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Abstract

Background

Parkinson’s disease is a widespread neurodegenerative disorder which affects brain metab-

olism. Although changes in gene expression during disease are often measured, it is difficult

to predict metabolic fluxes from gene expression data. Here we explore the hypothesis that

changes in gene expression for enzymes tend to parallel flux changes in biochemical reac-

tion pathways in the brain metabolic network. This hypothesis is the basis of a computational

method to predict metabolic flux changes from post-mortem gene expression measure-

ments in Parkinson’s disease (PD) brain.

Results

We use a network model of central metabolism and optimize the correspondence between

relative changes in fluxes and in gene expression. To this end we apply the Least-squares

with Equalities and Inequalities algorithm integrated with Flux Balance Analysis (Lsei-FBA).

We predict for PD (1) decreases in glycolytic rate and oxygen consumption and an increase

in lactate production in brain cortex that correspond with measurements (2) relative flux

decreases in ATP synthesis, in the malate-aspartate shuttle and midway in the TCA cycle

that are substantially larger than relative changes in glucose uptake in the substantia nigra,

dopaminergic neurons and most other brain regions (3) shifts in redox shuttles between

cytosol and mitochondria (4) in contrast to Alzheimer’s disease: little activation of the

gamma-aminobutyric acid shunt pathway in compensation for decreased alpha-ketogluta-

rate dehydrogenase activity (5) in the globus pallidus internus, metabolic fluxes are

increased, reflecting increased functional activity.

Conclusion

Our method predicts metabolic changes from gene expression data that correspond in

direction and order of magnitude with presently available experimental observations during

Parkinson’s disease, indicating that the hypothesis may be useful for some biochemical
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pathways. Lsei-FBA generates predictions of flux distributions in neurons and small brain

regions for which accurate metabolic flux measurements are not yet possible.

Introduction

Many human diseases are associated with changes in metabolism at the cellular level. Meta-

bolic fluxes are hard to measure in patients, but changes in expression of metabolic genes dur-

ing disease are often measured, with spatial resolution down to the level of small anatomical

regions and even specific cell types. It would therefore be of interest to predict changes in met-

abolic fluxes from gene expression measurements during disease.

It has long been considered difficult to predict changes in metabolic fluxes from the gene

expression changes [1]. Nevertheless, at least eighteen algorithms exist to infer large models of

metabolism and predict metabolic flux distribution from gene expression [2]. Seven of the

most used algorithms have been tested in yeast, comparing metabolic flux predictions based

on gene expression with measurements of intracellular and extracellular fluxes based on 13C

labeling data, but the algorithmic predictions turned out to be of low quality and were in sev-

eral cases worse than predictions by parsimonious Flux Balance Analysis which does not even

take gene expression into account [2]. We applied the algorithms tested by Machado and Herr-

gard [2] to derive metabolic fluxes in Alzheimer’s disease from gene expression, but the meta-

bolic predictions did not agree with measurements of oxygen and glucose uptake rates [3].

Many of the most used algorithms from Machado’s test suite, e.g. iMAT [4], rely on complete

inactivation of reactions that are linked to genes with low expression. However, gene expres-

sion measurements during Parkinson’s disease show relatively small changes in expression of

many genes related to metabolism. Such modest changes are not compatible with complete

inactivation of biochemical reactions in the model analysis. Here we therefore explore a

recently published algorithm [3], Lsei-FBA, that does not rely on complete inactivation of reac-

tions and might be suitable to predict changes in metabolism from measured small changes in

gene expression across a metabolic network. The Lsei-FBA algorithm is based on the hypothe-

sis that relative changes in reaction fluxes in biochemical pathways parallel changes in gene

expression at the level of metabolic networks. This hypothesis does not mean that changes at

the level of a single biochemical reaction are also proportional to expression levels of the

enzyme or the gene expression of the associated gene(s). The hypothesis has been discussed

extensively in [3]. The hypothesis will be tested in the present study by comparing predictions

of the Lsei-FBA algorithm with available experimental data.

Parkinson’s disease (PD) is one of the most widespread neurodegenerative disorders. PD is

characterized among others by movement disorder, rigidity and tremor caused by the loss of

dopaminergic neurons in the substantia nigra pars compacta (SNc) of the brain. Although sev-

eral genes have been identified in familial cases and by genome wide association analysis, the

mechanisms for the PD progression are largely unknown. Damage to the mitochondria result-

ing in failure to generate energy possibly contributes to PD [5,6]. Several gene products linked

to PD show mitochondrial localizations. Mitochondrial dysfunction has also been implicated

in other neurodegenerative diseases such as Alzheimer’s disease (AD), Huntington’s disease

(HD) and Amyotrophic Lateral Sclerosis (ALS) [7].

PD is in particular often associated with disturbed mitochondrial function in the neurons

in the SNc which are the most conspicuous target of the disease. Decrease in complex I activity

in the electron transport chain (ETC) during PD has been measured in the substantia nigra [8]
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and frontal cortex [9] of post-mortem brain. Reduction of other ETC complexes (II, III and

IV) has been reported for the substantia nigra, platelets and muscle (reviewed in [5,10]). Statis-

tical analysis of gene expression also suggests that mitochondrial electron transport and glu-

cose metabolism in the SNc and other brain regions are affected [11]. However, the pattern

and the magnitude of the changes in metabolic flux distribution are unknown. Accurate mea-

surements of metabolic fluxes in the small brain regions and cell types targeted by PD are pres-

ently impossible. Measurements of oxygen and glucose uptake with positron emission

tomography (PET) in PD patients have been done for larger brain regions [12], and increased

lactate accumulation has been measured with NMR spectroscopy [13]. Because it is difficult to

measure metabolic reaction rates directly in small brain regions or in specific cell types, it is

useful to predict redistribution of metabolism from mRNA expression measured in the small

regions affected by PD, such as the SNc and specifically in dopaminergic neurons.

In the present study we report quantitative predictions of the changes during PD in the dis-

tribution of fluxes in central energy metabolism in specific small brain regions and in dopami-

nergic neurons. The first aim of the study is to explore whether the recently developed Lsei-

FBA algorithm can predict changes in metabolism from measured changes in gene expression

during human disease that agree with experimental data in direction and approximate magni-

tude of change. In case this works well for the available data, the hypothesis of parallel changes

in gene expression and flux in biochemical pathways appears to be useful, at least for some bio-

chemical pathways, and the algorithm’s predictions gain confidence. Consequently, the second

aim of the study can then be to predict the complete change in flux distribution in the central

metabolic network, containing 69 biochemical reactions, from gene expression measurements

in small brain regions during PD.

Materials and methods

Metabolic model reconstruction for brain metabolism

A metabolic reaction network was constructed consisting of the major pathways representing

central carbon and energy metabolism in the brain. Rather than relying on a genome-wide

metabolic reconstruction of brain metabolism, we chose a manually curated representation of

central metabolism. The detailed rationale for this model and an extensive comparison with a

larger model of brain metabolism has been described in [3]. Metabolites and enzymatic reac-

tions were distributed over the extracellular, cytosolic and mitochondrial compartments. The

pathways include glycolysis, pentose phosphate pathway (PPP), TCA cycle, oxidative phos-

phorylation (OxPhos), reducing equivalent shuttling mechanisms, gamma-aminobutyric acid

(GABA) shunt and transport of metabolites across the membranes which separate the com-

partments. We updated this model by adding the glutamate-glutamine cycle, pyruvate carbox-

ylase reaction and ammonium transport across the mitochondrial membrane. The selected

reactions were imported from the BiGG database [14]. Complete lists of the reactions in the

network along with the lists of metabolites are given in S1 and S2 Tables. S1 Fig shows a

scheme of the network.

Analysis of mRNA expression data

Datasets containing the CEL files with gene expression data of individual post-mortem brain

samples for neuropathologically confirmed PD patients and normal controls from the same

study were downloaded from the Gene Expression Omnibus (GEO) database [15] and the

National Brain Databank (NBD; http://national_databank.mclean.harvard.edu/brainbank/

Main) and are summarized in S3 Table. The datasets are given in [11,16–22]. The dataset from

Cantuti-Castelvetri et al. [23] (GEO accession GSE24378) was excluded from the flux analysis
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presented in this paper for reasons given in the Discussion; however the result of the Lsei-FBA

analysis of this study is still given in S4 Table.

All Affymetrix CEL files were pre-processed and normalized in the R programming envi-

ronment using the RMA method [24]. Log2 transformed values were used to calculate differ-

ences in expression levels of PD patients against the healthy controls.

Mapping of expression data on a pathway map

Based on the reactions in our network, a visual map was drawn incorporating pathways down-

loaded from KEGG [25] and WikiPathways [26] and modified manually in the pathway visual-

ization tool PathVisio [27]. Log2 transformed gene expression data were mapped on the

metabolic model using the visualization options of the PathVisio tool, see S2 Fig.

Analysis of flux distribution: The Lsei-FBA algorithm

Recently it was reported that metabolic fluxes in yeast can be meaningfully predicted based on

absolute gene expression in yeast [28]. Here we apply an approach to predict changes in meta-

bolic flux distribution during disease from changes in gene expression in human tissue. Our

approach, termed Lsei-FBA, was recently described and demonstrated on a data set for Alzhei-

mer’s disease [3]. Lsei-FBA is based on the hypothesis that on average relative changes in flux

in a biochemical pathway are proportional to changes in gene expression of the associated

with the enzymes in that pathway. The hypothesis is to be applied on the metabolic network

level, and the parallel changes are not assumed to hold at the level of individual enzymes and

their associated reactions. Lsei-FBA does not provide an exact calculation based on enzyme

kinetic equations, enzyme activities and metabolite concentrations, but a bioinformatic predic-

tion of changes at the network level based on the tendencies suggested by gene expression

changes. It builds on the idea which is widely used in genomics that it is possible to predict

changed activity of biological pathways from associated gene expression changes. Rather than

testing statistical significance of changes in expression for a group of genes associated with a

particular biological pathway, Lsei-FBA projects the changes in gene expression on a model of

the connected metabolic network from which changes in flux distribution in the network as an

integrated whole are predicted. The Lsei-FBA approach is applied here to predict metabolic

changes during Parkinson’s disease from gene expression data.

The Lsei-FBA approach to predict changes in central energy metabolism during PD starts

with establishing the metabolic flux distribution in the normal brain based on measured data

for the uptake and production of metabolites in healthy human brain [3]. This data is analyzed

using flux balance analysis (FBA) of a network model of central energy metabolism to predict

the flux distribution in normal brain. The change in flux distribution during PD is then calcu-

lated based on our assumption that, on average, the flux carried by each enzyme tends to

change proportionally to the change of its mRNA expression between controls and PD

patients. Note that we do not assume that every reaction rate changes in proportion to the

gene expression level, but that on average the reaction fluxes tend to follow gene expression.

The steps describing the method are summarized in Fig 1.

We maintain the assumption of balance of fluxes in the metabolic network also for the dis-

eased state, because metabolites that are not exchanged between brain tissue and blood cannot

keep accumulating steadily during chronic disease, and their production and consumption

must therefore be approximately balanced. The changes in mRNA expression provide a first

rough prediction of the change in metabolic fluxes based on the assumption that the relative

change in gene expression and in metabolic flux for the genes tend to correspond. Conse-

quently, the initial rough estimate for the flux in each reaction is: flux in the healthy state for
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that reaction times the fold change in associated gene expression. This initial set of estimates is

refined by using the consistency and balance of fluxes in the metabolic network as additional

constraints. The assumption of proportionality between gene expression and enzymatic flux,

at least on average, will be discussed below.

The final prediction of metabolic fluxes is subject to 1) flux balance in the network for metab-

olites which are not exchanged between brain and blood 2) restriction to forward flux through

irreversible reactions 3) maximization of correspondence between relative changes in mRNA

expression and changes in fluxes. We include expression datasets from the SNc and from laser

captured microdissected (LCM) dopaminergic neurons where neuronal damage usually occurs

most prominently during PD. These SNc measurements are compared with other brain regions

that show abundant Lewy bodies (LB) in PD without neuronal loss, such as frontal cortex, pre-

frontal cortex Brodmann area 9 (BA9) and basal ganglia structures. A statistical meta-analysis at

the gene-set level of these datasets [11] was already reported, showing significant changes in

mitochondrial electron transport and glucose metabolism, and is not repeated here.

Flux balance analysis for the healthy brain

A list of reaction equations was prepared according to the reaction list in the BiGG database

(S1 Table). The metabolic system is assumed to be in steady state. Substrate uptake

Fig 1. Diagram for the workflow of the Lsei-FBA approach. Flow diagram of the steps to predict metabolic fluxes for

the normal brain (green boxes) and for diseased brain based on gene expression data (pink boxes) described in the

Methods section. For the normal brain, the flux distribution was computed from a reconstructed model of cerebral

central carbon metabolism. For the diseased brain, mRNA gene expression fold changes were first computed for

patients with Parkinson’s disease (PD) versus a control group. An initial flux estimate for the diseased brain is

computed for each reaction in the network by multiplying gene expression fold changes with the FBA flux predictions

for the normal brain. The final flux estimate is solved subject to i) forward flux in irreversible reactions, ii) maintaining

the balance of fluxes during chronic disease and iii) a least squares cost function to minimize the sum of the squared

deviations between the initial and the final flux estimate.

https://doi.org/10.1371/journal.pone.0203687.g001
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measurements for the healthy elderly (55–65 years) human brain were taken from [29], which

reported the uptake rates of glucose, and release of lactate, glutamine and pyruvate for the

brain to be 0.203, -0.0092, -0.011 and -0.0024 μmol g wet brain-1 min-1, respectively. A small

flux is measured in the PPP in the normal brain, which amounts to 6.9% of glycolysis [30].

Pyruvate carboxylation and glutamate-glutamine cycling fluxes amount to 13% and 62% of the

value of the total glucose uptake in the brain, respectively [31] while the GABA shunt flux is

32% of the glucose uptake value [32]. These exchange rates and relative flux values were used

as constraints in the model.

Flux balance analysis for the normal brain was done assuming a cost function which maxi-

mizes ATP synthesis. The rationale for this assumption was discussed extensively in [3].

Assuming maximal growth, which is often used for flux balance analysis of bacterial metabo-

lism, is inappropriate because brain tissue in adults does not show net growth: some material

may be turned over, but the overall change in mass is negligible. Because ATP synthesis in the

mitochondria is driven by the proton motive force across the inner membrane, the balance of

mitochondrial protons determines the synthesis of ATP. Internal metabolites which are not

exchanged are assumed to be balanced, which means that the fluxes producing and consuming

the internal metabolite sum up to zero, i.e. flux balance is enforced. The flux distribution in the

healthy brain was subsequently solved using the linear programming routine Linp from the

package LIM [33] for the R programming environment.

Estimating the flux distribution during disease

The flux distribution in the PD patients is subsequently estimated using the Lsei-FBA method,

based on the changes in gene expression and the flux distribution in normal brain [3] calcu-

lated above. In brief, for each reaction, the average fold change from controls was computed

for the expression of each gene associated with a biochemical reaction in the model (S2 Fig).

The fold change for gene expression in the PD patients times the flux estimated for the associ-

ated biochemical reaction for the healthy brain yields the initial rough flux estimate for every

reaction in the model.

In the next step, all flux estimations were refined based on flux balance in the model (S1

Fig). Under the assumption of absolute flux balance of the internal metabolites in the model

and of zero backflux for the irreversible reactions, given in S1 Table, a cost function was mini-

mized consisting of the sum of the squared deviations between final estimated flux and initial

rough estimate of the flux as calculated above.

The equations of this problem of least squares with equalities (balanced fluxes) and inequal-

ities (irreversible reactions) were solved using the least squares with equality and inequality

conditions (lsei) method from the limSolve package [34]. This method, termed Lsei-FBA, has

been described in detail in [3] and is a special case of quadratic programming.

Statistical test for change of flux during disease

The difference in flux was calculated for n = 8 studies of gene expression in the substantia

nigra, including two studies on dopaminergic neurons laser-dissected from that region. The

significance of the difference in flux between normal controls and the eight predicted averages

for whole SNc and dopaminergic neurons was tested using a one-sample t-test (p< 0.05). To

control for multiple comparisons, the Family-wise Type 1 error (FWER) was calculated.

Because the flux in a sequence of reactions that contains no side-branch is the same and these

fluxes are therefore completely dependent, only one t-test was done per set of dependent

fluxes, e.g. R_GLCt1r and R_HEX1 form one set, R_PGK, R_PGM, R_ENO and R_PYK form

another set, etc.

Metabolic fluxes and Parkinson’s disease
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Permutation analysis was performed to analyze the statistical significance of the predicted

changes, taking the variability in gene expression in individual samples into account. For each

dataset, 100,000 permutations were performed and the two-tailed p-values are calculated. A

Fisher’s meta-analysis was performed that produced one p-value over all datasets. There are a

total of 31 independent sets of reactions in the SNc and dopaminergic neurons datasets. Multi-

ple testing is controlled by using the Family-wise Type 1 error: a Holm-Bonferroni correction

with a p value = 0.05 was applied resulting in a threshold value of 0.0016.

Results

PD gene expression pattern across brain regions

Fold changes of mRNA expression of patients with PD against their healthy controls are visual-

ized mapped on the reaction network in the substantia nigra and dopaminergic neurons in S2

(A) Fig (SN datasets). Fold changes for the internal segment of the globus pallidus (GPi), puta-

men, frontal cortex, cerebellum, blood and lymphoblastoid cells are shown in S2(B) Fig (non-

SN datasets). Downregulated genes are shown in green, upregulated genes in red.

The SN data for the expression in the glycolytic pathway shows mostly downregulation

except for the hexokinases HK2 and HK3, phosphofructokinase PFKL and aldolase ALDOB

genes. The solute carriers for glucose and lactate in the cell membrane tend to show upregulation.

The expression changes in the pentose phosphate pathway (PPP) are small and mixed. Pathways

in the mitochondria are generally downregulated, including the TCA cycle, oxidative phosphory-

lation and transfer of reducing equivalents across the mitochondrial membrane. However, the

pyruvate dehydrogenase kinase PDK4, which participates in the regulation of pyruvate dehydro-

genase activity, tends to show upregulation. Interestingly, the expression of mitochondrially

encoded genes (mtDNA) in the electron transport chain (ETC) such as ND1, ND2, ND3, ND4,

ND4L, ND5, ND6, CYTB, COX1, COX2, COX3, ATP6 and ATP8 are increased.

Outside the substantia nigra, transcription level changes are in general similar as in the SN

datasets, with the GPi region (GSE20146) forming a clear exception. The GPi shows upregula-

tion in most glycolytic genes while TCA cycle and oxidative phosphorylation genes are not

downregulated and even show a tendency of slight upregulation (S2(B) Fig).

In general, changes in gene expression associated with biochemical reactions in the model

were modest and tended to be in most cases in the same direction across the metabolic net-

work, which makes the datasets well suited for flux quantification by the Lsei-FBA algorithm.

Predicted flux distribution in the healthy brain

Measurements show that 0.203 μmol g brain (wet)-1 min-1 of glucose is taken up in the normal

brain of elderly people, and a small amount of lactate is excreted under baseline conditions

[29]. Based on this metabolic input, the model analysis estimates that 5.39 μmol g brain (wet)-1

min-1 ATP is produced in the brain mitochondria. The predicted flux distribution is given in

Fig 2A. The malate-aspartate shuttle transports reducing equivalents into the mitochondria.

The glycerol phosphate shuttle is predicted to be inactive.

To investigate if the FBA yields unique values, we performed a Flux Variability Analysis

(FVA) [35], to estimate the feasible minimum and maximum of all fluxes. The FVA proved

that the calculated fluxes represent indeed a unique solution for this model (data not shown).

Predicted flux distribution during Parkinson’s disease

We now predict changes in the metabolic flux distribution from the changes in gene expres-

sion data between the normal brain and PD. In most cases, fluxes are decreased from control

Metabolic fluxes and Parkinson’s disease
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Fig 2. Flux distribution in healthy brain and during Parkinson’s disease. Flux distribution in healthy brain (A) and during

Parkinson’s disease in the substantia nigra and dopaminergic neurons (B, average from eight data sets), averaged value for

frontal cortex, BA9, putamen and cerebellum (C) and value for globus pallidus internus region (D) in μmol g (wet) brain-1

min-1. Black numbers, flux during normal condition; green numbers, flux decreased during PD and red numbers, increased

from the normal condition. Note that for clarity not all separate biochemical steps are plotted: oxaloacetate is for instance first

transaminated to aspartate before being transported across the mitochondrial membrane as part of the malate-aspartate

shuttle. GLC, glucose; G3P, glyceraldehyde 3-phosphate; RU5PD, ribulose-5-phosphate; PYR, pyruvate; LAC, lactate; CIT,

citrate; AKG, alpha-ketoglutarate; SUCC, succinate; MAL, malate; OAA, oxaloacetate; GLU, glutamate; GLN, glutamine,

GABA, 4-aminobutanoate (synonym of gamma-aminobutyrate); O2, oxygen; OxPhos, oxidative phosphorylation. Flux values

from GLC to RU5PD and from RU5PD to G3P represent 6-carbon units leaving the GLC pool rather than 3-carbon units

entering the G3P pool.

https://doi.org/10.1371/journal.pone.0203687.g002
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for the substantia nigra and dopaminergic neuron gene expression datasets. A full list of flux

predictions for the substantia nigra and its dopaminergic neurons is given in S4 Table. The gly-

colytic flux is predicted to be reduced by 10% on average during PD, while flux into the TCA

cycle decreases by 12% and 6% of pyruvate influx is used to produce lactate (Fig 2B). The

malate-aspartate shuttle carrying reducing equivalents into the mitochondria is reduced by

18%. In addition, flux in the pentose phosphate pathway increases and the glycerol phosphate

shuttle becomes slightly active. Total export of ATP from the mitochondria decreases by 20%

to 4.307 μmol g wet brain-1 min-1. In PD, on average, the GABA shunt is increased slightly

(about 10%), partially compensating for the measured reduction in alpha ketoglutarate dehy-

drogenase (AKGDH) expression, whose flux is reduced by 20%. It is striking that the modest

decrease in glucose uptake leads to an appreciably larger relative decrease in ATP production.

Flux changes in the frontal cortex, BA9, putamen and cerebellum during PD follow the

same pattern as in the SN although with slightly smaller changes (Fig 2C and S5 Table). The

change in fluxes in the globus pallidus internus is quite different from the substantia nigra and

all other regions. In the GPi, increased flux from the normal condition is predicted in most of

the pathways: glycolysis increased by 16%, lactate production is 9% of glycolytic flux, malate-

aspartate shuttle is 5% higher, TCA cycle and OxPhos are on average 5% higher (Fig 2D). An

increase in ATP production to 5.35 μmol g wet brain-1 min-1 through oxidative phosphoryla-

tion is predicted, utilizing 1.17 μmol g wet brain-1 min-1 of oxygen. In this case the AKGDH

flux is not reduced as in other brain regions, but slightly increased while the GABA shunt,

AKGDH’s potential bypass, is slightly reduced.

Permutation analysis showed that the change in metabolic fluxes predicted from gene

expression changes during Parkinson’s disease was highly significant in the metabolic network:

taken over all studies which showed substantial variation, all reaction rates were significantly

affected during Parkinson’s disease, except CO2 production and glutamine synthetase (S4

Table).

For the solution in the diseased brain obtained with the ‘Least-squares with equalities and

inequalities’ algorithm, we proved that the solution was unique in the following way: we sys-

tematically tested for each reaction whether a different solution with equally low cost function

existed if the flux in this reaction was forced to be slightly lower or higher than the original

solution. To this end we first added an upper bound for the reaction which was tested to the

Lsei problem, setting this to a value that was lower than the flux value in the original solution

by a very small number (0.00001 times the flux value, e.g. 1.93846 x 10−6 for a predicted flux

value of 0.193846), and then calculated the minimal sum of squares of these reaction fluxes

with this additional constraint. For the same reaction, we separately also added a lower bound

to the Lsei which was higher than the flux in the original solution by a very small number,

again testing whether an equally low sum of squares was found as in the original solution. In

this way we proved that in each reaction in all datasets, the minimal sum of squares is higher

than the original calculated sum of squares if any reaction flux is forced to be displaced from

the original solution by even a very small amount, thus proving that the solution is unique.

Discussion

Comparison of computational predictions and cerebral metabolic

measurements

To test the Lsei-FBA method to calculate changes in metabolism from changes in expression

of metabolic genes, we compare changes predicted with direct measurements that were possi-

ble in relatively large brain regions. Measurements of cerebral metabolism in PD by positron

emission tomography (PET) have recently been meta-analyzed [12,36]: in 11 out of the 14

Metabolic fluxes and Parkinson’s disease
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studies, 2–32% decreases in cerebral glucose consumption were reported, although in only

four of these cases the change was reported to be significant. In only two of the meta-analyzed

studies there was a very small (2–4%) and non-significant increase. From the gene expression

changes in cortical areas analyzed in the present study (GSE8397 and GSE20168; see S5 Table)

we predict a decrease in glucose consumption of about 11%, which is of the same order as the

8.5% average decrease seen in the meta-analysis of the PET measurements.

In the meta-analysis, the decrease in oxygen consumption in three PD study groups mea-

sured by PET ranged from 6–34% (average 19% decrease). From the gene expression changes

in the two cortical areas (S5 Table), we computationally predict a decrease of 17.5 and 22% in

oxygen consumption. Our predictions for changes in glucose and oxygen consumption for the

cortical areas agree with direction and size of change in the PET measurements in PD patients.

Our computational predictions are compatible with the conclusion from the meta-analysis of

PET measurements that in PD there is cortical hypometabolism [12,36]. A summary of the

comparison of our prediction based on the Lsei-FBA algorithm and experimental observation

is given in Table 1. Given the correspondence between flux changes predicted by the Lsei-FBA

algorithm and experimental results compiled in Table 1, it appears that the direction and

order of magnitude of flux changes during Parkinson’s disease is predicted correctly by the

algorithm. Thus, the hypothesis underlying the Lsei-FBA algorithm appears to give useful

results, at least for some biochemical pathways. The results suggest that the predictions are not

fully accurate, but direction and order of magnitude of the predictions correspond with mea-

surements. Both algorithm predictions and experimental suggest that changes in metabolism

during Alzheimer disease [3] are much larger than during Parkinson’s disease (present study).

Flux predictions for pathways not given in Table 1 have not yet been corroborated, but are

reported as potential changes in metabolism that may be of interest and merit further

investigation.

The spatial resolution of PET measurements is characterized by a Full Width at Half Maxi-

mum of at least 5 mm, which in practice is often even considerably larger [12]. In contrast,

gene expression measurements were even feasible for laser-excised cells which made computa-

tional predictions specifically for dopaminergic neurons possible. Further, in addition to glu-

cose and oxygen uptake, our computational method describes the metabolic pattern in the

entire network and therefore potentially has a high ‘biochemical resolution’ while with PET

uptakes of single metabolites are measured. The computational predictions by the present

algorithm are for instance (1) that the relative decrease in ATP synthesis is larger than the

decrease in glucose uptake, (2) that the flux in the middle of the TCA cycle is more reduced

than at the entry point of acetyl CoA, (3) limited metabolic rerouting around downregulated

Table 1. Comparison between the predictions of the Lsei-FBA algorithm based on gene expression changes and experimental observations.

Quantity Prediction by algorithm Experimental observation References

Glucose uptake in cortex 11% decrease during PD 8.5% decrease

(range 2 to 32%)

Meta-analysis

[12,36]

Oxygen uptake in cortex 17.5 and 22% decrease in two cortical areas 19% decrease

(range 6–34% )

Meta-analysis

[12,36]

Lactate levels 2 ½ fold increase in lactate production Increased lactate concentration measured by NMR spectroscopy [13,37]

NADPH production in pentose

phosphate pathway

1 1/3 fold increase in NADPH production In vitro assay: ~1.4 fold increase in NADPH production [38]

α-ketoglutarate dehydrogenase Decreased flux: e.g. in cerebellum by 23% Decreased enzyme activity (by 50% in cerebellum) and

immunohistochemical reduction in substantia nigra

[39,40]

Activity brain region Globus pallidus internus: increased metabolic

activity, in contrast to other regions

Globus pallidus internus: increased neuronal firing rates [41]

https://doi.org/10.1371/journal.pone.0203687.t001
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enzymes, (4) shifts in redox shuttles and (5) emergence of lactate production in at least part of

the study groups. The last prediction is in agreement with NMR measurements (see below).

Predicted metabolic fluxes during Parkinson’s disease

ATP synthesis is driven by protons which are pumped by the ETC complexes from mitochon-

drial matrix to cytosol and flow back through ATP synthase. In our network model, protons in

the mitochondrial matrix are balanced. Our computational analysis predicts that the proton

fluxes through all ETC complexes and ATP synthase in the SNc during PD are reduced by the

same proportion (average 18%) relative to the healthy brain. As a result, the predicted uptake

of oxygen in the brain and the ratio of oxygen to glucose uptake are reduced.

Our computational analysis predicts that the reduced pyruvate flux into the mitochondria

is associated with production of lactate, accounting for about 10% of pyruvate in the GPi

region and for about 6% in the substantia nigra and other brain regions. Increase in cerebral

lactate in PD has indeed been measured using magnetic resonance spectroscopy in various

parts of the brain [13,37] (Table 1).

The pentose phosphate pathway (PPP) is an important branch of glucose metabolism that

supplies NADPH, an important cofactor for antioxidant defense of brain cells by glutathione

(GSH) redox cycling. PPP flux in the brain of traumatic brain injury (TBI) patients increases

by 19.6% relative to glucose uptake [30]. Dunn et al. [38] suggested disruption in glucose

metabolism through PPP dysregulation as an important mechanism in the pathogenesis of

Parkinson’s disease. However, they reported somewhat increased NADPH production by the

PPP, assayed in vitro in brain homogenates of moderate to severe Parkinson disease patients,

in agreement with the prediction (Fig 2) for in vivo metabolism by the present model [38]

(Table 1).

Rerouting of pathways

In the GABA shunt pathway, the flux of alpha-ketoglutarate to succinate in the TCA cycle via

alpha-ketoglutarate dehydrogenase (AKGDm) and succinate-CoA ligase (SUCOAS1m) is

rerouted through decarboxylation of glutamate to GABA via glutamate decarboxylase

(GLUDC) in the cytosol, and subsequently to succinate via GABA transaminase (ABTArm)

and succinate semialdehyde dehydrogenase (SSALxm) in the mitochondria (S1 Fig). The

GABA shunt is active in GABAergic neurons [42], providing a mechanism for synthesis of

GABA which is an inhibitory neurotransmitter. The GABA shunt in general accounts for less

than half of the total TCA cycle flux in GABAergic neurons [42,43]. GABAergic neurons

account for about 18% of total neuronal glucose oxidation [31]. The GABA shunt flux is pres-

ent in glutamatergic and cholinergic neurons, although it is small there [44].

In PD, a marked reduction in alpha-ketoglutarate dehydrogenase (AKGDm) complex by

immunostaining has been reported in the substantia nigra of PD patients [39]. Gene expres-

sion data associated with AKGDm also show downregulation in PD patients (S2 Fig). Consis-

tent with this reduced activity, the computational analysis also predicts lower flux through

AKGDm. This reduction can in principle be compensated by rerouting of alpha-ketoglutarate

through the GABA shunt. For Alzheimer’s disease (AD), Lewis et al. [44] applied a metabolic

model and inferred that the about 50% reduced AKGDm activity measured for AD is compen-

sated by increases in GABA shunt flux (Table 1). We confirmed this prediction based on the

Lsei-FBA analysis of gene expression changes in an AD data set [3]. However, in the present

study the upregulation of flux in the GABA shunt pathway during PD was predicted to be

much smaller than for AD.
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Flux in globus pallidus internus is increased

The present flux analysis predicted total cellular ATP production in the GPi region of the

brain to be higher during PD, accompanied by increased fluxes in all pathways (Fig 2D). This

may be associated with the role of GPi in the neural circuits that regulate human movement.

In PD, loss of dopaminergic neurons in the striatum causes hyperactivation of the subthalamic

nucleus (STN) and GPi, leading to increased neuronal firing rates in the GPi [41] and dis-

turbed regulation of motor neurons [45,46]. This theory has been the basis of deep brain stim-

ulation (DBS) treatment in PD patients targeting the GPi and STN region [45]. This explains

the correspondence between increased in GPi activity and decrease activity in the SNc and

putamen. There is a striking correspondence between the direction of the change in predicted

metabolic activity and the reported connectivity of these brain regions. A remarkable detail is

that in spite of increased oxygen uptake, lactate efflux in the GPi is predicted to be increased.

Limitations and prospects of the study

By computational analysis we predicted changes in metabolic fluxes in small regions in the

brain, such as the substantia nigra. In relatively large cortical regions the metabolic rates for

glucose and oxygen were measured with PET, agreeing with our computational predictions.

Metabolic changes in small regions such as the substantia nigra, and in particular in dopami-

nergic neurons in this region, could not a priori be assumed to be the same as changes deter-

mined in larger regions which are accessible to experimental flux measurements with low

spatial resolution. However, the present computational analysis predicts changes in the SN

that are similar to other brain regions. Also the results for laser-captured dopaminergic neu-

rons are similar to the whole SN and most other brain regions. In contrast, one particular

brain region, the GPi, shows different metabolic changes than other brain regions, including

the SN which usually is most prominently affected by PD. Our computational prediction

therefore suggests that during PD, metabolism is decreased similarly in most brain regions.

However, the GPi represents a small region where metabolism is increased in parallel with

increased neuronal activity.

The gene expression measurements used for predictions in flux changes in the diseased

brain in this study are taken from tissue samples from various part of the brain including the

substantia nigra, BA9, cerebellum, putamen, frontal cortex, globus pallidus internus as well as

from blood and lymphoblastoid, and we could see hints of connectivity between brain regions

as discussed above. Connectivity between regions could in principle be investigated further,

however this may require gene expression measurements and prediction of metabolism in the

regions under a variety of conditions which may not be practical given the invasive nature of

the experimental protocols. Non-invasive imaging methods enabling repeated measurements

in the same subject are therefore better suited for studying connectivity between brain regions.

However, the present methodology is useful in predicting metabolism in many biochemical

reactions in brain regions of patients in comparison with healthy controls.

The predicted changes in metabolism are averages for the region sampled based on gene

expression changes measured for the sample as a whole. There are several distinct cell types

inside these regions. The disease may have progressed much more in some of the cells than in

others, and damage may even be heterogeneous for cells of the same type. The changes in met-

abolic fluxes may therefore be larger in a subset of the cells than in the tissue as a whole.

Because neurons and glia are lumped in the most of the mRNA expression measurements, we

also used a model which lumps metabolism of neurons and glia. Models of brain metabolism

with separate compartments for neurons and glial cells exist [44,47], but have no added value

in this case because the available gene expression measurements reflect a weighted average of
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cell types. For the present analysis a lumped model was therefore used with biochemical reac-

tions not compartmentalized in distinct cell types. The use of a metabolic model with one com-

partment for tissues which actually contain several cell types means that limitation of

metabolism by exchange processes between the cells is assumed to be negligible. The corre-

spondence found between metabolic rate measurements and computational predictions for

cortical regions, see above, is compatible with this assumption.

The Lsei approach can be used to compare patients with different disease states to assess

how different brain regions change specifically and how sensitive different brain regions are to

disease states. However, in the present study on PD, datasets were not available with sufficient

specification and differentiation of the disease states. We are presently analysing this method

for Alzheimer’s disease datasets, which include expression data in incipient, moderate and

severe stage where the expression changes are clearly larger in severe cases. Predicted flux

changes in severe cases tend to be larger especially in the fluxes in the glycolytic pathway, ATP

synthesis and oxygen uptake. The sensitivity can be affected by the specific region where the

gene expression measurement is taken from. For example, changes in excised neurons (dopa-

minergic neurons) may be higher than in the whole tissue.

Among the SN expression datasets included in the study by Zheng et al. [11], the dataset

from Cantuti-Castelvetri et al. [23] (GEO accession GSE24378) differs from the rest by display-

ing overexpression during Parkinson’s disease in most of the genes in the metabolic pathways.

As suggested by [11], this may be caused by the use of the non-standard X3P microarray chip,

which differs from the rest of the platforms used. For this reason this data set was not included

in the final analysis of the present study. Our analysis on the GSE24378 data set indeed pre-

dicted that most metabolic fluxes are upregulated (see S4 Table), which differs from the results

for all other SN data sets.

The present prediction is based on gene expression changes. Regulation of translation of

mRNAs in proteins and breakdown and posttranslational modification and allosteric regulation

of enzymes in the metabolic network may modify the relation between mRNA expression and

flux. The relation between changes in gene expression and metabolic fluxes was investigated for

glycolysis in yeast [1]. Only a fraction of the enzymes involved in yeast glycolysis showed clear

changes in gene expression in the same direction as the change in flux carried by that particular

enzyme. This is confirmed by a recent study in yeast, which showed that enzyme protein levels

explained only a relatively modest part, about a quarter, of variation in flux through the reaction

which they catalyzed [48]. However, the Lsei-FBA algorithm assumption applies to the whole

network level. In our study, the changes in gene expression in metabolic pathways in PD (S2

Fig) appeared to be more consistent and uniform than in the studies on yeast glycolysis. This

may explain why the computational predictions based on gene expression changes in the pres-

ent study agree with the changes in metabolic rate measured by PET (see above).

A recent approach presents flux prediction based on absolute gene expression data on a

large scale yeast network [28]. The latter method is able to meaningfully predict flux compared

to exo-metabolome measurements. The approach by Lee et al. [28] in yeast and our present

approach have a common assumption that metabolic fluxes tend to be related to gene expres-

sion without assuming a rigid relation at the level of each individual reaction. Both studies sug-

gest that it is useful to take the metabolic network connectivity into account to estimate an

overall effect of gene expression on the metabolic flux.

Several other algorithms exist to predict metabolic fluxes from gene expression data. These

algorithms, such as iMAT [4], GIMME [49] , GX-FBA [50], E-Flux [51], Lee-12 [28],

RELATCH [52] have recently been extensively reviewed and benchmarked on yeast and E.

coli data [2]. In the original publication on Lsei-FBA, the algorithms tested by Machado were

tested on gene expression data for brain tissue [3] and appeared to perform better for this
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application than the algorithms benchmarked by Machado et al. [2]. The characteristics of

Lsei-FBA in comparison with these other algorithms have already been extensively discussed

by Gavai et al. [3].

Our approach has a limitation which is specific to brain tissue: a fraction of the enzymes

which are formed from the measured messenger RNAs are transported over relatively long dis-

tances to catalyze metabolism in axonal terminals. Many dopaminergic neurons in the SNc

receive for instance input via GABAergic synapses from relatively distant GABAergic neuronal

cell bodies [53]. The predicted metabolic changes therefore apply to the cells whose gene

expression levels are measured, which includes distant nerve terminals of those cells, but does

not apply to metabolic changes in nerve terminals from distant neuronal cell bodies that

extend into the region where mRNAs are sampled. This means that metabolic changes pre-

dicted from gene expression changes on the one hand, and directly measured in the same

region on the other hand, may diverge to a certain extent.

The comparison of flux changes predicted by the Lsei-FBA algorithm and experimental

data (see Table 1) suggests the usefulness of the hypothesis of parallel changes in fluxes in bio-

chemical pathways and gene expression when evaluated at the level of a whole metabolic net-

work. This is perhaps surprising given that the flux-gene expression relation at the level of

individual enzymes and biochemical reactions is relatively weak. Nevertheless, the fact that the

predictions work, at least for some biochemical pathways, suggests that gene expression levels

are meaningfully related to metabolic system function, even during pathological processes,

and underscores the often used assumption that gene expression levels can be used as indicator

of changes in biological pathway activity.

Presently, perhaps the most important limitation for the application of the Lsei-FBA algo-

rithm is the limited possibility to compare its predictions with direct metabolic measurements

in patients and controls in vivo. Comparison with measured oxygen and glucose uptake, lac-

tate levels, NADPH production in the PPP and with physiological activity in the GPi region

was feasible (Table 1), but other predictions of the algorithm await confirmation by measure-

ments. The other side of the coin is that the model predictions allow insight into potential

changes in intracellular metabolism that presently escape measurement capabilities.

Conclusions

This paper describes application of a recent method to predict changes in metabolic fluxes

based on changes in gene expression in patient material. The hypothesis underlying the Lsei-

FBA algorithm. that fluxes in biochemical pathways change in parallel to gene expression if ana-

lyzed at the metabolic network level, appears to give useful predictions, at least for some bio-

chemical pathways. From gene expression changes during Parkinson’s disease, metabolic fluxes

through central carbon metabolism are predicted to be reduced in the substantia nigra and

other brain regions including frontal cortex, cerebellum and putamen. A striking result is that

the predicted relative changes in ATP synthesis are larger than the changes in glucose uptake.

We also predicted increase of lactate production and shifts in redox shuttles. Reduced metabo-

lism via alpha ketoglutarate dehydrogenase in the middle of the TCA cycle is less compensated

via the GABA shunt than is the case in Alzheimer’s disease. In contrast to the decreases in

metabolism in substantia nigra and most other brain regions, the globus pallidus internus part

of the brain is predicted to show increased metabolic flux compared to normal controls.
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