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Abstract 

Advanced hepatocellular carcinoma still represents an unmet medical need that has only a 
limited overall survival despite the introduction of the multi-kinase inhibitor sorafenib. Re-
cently, inhibitors of histone and other protein deacetylases have been established as novel 
therapeutic approaches to cancer diseases. We here review the molecular rationale for 
combining these two novel targeted therapies and report a patient with metastasized 
hepatocellular carcinoma who showed a partial remission of primary and metastatic lesions 
for five months after a combination therapy with sorafenib and the orally available 
pan-deacetylase inhibitor panobinostat. 
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Introduction 

Hepatocellular carcinoma (HCC) is the most 
common primary tumor of the liver and represents 
the 2nd and 5th most common cause of cancer related 
death in men and women, respectively, 
worldwide[1-2]. HCC also shows rising incidence and 
mortality rates in Western countries due to the high 
prevalence of chronic viral hepatitis, alcoholic liver 
diseases and steatoheaptitis[3-5].  

Although several molecular alterations have 
been identified in HCC[2, 6], so far only the mul-
ti-kinase inhibitor sorafenib proved a significant 
treatment advantage in liver cancer[7], while other 
targeted therapies like small molecule receptor tyro-

sine kinase inhibitors or monoclonal anti-growth fac-
tor (receptor) antibodies failed[8]. As sorafenib therapy 
is associated with high treatment costs[9] and still un-
satisfying overall response rates[8], novel further 
treatment approaches are urgently needed.  

Inhibitors of histone deacetylases (HDAC) have 
been established as potent novel anticancer therapies 
in hematologic and solid tumors[10-12]. We have shown 
previously that expression of HDAC isoenzymes is 
associated with overall survival in HCC patients[13] 
and that various HDAC inhibitors can induce cell 
death and synergize with chemotherapeutics in HCC 
models[14-16]. Panobinostat (LBH589) is a novel oral 
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pan-deacetylase inhibitor that has shown strong 
pro-apoptotic and anti-proliferative effects in HCC 
cell lines and a xenograft model[17] and is currently 
under investigation for various tumor entities[18-19]. 

Classically, deacetylase inhibitors (DACi) are 
considered to modulate the transcriptional control 
(Figure 1) of various genes by interfering with HDAC 
isoforms in the nucleus and thus control chromatin 
packing and conformation, leading to either an 
“opened” and transcriptionally active or “closed” and 
transcriptionally suppressed DNA structure[10]. Here, 
a strong role for the p53-dependent regulation of the 
endogenous cell cycle inhibitor p21cip1/waf1 has been 
described for various DACi like panobinostat, vori-
nostat and others[20]. Recently, experimental data 
suggests that also regulatory miRNAs are strongly 
influenced by DACi and that this contributes signifi-
cantly to the observed changes in gene 
expression[21-23]. Our own preclinical data also indicate 
that pan-DACi like panobinostat also influence the 

acetylation status of a variety of cytosolic and 
non-histone proteins[24], although the acetylome is still 
not well defined[25]. This could affect the protein 
folding and function of several so far unidentified 
proteins leading to the activation of the unfolded 
protein response, ER stress-mediated apoptosis and 
autophagy as alternative mechanisms of cell death 
execution[17, 26-27]. The influence of pan-DACi on cel-
lular protein stability and function has also been 
demonstrated to be involved in the known an-
ti-angiogenic effects of panobinostat, e.g. by destabi-

lizing the hypoxia sensor Hif-1[28] and we have 
shown previously in a xenograft mouse model that 
panobinostat leads to a significan reduction in tumor 
vascularization[17]. DACi can further influence signal 
transduction pathways related to angiogenesis by 
modulating the expression of growth factors like 
VEGF[29] or of downstream kinases like mitogen acti-
vated protein kinases (MAPK) [17, 30-31]. 

 

 

Figure 1. Molecular pathways affected by panobinostat and sorafenib. Besides the classical effects of HDACi on transcriptional regulators 

(e.g. p53, miRNAs, HDAC) and the regulation of p21cip1/waf1 expression, panobinostat is also capable to induce canonical (death-receptor 

and mitochondria related) and alternative cell death pathways (e.g. ER stress, unfolded protein response and autophagy). Although the 

effects of deacetylase inhibitors on protein folding and function are not completely understood, the inhibition of non-nuclear HDAC 

enzymes influences protein stability and enzymatic activity of various cellular proteins, including the destabilization of the hypoxia sensor 

Hif-1 and the function of different protein kinases. In addition, the expression of these proteins can also be affected via the shown 
influence on transcriptional control processes. The multi-kinase inhibitor sorafenib is predominantly inhibiting the RAS-RAF-MAPK 

pathway and thus inhibits processes related to angiogenesis, proliferation and survival. Together, both compounds synergize at the level 

of protein kinases and their downstream effectors leading to inhibition of tumor growth. 
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Signaling via protein kinase cascades is a hall-
mark of tumor cell proliferation, survival and cancer 
related angiogenesis. Monoclonal antibodies against 
pro-angiogenic growth factor receptors (e.g. bevaci-
zumab) as well as small molecule kinase inhibitors 
(e.g. everolimus, sorafenib) targeting downstream 
signal transduction molecules have recently been in-
troduced into treatment regimes for various advanced 
solid tumors. Sorafenib has been approved for the 
treatment of advanced stages of HCC and inhibits the 
RAF-Erk-MAPK signaling in tumor cells as well as in 
endothelial cells, thus exerting a dual effect on cell 
viability, proliferation and angiogenesis[32-33]. Inhibi-
tion of survival pathways by sorafenib has now been 
shown to lead to cell death via autophagy induction, 
too, and several studies also showed a synergism 
when combined with DACi[34-37]. Recently, the com-
bination of panobinostat and sorafenib has been 
shown to exert additive anti-proliferative and 
pro-apoptotic effects in HCC cell culture and xeno-
graft models[38]. The following model of action for this 
combination is suggested (Figure 1): DACi and kinase 
inhibitors synergize at the level of protein kinases, 
modulating these central tumorigenic pathways. In-
hibition of DAC modulates protein kinase expression 
and activity and shifts the cellular microenvironment 
towards cell death induction which is then addition-
ally hit by the kinase inhibition. 

We therefore initiated a trial with the standard 
dose of sorafenib (800 mg daily) and a dose-escalation 
of panobinostat starting at 20 mg on day 1 and day 4 
for 2 weeks and sorafenib alone in week 3. This cycle 
was repeated until disease progression or withdrawal 
of informed consent. The trial was approved by the 
local ethics committee of the University Hospital Er-
langen, Germany, and is registered at clinicaltri-
als.gov (NCT00823290). 

We here report a case of advanced metastatic 
HCC treated with the standard dose of sorafenib and 
the oral pan-deacetylase inhibitor panobinostat, 
which could provide a novel treatment option for 
advanced HCC. 

Case Report 

A 68-year old man was diagnosed with ad-
vanced multilocular HCC on the basis of ethyltoxic 
liver cirrhosis (Child-Pugh A) in September 2009. At 
the time of diagnosis, a moderately differentiated 
metastasis to the thyroid gland and several metastases 
to the autochthonic spine musculature and the verte-
bral bodies with stenoses of the spinal canal (L I) and 
the neuroforamina (Th XII to L I) were present (Figure 
2).  

 

Figure 2. Baseline radiologic assessment of the patient in Sep-

tember 2009 before initiation of sorafenib therapy. A: sonography 

showing a 10 cm lesion in the liver. B: Magnetic resonance imaging 

(MRI) of the liver revealing a large lesion in the right liver lobe and 

several diffuse smaller nodules in the total liver. C: MRI scan of the 

soft tissue metastasis in the autochthonic spine musculature. 

 
Therapy with sorafenib at 800 mg per day was 

started in September 2009 and showed a mixed re-
sponse in MRI scan 6 weeks after treatment start with 
partly necrotic or decreased lesions but also increas-
ing and novel lesions in the liver and stable soft tissue 
and bone metastases. Sonography revealed a large 
lesion (11 cm) in the right liver lobe which was more 
than 75% necrotic but also 8 additional lesions up to 5 
cm (Figure 3). 
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Figure 3. Staging after sorafenib monotherapy and before initia-

tion of additional panobinostat treatment. A: Contrast enhanced 

(left) and native sonography (right) showing necrosis (> 75%) in 

the largest lesion. B: MRI scan of the liver showing a mixed radi-

ologic response compared to baseline. C: MRI scan of the soft 

tissue metastasis. 

 
After obtaining informed consent, therapy with 

panobinostat was started in November 2009: soraf-
enib was continued at 800 mg daily and panobinostat 
at 20 mg was administered orally on days 1 and 4 for 
two consecutive weeks followed by one week of so-
rafenib therapy alone, representing a three week 
therapy cycle which was repeated 5 times.  

Staging was performed after three cycles in Jan-
uary 2010 (Figure 4). Here, contrast enhanced sonog-

raphy showed constant lesions in liver segments V, VI 
and VII (94*80*75 mm) as well as in segment II (29*32 
mm) with signs of cirrhosis but no ascites. MRI scan-
ning showed slightly decreasing hemorrhagic lesions 
with signs of liquid transformation in both liver lobes 
and of the soft tissue metastasis in the autochthonic 
spine musculature. No new lesions were discovered. 
The patient reported diarrhea, exsiccosis, hy-
pocalcaemia and nausea during the last cycle that 
responded to supportive treatment. 

 
 

 

Figure 4. Staging after 8 weeks of sorafenib and panobinostat 

combination therapy. A: Contrast enhanced (left) and native 

sonography (right). B: MRI scan of the liver. C: MRI scan of the soft 

tissue metastasis. 



 Journal of Cancer 2012, 3 

 

http://www.jcancer.org 

162 

After eight cycles of sorafenib and panobinostat, 
MRI staging in April 2010 showed a further regression 
of the lesions in the liver and the spine musculature. 
Contrast sonography showed a necrotic lesion in 
segment VI and a hypervascularized but still constant 
lesion on segment VIII. 

By request of the patient the therapy with pano-
binostat was stopped in May 2010 as the patient ex-
perienced lack of appetite and slight weight loss (3 kg 
since February 2010), which was perceived as in-
creasingly wearing by the patient and lead to with-
drawal of consent. Sorafenib was further continued at 
the standard dose. 

Although transaminases and -GT were initially 

elevated (maximum GOT 130 U/l, GPT 178 U/l, -GT 
167 U/l), these parameters rapidly normalized under 
sorafenib therapy and stayed in the normal range 
until the end of treatment with panobinostat (Figure 
5A). Albumin and prothrombin time as markers of 

liver synthesis capacity were slightly decreased 
throughout the treatment period without signs of 
clinical symptoms. Interestingly, the initially elevated 

tumor marker -fetoprotein (AFP) returned to normal 
values already under sorafenib therapy despite a lack 
of radiologic response at this stage (Figure 5B). AFP 
levels remained below 10 ng/ml until the end of the 
panobinostat treatment period, too, but raised to 36.6 
ng/ml at the end of the observation period. This in-
crease in AFP was also paralleled by an increase in 

transaminases and -GT at this stage indicating a de-
terioration of liver function and progress of the tumor 
disease under sorafenib monotherapy. Hematologic 
assessment revealed leucopenia, low hemoglobin, 
erythrocytes and hematocrit under initial sorafenib 
therapy. These values remained stable also under 
additional panobinostat therapy with even an ame-
lioration of leucopenia to normal range after three 
cycles. Differential blood count showed a stably 

lymphopenia and monocytosis during 
the whole treatment period. All other 
laboratory parameters remained in the 
normal range throughout the study 
period. 

 
 
 

Figure 5. Time course of transaminases and 

AFP under sorafenib and panobinostat treat-

ment. (A) Serum levels of GOT, GPT and -GT 

remained in the normal range under panobino-

stat (< 50 U/l for GOT and GPT, < 60 U/l for 

-GT) but rapidly increased again after cessation 
of panobinostat intake. (B) The tumor marker 

-fetoprotein (AFP) decreased under the com-

bination therapy with sorafenib and panobinostat 

but rised again under sorafenib monotherapy 

(normal level < 10 ng/ml). Panobinostat treat-

ment period is indicated in the figure. 
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Discussion 

We here report the first case of a combination 
therapy of the multikinase inhibitor sorafenib with the 
oral pan-deacetylase inhibitor panobinostat in a pa-
tient with advanced metastasized hepatocellular car-
cinoma.  

Sorafenib has been established as the first-line 
therapy for advanced HCC[7]. Yet, the overall re-
sponse rate still remains unsatisfying with only 
around 3%[8]. Typically, sorafenib induces a stable 
disease in the majority of patients. Our patient ini-
tially showed a mixed response to sorafenib as a sin-
gle agent with some lesions showing a radiologic re-
sponse while other lesions increased in size or even 
appeared anew. The add-on therapy with 20 mg of the 
pan-deacetylase panobinostat further ameliorated the 
clinical situation. Besides beneficial effects on tumor 
burden, no additional hematologic or serologic toxici-
ties were observed, indicating a good tolerability of 
the combination therapy in patients with advanced 
HCC but early stage cirrhosis (Child-Pugh A). The 

serologic assessment of transaminases, -GT and AFP 
showed a quick and significant response of the patient 
to both, the initial sorafenib treatment and the addi-
tion of panobinostat, and thus confirmed the current 
concept of AFP as a predictive biomarker for HCC[39]. 
Our findings also confirm the pivotal role of selecting 
adequate imaging techniques for assessing treatment 
response[40]. 

Several preclinical studies report additive effects 
between multikinase inhibitors and inhibitors of his-
tone and other protein deacetylases. Our own data 
with panobinostat in HCC cell lines and a xenograft 
model show an inhibition of proliferation pathways 
via upregulation of the endogenous cell cycle inhibi-
tor p21cip1/waf1, a classical target of HDAC 
inhibitors[20], but independent of growth factor related 
kinases[17]. Yet, panobinostat was also capable of in-
hibiting MAPK signaling under these experimental 
conditions. Interestingly, MAPK is also the final 
downstream target of receptor tyrosine kinases and 
the Ras-Raf signaling pathway, which is the main 
target of sorafenib[41]. The dual blockade of cell cycle 
progression could thus represent a molecular basis for 
the observed potent effects of the combination thera-
py. 

The synergism between sorafenib and histone 
deacetylase inhibitors has been proposed to be also 
mediated by the activation of CD95-mediated extrin-
sic apoptotic pathways[35, 42-43]. Additionally, pano-
binostat is also capable of inducing cell death in liver 
cancer models by activating alternative pathways of 
apoptosis induction, e.g. via activation of ER stress 

and autophagy mechanisms[17, 24]. Interestingly, also 
sorafenib has recently been demonstrated to activate 
autophagy and ER stress mechanisms in various set-
tings[36-37, 44]. Several papers now reported a synergism 
in inducing these alternative cell death mechanisms 
by a combination of sorafenib and histone deacetylase 
inhibitors[34-35, 43].  

These preclinical findings and experimental 
models provide a clear rationale for the good clinical 
tolerability and efficacy of the combination of soraf-
enib and panobinostat: both compounds lead to cell 
cycle arrest and proliferation inhibition via two in-
dependent pathways and both compounds can induce 
cell death by interacting with classical apoptosis sig-
naling as well as alternative forms of cell death like 
autophagy. Additional effects of deacetylase inhibi-
tors like inhibition of angiogenesis[17, 31] can further 
contribute to these additive effects here. Yet, these 
models need to be further investigated, esp. in clinical 
settings. Recently, the oral HDAC inhibitor resmino-
stat also showed a favourable pharmacokinetic and 
safety profile in a phase I/II trial in patients with ad-
vanced and sorafenib-resistant HCC[45]. 

In summary, this case report demonstrates a 
good tolerability and efficacy of a combination ther-
apy of sorafenib and panobinostat in a patient with 
HCC that needs to be evaluated further in additional 
clinical trials, also to identify the discussed molecular 
pathways of this treatment option. 
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