
Genome analysis

Genome-scale de novo assembly using ALGA

Sylwester Swat1, Artur Laskowski1, Jan Badura1, Wojciech Frohmberg1,

Pawel Wojciechowski1,2, Aleksandra Swiercz1,2, Marta Kasprzak 1,* and

Jacek Blazewicz1,2

1Poznan University of Technology, Institute of Computing Science, 60-965 Poznan, Poland and 2Institute of Bioorganic Chemistry,

Polish Academy of Sciences, 61-704 Poznan, Poland

*To whom correspondence should be addressed.

Associate Editor: Peter Robinson

Received on July 10, 2020; revised on November 30, 2020; editorial decision on December 31, 2020; accepted on January 6, 2021

Abstract

Motivation: There are very few methods for de novo genome assembly based on the overlap graph approach. It is
considered as giving more exact results than the so-called de Bruijn graph approach but in much greater time and of
much higher memory usage. It is not uncommon that assembly methods involving the overlap graph model are not
able to successfully compute greater datasets, mainly due to memory limitation of a computer. This was the reason
for developing in last decades mainly de Bruijn-based assembly methods, fast and fairly accurate. However, the lat-
ter methods can fail for longer or more repetitive genomes, as they decompose reads to shorter fragments and lose
a part of information. An efficient assembler for processing big datasets and using the overlap graph model is still
looked out.

Results: We propose a new genome-scale de novo assembler based on the overlap graph approach, designed for
short-read sequencing data. The method, ALGA, incorporates several new ideas resulting in more exact contigs pro-
duced in short time. Among these ideas, we have creation of a sparse but quite informative graph, reduction of the
graph including a procedure referring to the problem of minimum spanning tree of a local subgraph, and graph tra-
versal connected with simultaneous analysis of contigs stored so far. What is rare in genome assembly, the algo-
rithm is almost parameter-free, with only one optional parameter to be set by a user. ALGA was compared with nine
state-of-the-art assemblers in tests on genome-scale sequencing data obtained from real experiments on six organ-
isms, differing in size, coverage, GC content and repetition rate. ALGA produced best results in the sense of overall
quality of genome reconstruction, understood as a good balance between genome coverage, accuracy and length of
resulting sequences. The algorithm is one of tools involved in processing data in currently realized national project
Genomic Map of Poland.

Availability and implementation: ALGA is available at http://alga.put.poznan.pl.

Contact: marta.kasprzak@cs.put.poznan.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in next-generation sequencing (NGS) technologies, which
reduce time and cost of producing billions of short sequences in a
single run, led to rapid increase of sequencing data. The first NGS
technology, 454 sequencing, has been currently superseded by a
newer NGS platform, Illumina and single-molecule sequencing
(SMS) technologies for producing long reads (Ameur et al., 2019).
NGS still gives reads of much higher quality than SMS and, together
with high accessibility of genomic data, results in many different
applications: creation of population studies of genetic variation
(1001 Genomes Consortium, 2016; Siva, 2015), DNA methylation

(Kawakatsu et al., 2016) and metagenomic studies (Pereira-Marques
et al., 2019). Many applications have also been developed in the
context of bioforensics, biosurveillance and infectious disease diag-
nostics, see, e.g. the recent survey (Minogue et al., 2019).

However, many organisms still do not have their genomes recog-
nized, and those that already have a reference genome have gaps in it
due to high repetition rate or limitation of sequencing technologies.
Thus, a lot of effort is put into de novo genome reconstruction (de novo
sequence assembly), which bases only on the information about reads
reported by a sequencer. Matching the reads together, nowadays hun-
dreds of millions at once, is done by finding pairs of overlapping reads.
Such a reconstruction of a genome is characterized by high demand on

VC The Author(s) 2021. Published by Oxford University Press. 1644

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 37(12), 2021, 1644–1651

doi: 10.1093/bioinformatics/btab005

Advance Access Publication Date: 20 January 2021

Original Paper

http://orcid.org/0000-0002-9863-5412
http://alga.put.poznan.pl
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/


computational resources and is realized on the basis of assembly graphs:
overlap/string graphs or de Bruijn graphs. Paths in such graphs repre-
sent larger fragments of a chromosome.

The computational model of overlap graphs was historically first
among those related to DNA sequencing problems. Its origin dates
back to 1988, when Lysov and co-authors proposed a graph model
for the problem of DNA sequencing by hybridization (Lysov et al.,
1988). There, every oligonucleotide was represented by a vertex of
the graph, and directed edges corresponded to possible overlaps of
the oligonucleotides. For years, the model was adjusted to new
requirements; oligonucleotides were replaced by reads produced by
sequencers, in overlaps one had to take into account inexact matches
due to sequencing errors, and the process of sequence reconstruction
moved to the higher level of DNA sequence assembly. However, the
basic graph remained more or less the same.

The overlap graph model is a straightforward conceptualization
of the real-world process and works well as long as the sequencing
data are not too large. The necessity of representing whole sequences
in the graph and calculating inexact sequence alignments for most of
pairs of the sequences makes the computational process very time
and memory consuming (Blazewicz et al., 2018). The literature
reports cases where assemblers from this group did not finish com-
putations for greater datasets because of excessive memory require-
ments (Gonnella and Kurtz, 2012; Kajitani et al., 2014). Long
processing time of such assemblers is also often reported in the lit-
erature (see, for example, supplementary material for Assemblathon
2, Bradnam et al., 2013). Subsequent propositions in this research
area were aimed at shortening the time and reducing memory usage,
usually at the cost of completeness of information kept (Gonnella
and Kurtz, 2012; Ilie et al., 2014; Kececioglu and Myers, 1995;
Myers et al., 2000; Simpson and Durbin, 2012; Swiercz et al., 2018;
some of them refer to a similar concept of string graphs). Among the
most significant improvements, one may point the resignation from
the dynamic programming algorithm in favor of heuristic methods
calculating the sequence alignment or alignment-free sequence com-
parison, a strict selection of pairs of sequences undergoing the com-
parison procedure, or reduction of the resulting graph.

In the meantime, the main research thread in DNA sequence as-
sembly directed to the so-called de Bruijn graph model. It was pro-
posed in 1989 by Pevzner for solving sequencing by hybridization
(Pevzner, 1989) and later applied to de novo sequence assembly
(Bankevich et al., 2012; Idury and Waterman, 1995; Kajitani et al.,
2014; Luo et al., 2012; Pevzner et al., 2001; Zerbino and Birney,
2008). For the latter purpose, reads are decomposed into a series of
overlapping subsequences (k-mers, where k stands for their length),
each one represented by a directed edge in the graph, and vertices
represent their prefixes and suffixes of length k � 1. In such a graph,
only exact matches of sequences kept in vertices are assumed,
sequencing errors are handled by allowing a k-mer to occur in differ-
ent versions. A gain in efficiency of computations is achieved by a
much lower volume of stored information and a smaller traversed
graph, but mainly by discarding inexact matches. On the other
hand, quality of resulting contigs diminishes a bit due to the se-
quence decomposition to k-mers, as the information about whole
reads is partially lost (Blazewicz et al., 2018).

Taking into account all the practical constraints, de novo recon-
struction of a DNA sequence in genome scale from NGS reads was
done in most cases via an assembler based on the de Bruijn graph ap-
proach. Assemblers representing the overlap graph model often
worked too long; moreover, they might not finish their computa-
tions because of memory limitation. Nowadays, however, the latter
approach comes back to practice. There is a strong recommendation
to use this graph model when reads are long, as the information lost
following the decomposition in the de Bruijn graph approach is then
more problematic. But even for shorter reads, there is a need to ob-
tain more accurate results. Our new proposition for short-read data,
assembler ALGA (ALgorithm for Genome Assembly), is to exploit
such a potential of the overlap graph approach with reasonable time
and memory usage. We realize this, among others, by switching to
bit representation of data and substitution-based error model, using
hash values instead of strings in comparing reads, removing

transitive connections in advance, and solving iteratively the min-
imum directed spanning tree problem as a part of graph reduction.

It is worth noting that ALGA can be used without setting any
parameter by a user. The parameters of ALGA are adjusted internal-
ly by the algorithm on the basis of input data. We left only one op-
tional parameter, the maximum allowed error rate in overlaps of
reads, with its default value 0 that gives good results in the case of
most datasets.

2 Algorithms

De novo reconstruction of a genome sequence from NGS reads
requires no additional information besides sets of reads, paired or
not. At the level of sequence assembly, it brings a series of disjoint
contigs (contiguous segments of a genome), later on, at the level of
scaffolding, possibly combined into longer structures (scaffolds) bas-
ing on the information about pairing of reads. Our new method,
ALGA, realizes this process at the level of sequence assembly and
follows the traditional overlap-layout-consensus strategy. After feas-
ible overlaps between pairs of reads are established, an overlap
graph is built, and paths covering the graph are looked for. Finally,
the paths are translated to nucleotide sequences, i.e. contigs. These
computational problems are solved through a series of constituent
algorithms.

2.1 Preprocessing
Reads from a dataset are first corrected by Musket, an external tool
based on a k-mer analysis (Liu et al., 2013) (values of parameters
given in Supplementary Material). Musket is dedicated to Illumina
reads and identifies erroneous positions basing on frequency of k-
mers in a dataset; if necessary, it can be replaced by another correct-
ing tool. Our observation how such corrected reads overlap gave us
a reason to trim reads from both ends in ALGA by three nucleotides.
Although many errors are corrected by Musket, ends of poor quality
still tend to contain errors, and such additional trimming helps us to
get better results. Filtering of input dataset is realized in ALGA by
rejecting all reads composed periodically of a fragment not longer
than 20. Such reads are sources of unwanted substructures in an
overlap graph, leading to forks that do not reflect really different
contigs. Reduction at this stage makes our final graph simpler with
very slight loss of information. Finally, reads being duplicates or pre-
fixes of other reads are removed, thus also suffixes, as we include re-
verse complementary forms of reads. It is done quickly via creating
the longest common prefix array for sorted lexicographically reads,
where the string comparison is realized with bitwise operations.

2.2 Data encoding and error model
We identified high memory usage as the most significant problem of
the overlap graph approach. Our basic decision was to encode each
position of nucleotide strings on two bits. This gives us the possibil-
ity to encode four nucleotides and the appearance of other charac-
ters in strings we solve in steps. Subsequent steps of the
preprocessing stage remove or correct most of unwanted characters.
All remaining characters outside the 4-letter nucleotide alphabet are
then replaced by one of the letters. Because such positions are not
too numerous, this gives us information accurate enough to assem-
ble. It also goes along with the error model we realize, where only
substitutions of nucleotides are allowed. Although indels in reads
are also possible, substitutions are more frequent sequencing errors
in Illumina technology and the appearance of ‘N’s in the strings bet-
ter matches substitutions. This is another point on the way to opti-
mize the method, as aligning strings with indels is very costly from
the computational point of view. By switching to the bit representa-
tion of nucleotide sequences and the error model restricted to substi-
tutions, we gain a lot regarding time at every stage of computations.

2.3 Graph construction
As ALGA was intended to solve genome-scale datasets with accept-
able memory usage, possibly on personal computers, the overlap

Genome-scale de novo assembly using ALGA 1645

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data


graph had to be created as sparse as possible. At the same time, we
wanted to keep the whole valuable information, thus to reject only
edges duplicating some connections. At the current stage of the algo-
rithm, we restrict our attention to transitive edges.

In the graph, every read outgoing the preprocessing step consti-
tutes a vertex, as well as its reverse complementary counterpart.
Reads of different lengths are allowed. Two vertices are connected
by a directed edge if they have a prefix-suffix connection acceptable
due to two parameters: minimum overlap area, automatically set to
55% of the average read length, and error rate of the overlap, the
parameter defined by a user (optional, set to 0 by default). For each
pair of reads, one best connection is stored, which is the one repre-
senting the greatest possible overlap, and the edge is weighted by the
offset of the overlap (i.e. the distance between beginnings of the
reads in the overlap). First, errorless overlaps are collected. We start
with the shortest possible overlap area and systematically increase it
by one after checking all pairs of reads for exact overlaps of the cur-
rent length. Prefixes and suffixes of reads are processed as hash val-
ues instead of strings. This enables us to extend each prefix and
suffix in time O(1) using a rolling hash function. In order to find, for
each read a, all reads b with a given property, we keep all suffixes
on a custom-made hash map. This way, each valid pair (a, b) is
found in O(1) time, and the algorithm is able to construct the graph
in time O(n�m), where n stands for the number of reads and m for
the average read length, which is the optimal bound.

Such a graph, if constructed without further constraints, could
be extremely large. This is due to the presence of a huge number of
transitive edges. They can surpass irreducible edges by a factor of
O(m) or greater if the genome contains a large number of identical,
repeated regions. A connection of two overlapping reads a and c
resulting in a longer sequence s is expressed by a transitive edge in
the graph, if there is another read b that can be inserted, with proper
overlaps, in between a and c with the same sequence s as a result.
These connections are present in the overlap graph as three edges (a,
c), (a, b) and (b, c). The reduction of transitive edges is made as soon
as edges being a better choice are found, immediately after finding
the second edge of a proper triplet, see Figure 1; this, however,
comes at a cost of some additional computation. Such an action is
supported by the implementation we chose, i.e. the systematic in-
crease of the overlap area with the use of the rolling hash function.
This way we avoid a peak in memory usage, observed in other algo-
rithms with a natural reduction of transitive edges, applied after col-
lecting in a graph all edges of a triplet.

After that, we admit overlaps with errors (if set up by a user). It
is assumed that erroneous positions cannot be located within first or
last three nucleotides of reads, as a difference in such regions usually

means growing distance and an incorrect path. Connections from
vertices with outdegree 0 to ones with indegree 0 are searched for
with a method based on a k-mer comparison of reads, where k is set
to 35. We divide each read into six equal (roughly) segments, select
one least lexicographically k-mer per segment (it can project beyond
a segment), and efficiently check via dynamic programming all pairs
of candidates containing at least one common k-mer. In order to
make this procedure alphabet-independent, we execute it four times
with different ‘lexicographical’ orders assumed: (A, C, G, T), (C, G,
T, A), (G, T, A, C) and (T, A, C, G). Edges representing those pairs
that overlap in such a way that user’s parameters are satisfied are
added to the graph.

2.4 Graph simplification
In order to create contigs, the overlap graph built in the previous
stage needs to undergo a few simplification steps that transform it to
the state where every single edge represents a candidate for a final
sequence.

2.4.1 Neighborhood reduction

Some vertices in the graph have more numerous neighborhood (in
the sense of outgoing edges) than the others. As long as their neigh-
bors fit them tightly, all the connections are important. However,
loose connections accompanying the tight ones can worsen quality
of contigs. In ALGA, we treat a connection as tight if it represents
the overlap area of length at least 1.4 of the minimum overlap area.
All such edges are kept, and if there are at least three such outgoing
edges at a vertex, other edges representing loose connections from
this vertex are removed. Otherwise, we keep at the vertex some out-
going edges representing loose connections, to the total number of
three edges leaving the vertex (if possible), and the ones representing
the greatest overlap area are selected.

2.4.2 Triangle inequality rule

Another simplification step is based on the triangle inequality. It is
for further reduction of transitive edges, this time identified in a
broader range. During the graph construction, these transitive edges
which exactly covered other existing connections have been dis-
carded. Now, we accept for reduction all edges violating the triangle
inequality, i.e. of a weight not lower than the sum of weights of its
constituent edges: edge (a, c) of weight w is removed if there are
edges (a, b) and (b, c) of weights w1 and w2 such that w � w1 þw2.
Currently, matching of reads is not examined.

2.4.3 Short parallel paths

Transitive edges together with their alternative edges are small
examples of more general structures, parallel paths. If such paths are
short, they usually represent more or less the same sequence of
nucleotides as their counterparts or one of them is a shortcut of the
other. Removal of short parallel paths (structures also known as
bubbles) is a procedure known from assemblers based on the de
Bruijn graph approach (e.g. Zerbino and Birney, 2008). Although
such a graph is different from the overlap graph, the latter also can
have parallel paths, and they also can arise from sequencing errors.
Our procedure for removing short parallel paths solves iteratively
the minimum directed spanning tree problem in a local subarea.
This way we identify edges which can be deleted without loss on
contiguity of a solution.

For each vertex a having at least two outgoing edges, a subgraph
Sa is identified, induced by a subset of vertices reachable from a via
a directed path not longer than a given value D (in ALGA equal to
250% of the average read length). More formally, for graph
G ¼ ðV;EÞ, Sa ¼ ðU; IÞ has U ¼ fb 2 V : distða; bÞ � Dg as a ver-
tex set and I ¼ fðb; cÞ 2 E : b; c 2 Ug as an edge set, where distða;bÞ
means the shortest distance from a to b measured in weights of edges
of the path (with distða; aÞ ¼ 0). Next, all edges belonging to Sa are
removed from G, and a part of them is added back according to the
following rule. Elements of I are sorted in the non-decreasing order
by weight, and every ðb; cÞ 2 I taken in this order is added back to G

a
b

c

c

a
b

a
c

a
b

c

a
b

a

A

B C D

Fig. 1. An example of the construction of a sparse graph. (A) Three overlapping

reads. (B) The algorithm starts with the overlap area set to its minimum value and

increases it once overlaps of such a length have been checked within the whole data-

set. The first found edge is (a, c), weighted by the appropriate offset. (C) After

increasing the overlap area to bþ c, edge (b, c) is found, and it replaces (a, c) recog-

nized at this moment as a transitive edge because of the presence of the supplement-

ing connection from a to b. This connection can be quickly checked with bitwise

operations, for the offset between a and b is already known. (D) Edge (a, b) is added

once the overlap area rises to aþ b

1646 S.Swat et al.



unless there is ðd; cÞ 2 E such that d 2 U. This way we leave in G
edges composing a minimum directed spanning tree of Sa rooted at a
and, as a result, from among alternative paths in this subarea, the
one with the lowest relative weight is preferred.

There is an exception in this procedure. If Sa contains a directed
cycle, we do nothing with edges of Sa in this step; this is for retaining
structures representing short repetitions within a genome. However,
some edges of Sa can be removed from G in an iteration of the pro-
cedure executed for other vertex, see Figure 2.

2.4.4 Dead-end branches

Execution of the procedure for removing short parallel paths leaves
in the graph a lot of short dead-end branches [as, for example, edge
(a, i) in Fig. 2C], also called tips. We remove them all by setting the
maximal length of the dead ends to be removed to value D, the same
as in the previous procedure. At every fork, if all outgoing (incom-
ing) paths are not longer than D, the longest one is treated as the
main path and retained.

2.4.5 Path compression

Directed paths between forks are compressed to single edges accord-
ing to the following conditions. Each path ða0; a1; . . . ; apÞ, where
(d�ða0Þ 6¼ 1 or dþða0Þ > 1) and (d�ðapÞ > 1 or dþðapÞ 6¼ 1) and
(d�ðaiÞ ¼ dþðaiÞ ¼ 1, 0 < i < p), is replaced by edge ða0; apÞ; d�

and dþ stand for the numbers of incoming and outgoing edges at a
vertex, respectively. Weights of the compressed edges are set to
weights of the corresponding paths (being sums of weights of their
constituent edges). Information about components of the original
paths is kept.

2.5 Graph traversal
Candidates for final sequences (contigs) are nucleotide sequences
corresponding to edges in the transformed overlap graph. Single

edges can be merged into longer structures. This situation occurs
when there are edges (a, b) and (b, c) long enough (in ALGA defined
as at least twice the average read length), where dþðbÞ ¼ 1 and there
exist paired reads r1 and r2 such that r1 is a fragment of a sequence
represented by (a, b) and r2 is a fragment of a sequence represented
by (b, c). From among alternative traversals through a vertex b this
one is chosen which is confirmed by a greater number of pairs r1, r2.
In order to avoid duplicated sequences, corresponding to comple-
mentary strands of a DNA fragment, candidates for contigs are com-
pared with already accepted contigs. The candidates are rejected if
they are too similar to any sequence stored so far. In ALGA, the level
of similarity is set to 95% measured in vertices of compared uncom-
pressed paths. The similarity is determined with taking into consid-
eration also vertices corresponding to reverse complementary
versions of reads. Finally, in order to minimize mismatch rate, con-
tigs are trimmed from both sides so that each nucleotide is covered
by at least three reads.

3 Results

In the computational experiment, ALGA was compared with assem-
blers highly rated in scientific community: Velvet (Zerbino and
Birney, 2008), SGA (Simpson and Durbin, 2012), SOAPdenovo2
(Luo et al., 2012), SPAdes (Bankevich et al., 2012), Readjoiner
(Gonnella and Kurtz, 2012), Platanus (Kajitani et al., 2014),
MEGAHIT (Li et al., 2015), SAGE2 (Molnar et al., 2018) and with
our previous assembler GRASShopPER (Swiercz et al., 2018).
Altogether, we have five assemblers based on the de Bruijn graph ap-
proach (Velvet, SOAPdenovo2, SPAdes, Platanus, MEGAHIT) and
five based on the overlap/string graphs (SGA, Readjoiner, SAGE2,
GRASShopPER, ALGA). Only the assembly stages of the packages
were compared (a few of them also have a scaffolding module).
Versions of the programs, web pages with source code and values of
parameters used in the experiment are specified in Supplementary
Material (including other programs supporting the computations).
In Section 3.1 a wide comparison of the assemblers is made, Section
3.2 describes additional tests with a whole human genome dataset.

3.1 Comparison with other assemblers
Characteristics of datasets used in tests are summarized in Table 1.
They all were produced by an Illumina sequencer according to the
paired-end protocol, for whole genomes of nematode C.elegans,
plant A.thaliana, alga C.sorokiniana, bacteria E.coli and Microthrix
parvicella and for chromosome 14 of H.sapiens. The length of
chromosome 14 is approx. 107 Mbp, but due to a large gap of un-
known nucleotides (N) at the beginning, its effective length is
shorter as reported in the table. A few assemblers benefited from
read correction made by Musket (Liu et al., 2013), which is based
on analysis of frequencies of k-mers within a dataset. We performed
tests for all assemblers in two configurations: with and without the
correction made by Musket, and took to the comparison this config-
uration which gave better results. Assemblers which benefited from
the Musket correction are SOAPdenovo2, Readjoiner, SAGE2 and
ALGA. It should be noted, that the authors of SAGE2 recommend
to make the read correction by their own program Racer; however,

b
c

a

a

g

41

b
e

c
d

A

B

e
f

d
h
i

g

f

h

i
77

64

64

39

37

65

40

59

60

63

a

g

41

b
e

c
d

C

f

i
77

64

39

40

60

63

a’
50

Fig. 2. Solving the minimum directed spanning tree problem in a local subarea. (A)

Reads from the example. (B) Subgraph Sa identified in a larger graph for vertex a,

here D ¼ 250. Sa contains a directed cycle and no edge is deleted in this iteration.

(C) Result of the reduction for subgraph Sa0 identified for vertex a0. Vertex h is not

reachable from a0 within distance D, so edges (g, h) and (h, f) do not belong to Sa0

Table 1. Characteristics of datasets used in the comparison

G [Mbp] N [M] R [bp] I [bp] D

H.sapiens chr.14 91.0 18.3 101 158 41

C.elegans 100.3 34.3 110 225 75

A.thaliana 120.3 48.0 101 272 81

C.sorokiniana 58.7 48.5 250 499 413

E.coli 4.6 22.7 101 504 989

M.parvicella 4.2 4.9 98 315 229

Note: ‘G’ stands for genome length, ‘N’ for number of read pairs, ‘R’ for

average read length, ‘I’ for average insert size, ‘D’ for average depth of

coverage.

Genome-scale de novo assembly using ALGA 1647

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data


Musket gave better results with SAGE2 (on average). All references
for the datasets are given in Supplementary Material.

Computations were done on a PC cluster consisting of general
purpose CPU nodes, each equipped with two Intel Xeon E5-2697 v3
processors and 256 GB RAM, and GPGPU nodes, each with two
Nvidia V100 graphics cards with Intel Xeon Gold 5115 and 187 or
754 GB RAM. Processes were run on 16 cores in parallel. Outcomes
of the assemblers were evaluated with the standard tool QUAST
(Gurevich et al., 2013), which reports commonly used metrics, such
as genome fraction, duplication ratio, largest alignment, NG50,
NG75, number of contigs and many others. The program was run
with the minimum length of contigs undergoing the evaluation set to
250, with the exception for C.sorokiniana, where it was 500 because
of longer reads. Tables generated by QUAST for the outcomes are
enclosed in Supplementary Material (Supplementary Tables S1–S6),
here summarized. Average values given below have been calculated
for six datasets, except for GRASShopPER, which failed with the
dataset of A.thaliana due to too high memory usage and five values
have been counted there.

The most important role of assemblers is to generate reliable
contigs. Typically, the longer contigs are, the greater fraction of dis-
agreements to a reference genome they contain. Some assemblers
pay too much attention to extend contigs, so they win on the metrics
promoting length, but lose on the number of alignment errors.
Table 2 and Figure 3 present this aspect of results. Our conclusion
was to exclude from further analysis these assemblers which pro-
duced results (on average) very far from users’ expectations:
MEGAHIT and SPAdes because of too large fraction of inaccurate
parts of a solution, and Readjoiner because of too small genome
coverage.

The highest located markers in Figure 3, for a given organism,
represent results of worst accuracy. Some assemblers repeatedly
occur in such a situation, especially MEGAHIT and SPAdes. When
to remove markers of these two algorithms, the rightmost markers,
that is of best NG50 values, belong to ALGA (except for
A.thaliana). At the same time, the total misassembly length of
ALGA’s results is comparable to others, or smaller.

Figure 4 shows the fraction of genomes covered by contigs
aligned to them, as a function of changing bound on the length of
contigs taken into account. The same figure brings us also informa-
tion about NGA values (similar to NG but for aligned parts of con-
tigs) and the longest aligned contig, which can be read from the
rightmost point of a particular plot (also given explicitly in
Supplementary Material, Supplementary Tables S1–S6). The left-
most value on X axis is equal to the minimum length of contigs ana-
lyzed by QUAST, i.e. 500 for C.sorokiniana and 250 for the other
sets.

As an additional measure indicating accuracy of assemblers’ out-
comes we took BUSCO, which returns a number of gene sequences,

at the level of order or phylum of an organism, correctly recognized
(or not) within produced contigs (Seppey et al., 2019). Table 3 con-
tains values of this measure summed up for all datasets, detailed

results for particular organisms are given in Supplementary Material
(Supplementary Tables S7–S12).

3.2 Whole human genome
Separate tests were done with a whole human genome dataset
(specified in Supplementary Material). It contains 359M pairs of

reads of average length 151, average depth of coverage for the
genome is 34. Previously described details of the computational

experiment remain valid, with RAM of CPU nodes expanded to
320 GB. Only four assemblers finished computations with a re-
sult: ALGA, MEGAHIT, SGA, SOAPdenovo2; others either did

not fit within available memory or had other runtime error.
MEGAHIT once again produced contigs of inacceptable inaccur-

acy, this time 23.4%. SOAPdenovo2 obtained genome fraction
85.7% only. ALGA and SGA achieved results of similar high
quality, ALGA much faster, SGA with much lower memory usage.

In genome fraction, SGA was slightly better, 90.5% versus 90.3%
for ALGA, but with a high value of duplication ratio: 1.108 ver-

sus 1.009 for ALGA. ALGA assembled much longer contigs than
SGA, ALGA’s NG50 value is 2.5 times greater (11 495 versus
4481), largest alignment is 2 times greater (140 579 versus 67

917). Inaccuracy of both algorithms is the same and very low,
0.78%. For detailed results see Supplementary Material

(Supplementary Tables S13–S16).

Table 2. Results summarized for all genomes from Table 1 (aver-

age values) from the point of view of assemblers’ functionality

Assembler Genome fraction Dupl. ratio Inaccuracy

ALGA 95.98% 1.004 1.26%

GRASShopPER 86.44% 1.053 1.76%

MEGAHIT 96.00% 1.017 30.33%

Platanus 92.30% 1.008 0.47%

Readjoiner 44.54% 1.133 2.90%

SAGE2 76.65% 1.008 4.83%

SGA 95.77% 1.008 1.28%

SOAPdenovo2 91.89% 1.008 1.12%

SPAdes 96.62% 1.004 27.76%

Velvet 81.93% 1.015 6.01%

Note: Genome fraction is the part of a reference genome covered by contigs

aligned to it; duplication ratio is the relation of aligned result to the aligned

part of a genome (with 1 being optimum); inaccuracy is the sum of lengths of

inaccurate contigs (being contigs misassembled, unaligned or partially un-

aligned to a reference genome) divided by the genome length.

102

105

108

103 104 105

NG50

To
ta

l m
is

as
se

m
bl

y 
le

ng
th

Algorithms

ALGA
GRASShopPER
MEGAHIT

Platanus
Readjoiner
SAGE2

SGA
SOAPdenovo2
SPAdes

Velvet

Data sets

A. thaliana
C. elegans

C. sorokiniana
E. coli

H. sapiens 14
M. parvicella

Fig. 3. Results shown as the dependency of NG50 values and the length of misas-

semblies. NG50 means the length of a contig that together with at least such long

contigs cover half of a reference genome. Total misassembly length is the sum of

lengths of inaccurate contigs (being contigs misassembled, unaligned or partially un-

aligned to a reference genome). The better the results are, the closer to the right-bot-

tom part of the graph they are visualized. Axes are in logarithmic scale

1648 S.Swat et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data


4 Discussion

The results of all assemblers shown from the point of view of their
functionality (Table 2) demonstrate that ALGA is the best in this
context. On average, it reconstructed the longest portion of genomes
with keeping high accuracy level, and has the best value of duplica-
tion ratio. This best result has been achieved without any changes to
program’s parameters (despite the datasets are so different), which
are set internally to predefined values as described in section

Algorithms. When we look into particular tables (Supplementary
Tables S1–S6, not counting the methods of high inaccuracy, i.e.
MEGAHIT and SPAdes), we can see that ALGA has the best value of
genome fraction for H.sapiens and E.coli, second best for A.thaliana
(after SGA) and C.sorokiniana (after Platanus) and third best for
C.elegans and M.parvicella (after SGA and GRASShopPER).

The first rank of ALGA in reliability of results is confirmed by
the values of BUSCO measure (Table 3). ALGA is placed ahead of
other assemblers, both in the number of completely and uniquely
recognized genes (the highest value) and the number of fragmented
genes (the lowest value). The second and third place in this ranking
is taken by SGA and Platanus, respectively.

From the point of view of contig lengths, the particular results in
Figure 4 show that ALGA produced best results for each dataset ex-
cept A.thaliana, where it is ranked after SGA. At the same time,
ALGA generates the smaller number of contigs, averaged for all
datasets. The longest aligned contig belongs to ALGA for H.sapiens
and A.thaliana, for other datasets ALGA takes the second position
after SGA or Platanus (not counting MEGAHIT and SPAdes).

Wide representation of tested assemblers and their equal alloca-
tion to the models of de Bruijn and overlap/string graphs allow us to
infer basic predispositions of these models. The supremacy of de
Bruijn-based assemblers according to time and memory usage was
already known, but it happens that the other assemblers perform
better; complete tables with such information can be found in
Supplementary Material (Supplementary Tables S13–S15). Two best
results in memory usage have been achieved by the overlap/string
graph assemblers Readjoiner and SGA. Readjoiner also worked in
shortest time, with ALGA being next. In memory usage ALGA is

Fig. 4. Results shown as the part (per cent) of a reference genome covered by contigs aligned to it, depending on the minimal length of contigs taken into account. X axis is in

logarithmic scale

Table 3. Values of BUSCO measure summed up for all datasets

Complete and

single-copy

genes

Complete and

duplicated

genes

Fragmented

genes

Reference genomes 10 055 70 39

ALGA 9259 74 362

GRASShopPER 4228 23 451

Platanus 8967 61 447

SAGE2 7236 70 734

SGA 9178 61 410

SOAPdenovo2 7983 62 778

Velvet 6472 62 1167

Note: The values refer to numbers of BUSCO genes recognized correctly or

partially within contigs produced by the assemblers.

Genome-scale de novo assembly using ALGA 1649

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data


ranked in the middle. When considering the group of three best-
quality assemblers from the computational experiment, ALGA, SGA
and Platanus, ALGA is the fastest one and, in the average usage of
memory, the second one (after SGA). The respective values for
ALGA, SGA and Platanus, average for datasets from Table 1, are
14.7, 3.2, 108.5 (memory peak in GB) and 50, 190, 77 (time in
minutes, incl. Musket for ALGA). As to the quality of results of
assemblers from particular groups, it can be observed that three
assemblers of highest inaccuracy (counted as in Table 2) use the de
Bruijn graph model. However, another assembler from that group
(Platanus) has the smallest inaccuracy value.

Tests with data from sequencing the whole human genome
showed that only two assemblers were able to reconstruct the gen-
ome with satisfactory values of quality measures: ALGA and SGA.
Both follow the overlap/string graph approach. They returned
results of similar quality, except for duplication ratio, NG50 and
largest alignment, where ALGA achieved much better values.

We used to implement the overlap-layout-consensus strategy in
our methods for DNA sequencing and assembly (e.g. Blazewicz
et al., 2002, 2009; Swiercz et al., 2018) as giving more reliable con-
tigs, where the most significant problem was time and memory
requirements. Now, ALGA manages large datasets, even of big
depth of coverage. The genome of A. thaliana, of the length over
120 Mbp and covered with the average depth 81, appeared to be the
most difficult dataset in the first part of the computational experi-
ment, according to the greatest factor of incorrectly assembled con-
tigs. Actually, the big coverage depth brought many new
possibilities of connecting reads and traversing through forks in a
graph, and assemblers hardly coped with such a situation. ALGA,
by preferring errorless connections and doing a series of graph re-
duction steps, especially the one referring to the problem of min-
imum spanning tree of a local subgraph, achieved overall the second
best result for A. thaliana, and the best results for other highly cov-
ered genomes of C. sorokiniana (the average depth 413) and E. coli
(the average depth 989). It fits within memory constraints due to bit
representation of data and building a sparse graph, and shortens
computation time by a new procedure of comparing reads.

Switching to the error-free mode of aligning reads (by setting the
parameter of error rate to zero) is worth attention as a decision to-
ward optimizing computation time, memory usage and quality of sol-
utions. A difficulty in the overlap graph approach which cannot be
ignored is to establish a final consensus sequence from partial infor-
mation about overlapping pairs of reads (neighbors in an already
found path). It is a hard computational problem consisting in solving
a series of problems of multiple sequence alignment in subsequent
segments of a solution. In practice, due to time requirements, it is
solved by a simple heuristic method giving non-optimal results. The
de Bruijn graph approach does not have such a problem, because all
connections appearing there are exact. The assumption of error-free
connections in the overlap graph seemingly worsens a solution, but in
practice, for currently obtained depth of coverage and small percent-
age of sequencing errors, it works very well (as shown in Results),
even for the whole human genome assembled at once. But even in the
case of errors allowed, the problem of establishing a consensus se-
quence in ALGA is turned to be computationally easy thanks to the
assumed model of errors restricted to substitutions only, and we solve
it optimally in polynomial time. The advantage of the error-free
mode of ALGA over the mode with errors allowed, for Illumina data-
sets of a typical quality, can be observed through results shown in
Supplementary Material (Supplementary Table S17).

5 Conclusion

The proposed method for sequence assembly, ALGA, proved to be
effective in tests on a genome scale, including datasets coming from
Illumina sequencing of several model organisms. It achieved better
results than nine other tested assemblers in the sense of overall qual-
ity of genome reconstruction. In particular measures, like genome
coverage, duplication ratio, accuracy, NG50, number of contigs and
others, ALGA is ranked as the best or nearly the best. It is also the
second fastest assembler with memory consumption kept at a

medium level, which comes to the fore when restricting attention to
assemblers giving best quality contigs.

Long read SMS technologies, such as the ones developed by
Pacific Biociences or Oxford Nanopore, becomes the key mean to se-
quence de novo long or repetitive genomes. Assembly tools based on
the de Bruijn graph model are preferred for shorter reads because of
the information lost following the read decomposition. But also a
high error rate connected with the new technologies poorly corre-
sponds with the decomposition graphs. As we mentioned in
Introduction, the sequencing errors are represented in these graphs by
multiplying k-mers in versions differing in erroneous places. Further
graph exploration bases on the possibility of identification which k-
mers seem to be false positives, which can be efficiently done only if
they are not too numerous comparing to the rest of the graph. This is
the room to apply assembly methods following the overlap graph ap-
proach, and the efficient implementation of ALGA can be a part of a
method satisfying practical expectations in this area.

Funding

The research was done based on infrastructure developed within European

Center for Bioinformatics an Genomics project (Genomic Map of Poland,

www.ecbig.pl/page/genomic-map-of-poland/), grant no. POIR.04.02.00-30-

A004/16 supported by the European Regional Development Fund (ec.euro-

pa.eu/regional_policy/en/funding/erdf). Computational experiments were per-

formed within PLGrid infrastructure (www.plgrid.pl/en), cluster Eagle in

Poznan Supercomputing and Networking Center.

Author contributions
J.Bl., M.K., A.S. and P.W. conceived the study and supervised tasks of the

project. S.S. developed and implemented the algorithms. S.S., A.L., J.Ba. and

W.F. carried out computational experiments. M.K. and S.S. drafted the

manuscript. A.S. drew up results of computations. All the authors were

involved in discussions, data analysis and proofreading and approved the final

version of the manuscript.

Conflict of Interest: none declared.

References

1001 Genomes Consortium (2016) 1,135 genomes reveal the global pattern of

polymorphism in Arabidopsis thaliana. Cell, 166, 481–491.

Ameur,A. et al. (2019) Single-molecule sequencing: towards clinical applica-

tions. Trends Biotechnol., 37, 72–85.

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Blazewicz,J. et al. (2009) Whole genome assembly from 454 sequencing out-

put via modified DNA graph concept. Comput. Biol. Chem., 33, 224–230.

Blazewicz,J. et al. (2002) A heuristic managing errors for DNA sequencing.

Bioinformatics, 18, 652–660.

Blazewicz,J. et al. (2018) Graph algorithms for DNA sequencing - origins, cur-

rent models and the future. Eur. J. Oper. Res., 264, 799–812.

Bradnam,K. et al. (2013) Assemblathon 2: evaluating de novo methods of gen-

ome assembly in three vertebrate species. GigaScience, 2, 10.

Gonnella,G. and Kurtz,S. (2012) Readjoiner: a fast and memory efficient

string graph-based sequence assembler. BMC Bioinformatics, 13, 82.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assem-

blies. Bioinformatics, 29, 1072–1075.

Idury,R. and Waterman,M. (1995) A new algorithm for DNA sequence assem-

bly. J. Comput. Biol., 2, 291–306.

Ilie,L. et al. (2014) SAGE: string-overlap assembly of genomes. BMC

Bioinformatics, 15, 302.

Kajitani,R. et al. (2014) Efficient de novo assembly of highly heterozygous genomes

from whole-genome shotgun short reads. Genome Res., 24, 1384–1395.

Kawakatsu,T. et al. (2016) Epigenomic diversity in a global collection of

Arabidopsis thaliana accessions. Cell, 166, 492–505.

Kececioglu,J. and Myers,E. (1995) Combinatorial algorithms for DNA se-

quence assembly. Algorithmica, 13, 7–51.

Li,D. et al. (2015) MEGAHIT: an ultra-fast single-node solution for large and

complex metagenomics assembly via succinct de Bruijn graph.

Bioinformatics, 31, 1674–1676.

1650 S.Swat et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab005#supplementary-data
http://www.ecbig.pl/page/genomic-map-of-poland/
http://www.plgrid.pl/en


Liu,Y. et al. (2013) Musket: a multistage k-mer spectrum-based error correct-

or for Illumina sequence data. Bioinformatics, 29, 308–315.

Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. GigaScience, 1, 18.

Lysov,Y. et al. (1988) Determination of the nucleotide sequence of DNA using

hybridization with oligonucleotides. A new method. Dokl. Akad. Nauk.

SSSR, 303, 1508–1511.

Minogue,T.D. et al. (2019) Next-generation sequencing for biodefense: bio-

threat detection, forensics, and the clinic. Clin. Chem., 65, 383–392.

Molnar,M. et al. (2018) SAGE2: parallel human genome assembly.

Bioinformatics, 34, 678–680.

Myers,E. et al. (2000) Whole-genome assembly of Drosophila. Science, 287,

2196–2204.

Pereira-Marques,J. et al. (2019) Impact of host DNA and sequencing depth on

the taxonomic resolution of whole metagenome sequencing for microbiome

analysis. Front. Microbiol., 10, 1277.

Pevzner,P. (1989) l-tuple DNA sequencing: computer analysis. J. Biomol.

Struct. Dyn., 7, 63–73.

Pevzner,P. et al. (2001) An Eulerian path approach to DNA fragment assem-

bly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753.

Seppey,M. et al. (2019) BUSCO: assessing genome assembly and annota-

tion completeness. In: Kollmar,M. (ed.) Gene Prediction, Series

Methods in Molecular Biology. Vol. 1962, Humana, New York, pp.

227–245.

Simpson,J. and Durbin,R. (2012) Efficient de novo assembly of large genomes

using compressed data structures. Genome Res., 22, 549–556.

Siva,N. (2015) UK gears up to decode 100000 genomes from NHS patients.

Lancet, 385, 103–104.

Swiercz,A. et al. (2018) GRASShopPER – an algorithm for de novo assembly

based on GPU alignments. PLoS One, 13, e0202355.

Zerbino,D. and Birney,E. (2008) Velvet: algorithms for de novo short read as-

sembly using de Bruijn graphs. Genome Res., 18, 821–829.

Genome-scale de novo assembly using ALGA 1651


	l
	l
	tblfn1
	tblfn2
	tblfn3

