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Induction of lordosis as typical female sexual behavior in rodents is dependent on a
mount stimulus from males and blood levels of estrogen. Periaqueductal gray (PAG)
efferent neurons have been suggested to be important for lordosis behavior; however,
the neurochemical basis remains to be understood. In this study, we neuroanatomically
examined (1) whether PAG neurons activated by mating stimulus project to the medullary
reticular formation (MRF), which is also a required area for lordosis; and (2) whether
these neurons are glutamatergic. Mating stimulus significantly increased the number
of cFos-immunoreactive (ir) neurons in the PAG, particularly in its lateral region. Half of
cFos-ir neurons in the lateral PAG were positive for a retrograde tracer (FluoroGold; FG)
injected into the MRF. cFos-ir neurons also colocalized with mRNA of vesicular glutamate
transporter 2 (vGLUT2), a molecular marker for glutamatergic neurons. Using retrograde
tracing and in situ hybridization in conjunction with fluorescent microscopy, we also found
FG and vGLUT2 mRNA double-positive neurons in the lateral PAG. These results suggest
that glutamatergic neurons in the lateral PAG project to the MRF and are involved in
lordosis behavior in female rats.
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INTRODUCTION
Lordosis is a typical sexual behavior of a female rodent and is
induced by a male mount stimulus under proestrus levels of
estrogen. The mount stimulus passes through the anterolateral
column of the spinal cord and then inputs into the medullary
reticular formation (MRF) and periaqueductal gray (PAG) (Pfaff,
1980). Daniels et al. demonstrated an efferent pathway for lordo-
sis behavior using a pseudorabies virus (PRV) as a transneuronal
retrograde tracer (Daniels et al., 1999). When PRV was injected
into the lumbar epaxial muscles, which produce a lordosis pos-
ture in female rats, the PRV was sequentially labeled in the MRF,
PAG, and ventromedial nucleus of the hypothalamus (VMH).
The VMH is the main site of action of estrogen for inducing lor-
dosis (Rubin and Barfield, 1983) and estrogen receptor-expressing
neurons in this nucleus project to the PAG (Calizo and Flanagan-
Cato, 2003). Thus, the PAG and MRF are important relay areas
that reflexively change a male mount stimulus into an output for
lordosis posture (Pfaff, 1980).

Electrical stimulation of the PAG induces lordosis behav-
ior (Sakuma and Pfaff, 1979a). Conversely, lesions of the PAG
(Sakuma and Pfaff, 1979b) or local lesions in the caudal ventro-
lateral PAG (Lonstein and Stern, 1998) reduce lordosis in female
rats. Manual vaginocervical stimulation (VCS), which induces
lordosis, is increased cFos expression in the PAG (Pfaus et al.,
1996). Neural connections of the PAG to the MRF are involved in
induction of an electromyogram (EMG) response in muscles reg-
ulating lordosis in female rats (Robbins et al., 1990). These results
suggest that PAG efferent neurons activated by a mating stimulus

may be related to induction of lordosis, but the neurotransmitter
in PAG neurons projecting to the MRF remains to be understood.

Many reports have shown involvement of glutamate and
its receptor in lordosis. Intracerebroventricular (icv) adminis-
tration of N-methyl-D-aspartic-acid (NMDA), an agonist of
the glutamate NMDA receptor, facilitated lordosis in ovariec-
tomized (OVX) rats treated with low-dose estrogen (Gargiulo
and Donoso, 1995), and activation of lordosis induced by proges-
terone in estrogen-treated OVX rats was blocked by icv injection
of a NMDA antagonist (Gargiulo et al., 1992). A mRNA for vesic-
ular glutamate transporter 2 (vGLUT2), a molecular marker for
glutamatergic neurons (Ziegler et al., 2002, 2012), is expressed
in the lateral part of the PAG (Oka et al., 2008). Therefore, we
hypothesized that the lateral PAG neurons projecting to the MRF
are glutamatergic neurons and that these neurons are involved in
lordosis. To investigate this hypothesis, we used neuroanatomical
methods to examine (1) whether lateral PAG neurons activated
by a mating stimulus directly project to the MRF, and (2) whether
these neurons are glutamatergic in estrogen-treated OVX rats.

MATERIALS AND METHODS
ANIMALS AND TREATMENTS
Wistar female rats aged 8 weeks were purchased from Shimizu
Laboratory Supplies Co. (Kyoto, Japan) and housed under a 12-h
reverse light/dark cycle with free access to food and water. After
two consecutive estrus cycles, rats were bilaterally ovariectomized
and silastic tubing (1.5 mm i.d.; 3.0 mm o.d.; 25 mm length; Dow
Corning, Midland, MI) containing crystalline 17 β-estradiol (E2,
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Nachalai, Osaka, Japan) was implanted subcutaneously under
anesthesia with 2–3% isoflurane. We confirmed that the E2 treat-
ment caused hypertrophy of the uterus and induced a high
lordosis quotient (>90) against male mount behavior. All experi-
mental procedures were authorized by the Committee for Animal
Research, Kyoto Prefectural University of Medicine.

SEXUAL STIMULATION AND TISSUE PREPARATION
One week after OVX and E2 treatment, the rats were assigned
randomly to a sexual stimulus condition. Some female rats were
placed into a test arena (60 cm long × 30 cm wide × 30 cm
high) with a sexually vigorous male (age > 12 weeks) for 1 h for
mating stimulus at 17:00, and others were placed into the same
arena without a male to serve as non-mating stimulated con-
trols. Mating-stimulated female rats received >10 mating stimuli
within 15 min. At the conclusion of sexual stimulation, all animals
were anesthetized with pentobarbital (Somnopentyl; Kyouritsu
Seiyaku, Tokyo, Japan) and perfused with physiological saline
followed by 4% paraformaldehyde in 0.05 M PB. The brain was
immediately removed, postfixed with the same fixative overnight
at 4◦C, and then kept in 30% sucrose in 0.05 M PB at 4◦C. Serial
coronal sections (30 μm) containing the PAG were obtained using
a cryostat (CM 3050 S; Leica, Wetzlar, Germany).

cFos IMMUNOHISTOCHEMISTRY (IHC)
Every fourth section through the PAG (8 sections, from 7.0
to 8.2 mm posterior to the bregma in the brain atlas (Paxinos
and Watson, 2006)) from mating-stimulated (n = 5) and con-
trol (n = 5) rats was sequentially incubated with 0.3% H2O2

in PBS with 0.3% Triton X-100 for 30 min and 2% normal
goat serum (NGS) in PBS for 1 h at room temperature (RT).
Sections were then incubated with primary rabbit antiserum
against cFos (1:15,000; Ab-5, Calbiochem, Merck, Tokyo, Japan)
for 24 h at RT. Immunoreactive (ir) neurons were visualized
with a streptavidin-biotin kit (Nichirei, Tokyo, Japan), followed
by 3,3′-diaminobenzidine (DAB) with 2.5% nickel chloride, as
described our previous method (Takanami et al., 2010).

FLUOROGOLD (FG) INJECTION INTO THE MRF AND FG AND cFos
DOUBLE-IHC
Five days after OVX and E2 treatment, rats (n = 9) were stereo-
taxically implanted with a stainless-steel guide cannula (23-gage;
Plastics One, Roanoke, VA) in the MRF with the tip end at
11.4 mm posterior and 9.0 mm ventral to the bregma and 0.7
lateral to the midline, according to the brain atlas (Paxinos
and Watson, 2006). FluoroGold (FG; Invitrogen, Carlsbad, CA)
was dissolved in saline at 2% and unilaterally injected into the
MRF at a rate of 0.25 μl/min for 2 min using a microsyringe
pump through an internal cannula (26 gage). This procedure
was performed under anesthesia with pentobarbital (13 mg/ml
Somnopentyl, 0.15 ml/100 g body weight). Two days after FG
injection, some rats (n = 6) received sexual stimulation and
others (n = 3) were used as non-stimulated controls. Brains
were processed for FG and cFos double-IHC. After cFos-ir
was detected as described above, free-floating sections were
sequentially incubated with 0.3% H2O2 in PBS for 15 min, 2%
NGS in PBS for 1 h, and primary rabbit antiserum against

FG (1:20,000; Invitrogen) for 24 h at RT. FG-ir neurons were
visualized with a streptavidin-biotin kit, followed by DAB as a
chromogen.

vGLUT2 mRNA IN SITU HYBRIDIZATION (ISH) AND cFos IHC
To detect vGLUT2 mRNA, cDNA for vGLUT2 (734 bp) was
generated by RT-PCR from total RNA of rat hypothala-
mus. Primers were based on the sequence of rat vGLUT2
(accession number AF271235). The upstream and downstream
primers were 5′-CTT CTT GGT GCT TGC AGT GG and
5′-GGA CGA ATG GCC TGA ATG GA, respectively (Ziegler
et al., 2002). Non-radioactive free-floating ISH was performed
as described previously (Yamada et al., 2007, 2012). Briefly,
every fourth section containing the PAG (8 sections, n =
6) was acetylated and then hybridized with 2 mg/ml DIG-
labeled vGLUT2 antisense cRNA probes synthesized from cDNA
of vGLUT2 using a DIG-labeling kit (Boehringer Mannheim
GmbH, Mannheim, Germany) overnight at 55◦C. After elim-
ination of excess cRNA probes, the sections were incubated
with 1.5% blocking reagent (Boehringer Mannheim) and then
with an alkaline phosphatase (AP)-conjugated anti-DIG anti-
body (1:1000, Roche Diagnostics Corp., Indianapolis, IN)
for 2 h at 37◦C. vGLUT2-positive neurons were visualized
with a BCIP/NBT solution (1:50, Roche Diagnostics Corp.).
After vGLUT2 ISH, cFos IHC was performed as described
above.

FLUORESCENT vGLUT2 mRNA ISH AND FG IHC
Preparation of PAG sections (n = 3) after FG injection into
the MRF and the procedure until blocking with 1.5% block-
ing solution is described in the section on ISH for vGLUT2
mRNA. After blocking, the sections were incubated with a mix-
ture of sheep horseradish peroxidase-conjugated anti-DIG anti-
body (1:20, Roche Diagnostics Corp.) and rabbit anti-FG anti-
body (1:1000, Invitrogen) overnight at RT. Then the sections
were incubated for 30 min in biotin-conjugated tyramide (1:50
in amplification diluent, PerkinElmer, Waltham, MA). Following
several washings, the sections were incubated with a mixture
of Alexa 488-conjugated streptavidin and Alexa 546-conjugated
anti-rabbit IgG (1:500, Molecular Probes, Eugene, OR) for 2 h
at RT.

ANALYSIS AND STATISTICS
After staining, the sections were mounted on APS-coated glass
slides and covered with a glass micro-cover slip. Non-fluorescent
staining was observed under a light microscope (BX 50; Olympus)
and photographs of ipsilateral PAG were captured using a CCD
camera (DP 21; Olympus). A frame of size of 0.5 × 0.5 mm
(region of interest, ROI) was made in the captured lateral PAG
and the numbers of cFos-ir, FG-ir, vGLUT2 mRNA-positive,
FG-ir and cFos-ir, and vGLUT2 mRNA-positive and cFos-ir
neurons in the ROI were counted. Immunofluorescent stain-
ing was viewed and captured using a LSM510META confocal
laser-scanning microscope (Carl Zeiss, Jena, Germany). All values
are expressed as means ± SEM. The significance of a difference
between mating-stimulated and non-stimulated control rats was
evaluated by Student t-test.
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RESULTS
ACTIVATION OF LATERAL PAG NEURONS BY MATING STIMULUS
In non-mating stimulated control rats, which were placed in the
test arena without male rats, there were few cFos-ir neurons in the
PAG (Figure 1A). In contrast, in mating-stimulated rats, many
cFos-ir neurons were present in the rostral to caudal parts of
the PAG, particularly in the lateral area (Figure 1B). The number
of cFos-ir neurons in the lateral PAG in these rats was fourfold
greater than that in control rats (P < 0.05, Figure 1C).

PROJECTION OF MATING-STIMULATED cFos-EXPRESSING NEURONS
IN THE LATERAL PAG
To investigate whether cFos-expressing lateral PAG neurons
induced by a mating stimulus project to the MRF, FG was injected
into the MRF of female rats prior to mating stimulus. The
injection of FG extended through the reticular formation (RF),
including the MRF, and caudal pontine RF (PRF), with a longitu-
dinal distance from 11.28 to 12.48 mm posterior to the bregma in
the brain atlas (Paxinos and Watson, 2006) (Figure 2A). This area
included the gigantocellular reticular nucleus (Gi), the giganto-
cellular reticular nucleus ventral (GiV) and alpha (GiA) regions,
and the lateral paragigantocellular nucleus, in which neurons
found neuroanatomically (Daniels et al., 1999) and electrophys-
iologically (Sakuma and Pfaff, 1980) have been suggested to be
involved in lordosis. Many FG-ir neurons were distributed bilat-
erally with an ipsilateral dominance through the rostral to caudal
regions of the lateral PAG (Figure 2B). In non-stimulated rats,
there were a few cFos-ir and FG and cFos double-ir neurons in the
lateral PAG (Figure 2C). In contrast, many FG and cFos double-ir

FIGURE 1 | cFos expression in the lateral PAG in representative female

rats following (A) non-mating stimulus and (B) mating stimulus.

cFos-ir neurons are shown by black dots. (C) The mean number of cFos-ir
neurons in the lateral PAG in OVX+E2 rats after mating stimulus (solid bar)
was significantly higher than that in non-stimulated control rats (open bar)
(∗P < 0.05; Student t-test). Values are shown as means ± SEM. The
numbers in each column indicate the numbers of animals used. Scale bar,
100 μm.

neurons were found in the lateral PAG in mating-stimulated rats
(Figure 2D). The numbers of FG and cFos-ir, cFos-ir, and FG-
ir neurons in the ROI (0.5 × 0.5 mm) in the lateral PAG were
114.3 ± 7.9, 229.3 ± 19.7, and 644.5 ± 22.2, respectively. The
percentage of FG-ir neurons among total cFos-ir neurons was
50.4 ± 1.7% and that of cFos-ir neurons among total FG-ir
neurons was 17.9 ± 1.5% (Table 1). These numbers and percent-
ages were significantly higher (P < 0.05) in mating-stimulated
rats than in non-stimulated rats, except for FG-ir neurons
(Table 1).

NEUROCHEMICAL IDENTITY OF MATING-STIMULATED
cFos-EXPRESSING NEURONS IN THE LATERAL PAG
We performed double staining for vGLUT2 mRNA ISH and
cFos IHC to examine whether the mating stimulus-induced
cFos-expressing neurons in the lateral PAG are glutamatergic.
Many vGLUT2 mRNA-positive neurons were located in the lat-
eral PAG (Figures 3A,B). The distribution pattern of vGLUT2
mRNA-positive neurons was similar to that in a previous study
using another type of vGLUT2 cRNA probe (Oka et al., 2008).
Several vGLUT2 mRNA-positive neurons showed cFos-ir in

FIGURE 2 | (A) Coronal sections from the rat brain atlas of Paxinos and
Watson (2006), showing the position of the MRF and representative
photomicrographs showing the site of FG injection in the RF. (B)

Representative photomicrographs of the caudal part of the lateral PAG in rat
after injection of FG into the RF. High magnification of FG-ir (brown) and
cFos-ir (black) neurons in the caudal part of the lateral PAG in a
non-stimulated control rat (C) and a mating-stimulated rat (D). Arrows show
FG-ir neurons with cFos-ir in nuclei. Scale bar: 200 μm.
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Table 1 | Numbers and percentages of FG and cFos immunoreactive neurons in the lateral PAG in female rats after FG injection into the RF

with or without mating stimulus.

Number of neurons Percentages (%)

FG and cFos cFos FG FG/cFos cFos/FG

Non-stimulus 31.0 ± 3.0 71.7 ± 8.3 709.7 ± 41.0 43.5 ± 1.5 4.4 ± 1.5

Mating-stimulus 114.3 ± 7.9* 229.3 ± 19.7* 644.5 ± 22.2 50.4 ± 1.7* 17.9 ± 1.5*

*P < 0.05 compared with the non-stimulated rats.

FIGURE 3 | (A) Representative photomicrographs showing vGLUT2 mRNA
(purple) in situ hybridization and cFos (brown) immunohistochemistry in the
caudal part of the lateral PAG. (B) High magnification of the square in (A).
(C) Enlarged view of several neurons in the square in (B). Arrows show
vGLUT2 mRNA and Fos-ir neurons. Scale bar: 200 μm.

nuclei (Figure 3C). The number of vGLUT2 mRNA-positive and
cFos-ir neurons, cFos-ir neurons, and vGLUT2 mRNA-positive
neurons in the ROI (0.5 × 0.5 mm) in the lateral PAG were 74.8 ±
11.1, 131.0 ± 11.5, and 421.2 ± 31.0, respectively. The percentage
of vGLUT2 mRNA-positive neurons among total cFos-ir neurons
was 55.6 ± 3.9% and that of cFos-ir neurons among total vGLUT2
mRNA-positive neurons was 17.4 ± 1.6% (Table 2). There were
no hybridization signals in brain sections incubated with sense
probes for vGLUT2 (data not shown).

PROJECTION OF vGLUT2-POSITIVE NEURONS IN THE LATERAL PAG TO
THE MRF
We investigated whether MRF-projecting lateral PAG neurons
were positive for vGLUT2 mRNA using double fluorescence stain-
ing for vGLUT2 mRNA ISH and FG IHC with enhancement of
ISH signals by biotin-tyramide. Two out of 3 rats received a suc-
cessful FG injection into the RF. Among FG-ir neurons, 75% were
positive for vGLUT2 mRNA in the lateral PAG ipsilateral to the
injection site (Figure 4).

DISCUSSION
The results of the study show that (1) a mating stimulus activates
neurons in the lateral PAG, (2) 50% of lateral PAG neurons acti-
vated by the mating stimulus project to the RF, (3) 56% of these

Table 2 | Numbers and percentages of vGLUT2 mRNA-positive and

cFos immunoreactive neurons in the lateral PAG in female rats after

mating stimulus.

Number of neurons Percentages (%)

vGLUT2 and cFos vGLUT2 vGLUT2/ cFos/

cFos cFos vGLUT2

74.8 ± 11.1 131.0 ± 11.5 421.2 ± 31.0 55.6 ± 3.9 17.4 ± 1.6

N = 6; 8 sections in each rats.

FIGURE 4 | Confocal microscope images showing vGLUT2

mRNA-positive (green) and FG-ir (red) neurons in the caudal part of

lateral PAG. Arrows indicate vGLUT2 mRNA-positive and FG-ir
double-stained neurons. Scale bars: 20 μm.

neurons are glutamatergic, and (4) there are glutamatergic neu-
rons projecting to the RF. The PAG and MRF are essential sites
for lordosis behavior in female rats (Pfaff, 1980) and there is a
clear relationship between glutamate and induction of lordosis
(Gargiulo et al., 1992; Gargiulo and Donoso, 1995; Landa et al.,
2009). Our findings provide further evidence that glutamatergic
neurons in the lateral PAG project to the MRF and are involved in
lordosis in female rats.

The PAG receives input from many brain areas, including
the forebrain, hypothalamus, and brainstem, and has reciprocal
efferent neurons linked with these brain areas (Paxinos, 2004).
Functionally, the PAG is associated with modulation of pain and
defensive behavior, in addition to lordosis (Paxinos, 2004). Thus,
although we and others have shown increased cFos expression by
VCS of mating or manual probing in the PAG (Tetel et al., 1993;
Pfaus et al., 1996), the function of the activated PAG neurons
is still not understood. In the current study, half of the mating-
induced cFos-expressing neurons in the lateral PAG were found to
project to the RF (MRF and PRF) using a retrograde tracer, and
the MRF has also been implicated in induction of lordosis. For
example, lesions in the MRF disrupt lordosis (Zemlan et al., 1983)
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and electrical stimulation of the MRF causes an EMG response in
lordosis-inducing muscles (Femano et al., 1984). Moreover, PAG
neurons are antidromically activated by electrical stimulation of
the MRF in female rats (Sakuma and Pfaff, 1980). These results
suggest that sensory information induced by a mount stimu-
lus has afferent inputs in the lateral PAG and activates neurons
projecting to the MRF, after which MRF neurons cause lordosis
behavior in female rats.

Contradictory effects of glutamate on lordosis have been
found. Icv injection of NMDA accelerated lordosis in low
estrogen-primed OVX rats that rarely showed lordosis (Gargiulo
and Donoso, 1995; Landa et al., 2009); whereas local injection
of NMDA into the VMH inhibited lordosis in estrogen- and
progesterone-treated OVX rats that showed frequent lordosis
behavior (Georgescu and Pfaus, 2006). In similar rats, subcu-
taneous injection of MK-801, a NMDA antagonist, inhibited
lordosis (Fleischmann et al., 1991), but injection into the ven-
tral tegmental area increased lordosis (Petralia et al., 2007). In
another study, an increase in lordosis induced by progesterone
and luteinizing hormone-releasing hormone (LHRH) was inhib-
ited by icv administration of a NMDA antagonist (Gargiulo et al.,
1992). These results suggest condition- or region-specific effects
of glutamate on lordosis behavior.

In the current study, using vGLUT2 in situ hybridization, we
first showed activation of lateral PAG glutamatergic neurons by
mating stimulus in OVX + E2 rats, indicating involvement of
PAG glutamatergic neurons in lordosis. Double fluorescence for
vGLUT2 mRNA ISH and FG IHC showed the presence of lat-
eral PAG glutamatergic neurons projecting to the RF. mRNAs
for the NMDA receptor and its subunit are abundant in the
MRF (Keifer and Carr, 2000; Matsuda et al., 2002). It is also
likely that the NMDA receptor in the MRF is involved in lordo-
sis because activation of lordosis-relevant muscles by electrical
stimulation of the MRF was more effective in rats with addi-
tional NMDA in the MRF, compared with controls (Robbins
et al., 1992). Triple-labeled histological analysis for cFos, FG IHC,
and vGLUT2 mRNA ISH was not performed, but we suggest
that lateral PAG glutamatergic neurons with axonal connections
to the MRF are an important neural pathway for induction of
lordosis.

Several lines of evidence suggest that many neurotransmit-
ters are related to regulation of lordosis. Thus, microinfu-
sion of LHRH (Sakuma and Pfaff, 1983), prolactin (Harlan
et al., 1983), and substance P (Dornan et al., 1987) into
the PAG induces lordosis. Findings for immunoreactive nerve
terminals in the PAG (Ljungdahl et al., 1978; Liposits and
Setalo, 1980; Harlan et al., 1983) suggest that these peptides
may be neurotransmitters or neuromodulaters that convey a
mount stimulus from the spinal cord or estrogen informa-
tion from the VMH to PAG glutamatergic neurons to induce
lordosis.

In this study, half of mating-induced cFos-expressing neurons
were not FG-ir in the lateral PAG. Some hypothalamic nuclei
have an increased number of cFos-expressing neurons after mat-
ing stimulus, but not following a manual sensory stimulus of
the flank and rump (Pfaus et al., 1993). Sensory stimulation of
the flank and rump by a male forefoot during mount behavior

is important for lordosis in female rats because denervation
of the perineum, tail base, posterior rump and ventral flanks
suppresses lordosis (Kow, 1976). The mating stimulus from male
rats in the current study included sensory stimuli of the flank
and rump and VCS in females, which suggests that the stimulus
also induces activation of lateral PAG neurons that are not asso-
ciated with lordosis. There are afferent projections from the PAG
to the thalamus and parabrachial nucleus, which are related to
cognition and pain (Sim and Joseph, 1992; Krout et al., 1998).
Thus, FG-negative cFos-expressing neurons in the lateral PAG
may have a role in modulating the nociceptive mechanism dur-
ing lordosis. In addition, half of mating-induced cFos-expressing
neurons were not glutamatergic in the lateral PAG. GABA- or
neurotensin-expressing neural cell bodies are present in the PAG
(Paxinos, 2004) and GABA is involved in lordosis behavior
(Wada et al., 2008). This indicates that GABA neurons are a
candidate for the neurons activated by mating stimulus in the
lateral PAG.

We previously showed cFos IHC following ISH using a Kiss1
DIG-labeling probe (Adachi et al., 2007). In the current study,
cFos IHC following vGLUT2 mRNA ISH was performed using
the same technique, except for the difference in the DIG-labeling
probe. However, cFos expression in the combination of cFos
IHC with vGLUT2 ISH was lower than that in cFos and FG
double-IHC. This may have occurred because incubation with
the vGLUT2 DIG-labeling probe at 55◦C might have masked an
antigenic determinant of cFos for our antibody.

The precise activated area of the MRF in lordosis is not
completely clear. We investigated mating stimulus-induced cFos
expression in the MRF, but did not detect a cFos signal in this pro-
cedure (data not shown). Immediate early genes, including cFos,
are sometimes not induced in brain regions containing neurons
with spontaneous and high baseline firing rates prior to stim-
ulation of areas such as the MRF (Pfaus and Heeb, 1997). In
the current study, the widespread distribution of FG in the RF
indicates the presence of mating stimulus-activated glutamater-
gic neurons in the lateral PAG projecting to the MRF. Our data
raise the possibility that MRF neurons distributed around glu-
tamatergic terminals from the lateral PAG can influence lordosis.
Further studies are needed to address the glutamatergic influences
on these neurons in regulation of lordosis.
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