. [CrossRef]

29. Khlangwiset, P.; Shephard, G.S.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011,
41, 740–755. [CrossRef] [PubMed]

30. Turner, P.C.; Collinson, A.C.; Cheung, Y.B.; Gong, Y.Y.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Aflatoxin
exposure in utero causes growth faltering in Gambian infants. Int. J. Epidemiol. 2007, 36, 1119–1125.
[CrossRef] [PubMed]

31. Turner, P.C.; Sylla, A.; Gong, Y.Y.; Sutcliffe, A.E.; Hall, A.J.; Wild, C.P. Reduction in exposure to carcinogenic
aflatoxins by postharvest intervention measures in West Africa: A community-based intervention study.
Lancet 2005, 365, 1950–1956. [CrossRef]

32. Gong, Y.Y.; Egal, S.; Hounsa, A.; Turner, P.C.; Hall, A.J.; Cardwell, K.F.; Wild, C.P. Determinants of aflatoxin
exposure in young children from Benin and Togo, West Africa: The critical role of weaning. Int. J. Epidemiol.
2003, 32, 556–562. [CrossRef] [PubMed]

33. Turner, P.C.; Moore, S.E.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Modification of immune function through
exposure to dietary aflatoxin in Gambian children. Environ. Health Perspect. 2003, 111, 217–220. [CrossRef]
[PubMed]

34. Shuaib, F.M.B.; Jolly, P.E.; Ehiri, J.E.; Yatich, N.; Jiang, Y.; Funkhouser, E.; Person, S.D.; Wilson, C.; Ellis, W.O.;
Wang, J.S.; et al. Association between birth outcomes and aflatoxin B1 biomarker blood levels in pregnant
women in Kumasi, Ghana. Trop. Med. Int. Health 2010, 15, 160–167. [CrossRef] [PubMed]

35. Tchana, A.N.; Moundipa, P.F.; Tchouanguep, F.M. Aflatoxin contamination in food and body fluids in relation
to malnutrition and cancer status in Cameroon. Int. J. Environ. Res. Public Health 2010, 7, 178–188. [CrossRef]
[PubMed]

36. Onyemelukwe, G.C.; Ogoina, D.; Ibiam, G.E.; Ogbadu, G.H. Aflatoxins in body fluids and food of Nigerian
children with protein energy malnutrition. Afr. J. Food Agric. Nutr. Dev. 2012, 12, 6553–6566.

37. Hatem, N.L.; Hassab, M.H.A.; Abd Al-Rahman, E.H.; El-Deeb, S.A.; El-Sayed Ahmed, R.L. Prevalence of
aflatoxins in blood and urine of Egyptian infants with protein energy malnutrition. Food Nutr. Bull. 2005, 26,
49–56. [CrossRef] [PubMed]

38. Adhikari, M.; Ramjee, G.; Berjak, P. Aflatoxin, Kwashiorkor, and morbidity. Nat. Toxins 1994, 2, 1–3.
[CrossRef] [PubMed]

39. Leeroy, J.L.; Wang, J.-S.; Jones, K. Serum aflatoxin B1-lysine adduct level in adult women from eastern
province in Kenya depends on household socio-economic status: A cross sectional study. Soc. Sci. Med. 2015,
146, 104–110. [CrossRef] [PubMed]

40. Smith, L.E.; Stoltzfus, R.J.; Prendergast, A. Food chain mycotoxin exposure, gut health, and impaired growth:
A conceptual framework. Adv. Nutr. 2012, 3, 526–531. [CrossRef] [PubMed]

41. Qian, G.; Tang, L.; Guo, X.; Wang, F.; Massey, M.E.; Su, J.; Guo, T.L.; Williams, J.H.; Phillips, T.D.; Wang, J.S.
Aflatoxin B1 modulates the expression of phenotypic markers and cytokines by splenic lymphocytes of male
F344 rats. J. Appl. Toxicol. 2014, 34, 241–249. [CrossRef] [PubMed]

42. Meissonnier, G.M.; Pinton, P.; Laffitte, J.; Cossalter, A.M.; Gong, Y.Y.; Wild, C.P.; Bertin, G.; Galtier, P.;
Oswald, I.P. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen
and modulation of cytokine expression. Toxicol. Appl. Pharmacol. 2008, 231, 142–149. [CrossRef] [PubMed]

http://dx.doi.org/10.3109/15569541003598553
http://dx.doi.org/10.4315/0362-028X.JFP-14-129
http://www.ncbi.nlm.nih.gov/pubmed/25285504
http://dx.doi.org/10.4315/0362-028X.JFP-15-542
http://www.ncbi.nlm.nih.gov/pubmed/27296427
http://dx.doi.org/10.1007/s12550-017-0270-5
http://www.ncbi.nlm.nih.gov/pubmed/28124218
http://dx.doi.org/10.4314/ijbcs.v5i3.72287
http://dx.doi.org/10.3109/10408444.2011.575766
http://www.ncbi.nlm.nih.gov/pubmed/21711088
http://dx.doi.org/10.1093/ije/dym122
http://www.ncbi.nlm.nih.gov/pubmed/17576701
http://dx.doi.org/10.1016/S0140-6736(05)66661-5
http://dx.doi.org/10.1093/ije/dyg109
http://www.ncbi.nlm.nih.gov/pubmed/12913029
http://dx.doi.org/10.1289/ehp.5753
http://www.ncbi.nlm.nih.gov/pubmed/12573908
http://dx.doi.org/10.1111/j.1365-3156.2009.02435.x
http://www.ncbi.nlm.nih.gov/pubmed/20003033
http://dx.doi.org/10.3390/ijerph7010178
http://www.ncbi.nlm.nih.gov/pubmed/20195440
http://dx.doi.org/10.1177/156482650502600106
http://www.ncbi.nlm.nih.gov/pubmed/15810799
http://dx.doi.org/10.1002/nt.2620020102
http://www.ncbi.nlm.nih.gov/pubmed/8032688
http://dx.doi.org/10.1016/j.socscimed.2015.10.039
http://www.ncbi.nlm.nih.gov/pubmed/26513119
http://dx.doi.org/10.3945/an.112.002188
http://www.ncbi.nlm.nih.gov/pubmed/22797988
http://dx.doi.org/10.1002/jat.2866
http://www.ncbi.nlm.nih.gov/pubmed/23508487
http://dx.doi.org/10.1016/j.taap.2008.04.004
http://www.ncbi.nlm.nih.gov/pubmed/18501398


Nutrients 2017, 9, 1287 12 of 12

43. Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, K.J.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in
developing countries: A review of toxicology, exposure, potential health consequences, and interventions.
Am. J. Clin. Nutr. 2004, 80, 1106–1122. [PubMed]

44. Jiang, Y.; Jolly, P.E.; Preko, P.; Wang, J.S.; Ellis, W.O.; Phillips, T.D.; Williams, J.H. Aflatoxin-related immune
dysfunction in health and in human immunodeficiency virus disease. Clin. Dev. Immunol. 2008. [CrossRef]
[PubMed]

45. Jolly, P.E. Aflatoxin: Does it contribute to an increase in HIV viral load? Future Microbiol. 2014, 9, 121–124.
[CrossRef] [PubMed]

46. Rachaputi, N.; Krosch, S.; Wright, G.C. Management practices to minimise pre-harvest aflatoxin
contamination in Australian peanuts. Aust. J. Exp. Agric. 2002, 42, 595–605. [CrossRef]

47. Partnership for Aflatoxin Control in Africa (PACA). PACA Strategy 2013–2022; African Union Commission:
Addis Ababa, Ethiopia, 2013; Available online: http://www.aflatoxinpartnership.org/uploads/PACA%
20Strategy%202013-2022-%20FINAL%20formatted%20for%20A4.pdf (accessed on 1 September 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/15531656
http://dx.doi.org/10.1155/2008/790309
http://www.ncbi.nlm.nih.gov/pubmed/18695741
http://dx.doi.org/10.2217/fmb.13.166
http://www.ncbi.nlm.nih.gov/pubmed/24571065
http://dx.doi.org/10.1071/EA01139
http://www.aflatoxinpartnership.org/uploads/PACA%20Strategy%202013-2022-%20FINAL%20formatted%20for%20A4.pdf
http://www.aflatoxinpartnership.org/uploads/PACA%20Strategy%202013-2022-%20FINAL%20formatted%20for%20A4.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Nutritional Value of Peanuts 
	Aflatoxin Contamination of Peanuts 
	Aflatoxins and Malnutrition 
	Aflatoxins and Immunity 
	Aflatoxin Control Strategies 
	Recommendations 
	Conclusions 

