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This paper presents a classification system to classify the cognitive load corresponding to targets and distractors present in opposite
visual hemifields. The approach includes the study of EEG (electroencephalogram) signal features acquired in a spatial attention
task. The process comprises of EEG feature selection based on the feature distribution, followed by the stepwise discriminant
analysis- (SDA-) based channel selection. Repeated measure analysis of variance (rANOVA) is applied to test the statistical
significance of the selected features. Classifiers are developed and compared using the selected features to classify the target and
distractor present in visual hemifields. The results provide a maximum classification accuracy of 87.2% and 86.1% and an
average classification accuracy of 76.5± 4% and 76.2± 5.3% over the thirteen subjects corresponding to the two task conditions.
These correlates present a step towards building a feature-based neurofeedback system for visual attention.

1. Introduction

In the past decade, motor brain-computer interface (BCI) has
witnessed significant progress in the area of rehabilitation.
With the promising results in motor BCI, several new direc-
tions in this field are emerging. Cognitive BCI (cBCI) is one
of them that has drawn the attention of researchers working
in the area of BCI. Examples of cognitive signals used for
cBCI are the subject’s motivation [1], attention orientation,
and mental calculation [2]. The fundamental long-term goal
of cBCI is to develop therapeutic tools for the treatment of
cognitive disorders.

Attention is an important entity for cBCI which works
with different sensory inputs, like visual, auditory, and tactile.
Cognitive attention offers a person the ability to select the
object of interest by ignoring distractors [3]. The information
gained with this selection goes to the higher processing
mechanism that works like a metacognitive system and
results in perception, recognition, and memory formation
[4]. The attention paid by a subject to a visual object present
at a specific spatial location is called visual spatial attention

[5]. A normal human visual system takes about 150ms to
process the visuals [6]. Primarily two known approaches to
study visual attention exist: stimulus-driven (bottom-up)
and self-driven (top-down) [5] that follow the ventral and
dorsal pathways, respectively [7]. The attention capacity of
a subject is limited, and the subject can attend two tasks in
parallel using its ability of attention shift. It is supposed to
work like a spotlight phenomenon and processes only those
objects that come under this spotlight [8]. Characteristics of
human attention mechanism can be understood from the
various theories given in the past like capacity limit theory,
attention shift theory, and early and late selection theory
[9]. Due to the potential application of selective visual atten-
tion in cBCI, it is apparent to explore further the various
other aspects of attention.

In the current scenario, researchers are using advanced
modalities like fMRI, PET, and fNIRS [5, 10] in cognitive
neuroscience research. These techniques are noninvasive
and offer a good spatial resolution. However, these tech-
niques suffer lower temporal resolution and higher cost.
The present study uses the EEG data to study the selective
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visual attention due to its good temporal resolution and low
cost. The aim of this paper is to develop a classifier that can
classify the target and distractor present in opposite visual
hemifields using EEG features. These EEG features vary with
the task conditions and cognitive load provided. Delta
subband provides the best separation between low and high
cognitive loads [11]. Previous works suggest that theta band
oscillations in the hippocampocortical feedback loop reflect
the encoding of new information. Upper alpha oscillations
in the thalmo-cortical feedback loop reflect the search and
retrieval process in long-term memory [12]. Alpha power is
higher for target intake during the attention task while beta
band power increases preceding the correct response and
does not change in case of the erroneous response [13, 14].
Gamma band power increases in the contralateral hemifield
when the subject attends to a stimulus [15, 16]. Temporal
evaluation of alpha and beta during spatial visual task
indicates a decrease in alpha band power in a time window
of 375–500ms and an increase in beta band power of 500–
875ms [17]. Also, themodulation of EEG rhythms exists dur-
ing preparatory attention interval. Preparatory attention is
associated with the alpha power decrease in the left and right
temporal and occipital areas and the beta power decrease in
the bilateral occipital, left frontal, andmiddle frontal occipital
[16, 18]. Some other EEG features used for the cognitive load
measurement include log variance, Hjorth parameters [19],
spectral entropy, spectral edge frequency, intensity weighted
mean frequency, and intensity weighted bandwidth [11].

Despite previous significant research in cognition-related
studies, it is of utmost importance to extrapolate EEG-based
research in attentional orientation for classification purposes
in neurofeedback applications. In most of the target versus
nontarget classification problems, the task protocols involve
the targets and distractors appearing at the central visual field
or center of the screen. Such tasks imitate a very different sce-
nario than the real-life situations where target and distractors
may appear at different spatial locations or visual fields. The
present work involves the classification of the target and dis-
tractor present in different visual hemifields while the subject
attends the objects using peripheral visual attention. This is
more like a real-life situation, for example, looking at the
road while attending to or ignoring the objects appearing
on both sides of the road. This paper explores the two task
conditions: the first task condition compares the activity
while the subject attends to the target object present in the
left visual hemifield, ignoring the distractor present in the
right visual hemifield. The second task condition compares
the activity while the subject attends to the target object
present in the right visual hemifield, ignoring the distractor
present in the left visual hemifield.

In this work, we will explore different EEG features and
classifiers are developed further using most relevant features.
The results would facilitate the development of a neurofeed-
back system for selective visual attention [20–22]. Section 2
describes the materials and methods used in the study: task
description, data preprocessing method, and methodology
followed. Section 3 gives the details of channel selection, sta-
tistical analysis, and classification performed. Section 4 dis-
cusses the results.

2. Materials and Methods

2.1. Task Description. This study uses the publically available
EEG dataset acquired by Jeanne Townsend in the laboratory
of Eric Courchesne at UCSD. Figure 1(a) gives an illustration
of one sequence of the task trial presented to the subjects. The
task presented five spatial locations represented by square
boxes placed from left to right and located 0.8 cm above the
central midline of the computer screen along with a center
fixation cross present on the computer screen. During each
76-second task block, subjects focused covertly at the
attended stimulus location which is presented with a differ-
ently shaded box. The attended location is shown in
Figure 1(a) by a dashed square box for the illustration pur-
pose. In each task block, 100 disk stimuli appeared randomly
at different spatial locations bounded in the square box.
Stimuli appeared for a duration of 117ms at a different
spatial location with an interstimulus duration of 225–
1000ms [23]. Subjects responded via a thumb switch, as
soon as stimuli appeared at the attended location. The next
sequence begins after this. Data was recorded for such
thirty task blocks. This paper analyzes the activity with
respect to the two conditions where the subject attends to
the target present in the left and right visual hemifields
while ignoring the distractor present in right and left visual
hemifields, respectively.

2.2. EEG Recording and Signal Processing. This study uses the
publically available EEG dataset acquired by Jeanne Town-
send in the laboratory of Eric Courchesne at UCSD. EEG
data collected from 13 (two female, eleven male; ages 22–40
years) healthy right-handed subjects performing a visual
spatial attention task was recorded from 29 scalp electrode
locations using an EEG standard electrode cap (Electro-Cap
International Inc.) and two EOG (electrooculogram) elec-
trodes with a sampling frequency of 512Hz. Figure 1(b)
shows the location of EEG scalp electrodes placed for record-
ing data. The data were collected with reference to the right
mastoid electrode position within the analog passband of
0.01–50Hz. Additional digital filtering was done using
4th-order Butterworth band-pass filter in the range of
0.1–45Hz, and the signal was average rereferenced. The
Automatic Artifact Removal (AAR) v1.3 toolbox based on
the blind source separation principle was used to remove
the eye blinks and muscle artifacts [24]. EEG analysis
involved an epoch length of 800ms, starting 200ms before
the stimulus onset to 600ms after the stimulus offset, over
90 trials from each subject. Figure 1(b) shows the scalp
electrode locations.

The selected data is divided into four datasets, namely A,
B, C, and D; the summary is given in Table 1. Dataset A cor-
responds to the activity while the subject attends to the left
visual hemifield and the target appears at the same location
in the left visual hemifield. Dataset B corresponds to activity
while the subject attends to the left visual field and the
distractor appears in the right visual hemifield. Dataset C
represents the activity while the subject attends to the right
visual hemifield and the distractor appears in the left visual
field. Dataset D represents the activity while the subject
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attends to the right visual field and the target appears at the
same location in the right visual hemifield. Task condition
1 compares the dataset A and dataset B. The task condition
2 compares the dataset C and dataset D. In other words,
the first task condition compares the activity while the
subject attends to the target object present in the left visual
hemifield ignoring the distractor present in the right visual
hemifield. The second task condition compares the activity
while the subject attends to the target object present in the
right visual hemifield ignoring the distractor present in the
left visual hemifield. Figure 2 demonstrates the flow chart
of the complete signal analysis process.

2.3. Feature Extraction. EEG features studied are discussed
briefly in this section. These features were selected based on
their applications in biomedical signal processing as dis-
cussed in Introduction. In this work, we are trying to explore
the utility of these features in attentional studies:

(1) Hjorth complexity (Hcomplexity): it is a measure of the
spread of the spectrum and represents the change in
frequency [25].

Hcomplexity =
std d2X/dt2 std X

std dX/dt 2 , 1

where std is standard deviation function.

(2) Hjorth mobility (Hmobility): it is a measure of mean
frequency.

Hmobility =
std dX/dt
std X t

, 2

where std is standard deviation function.
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Figure 1: (a) A sequence of the task trial. (b) EEG scalp electrode placement locations.

Table 1: Summary of four datasets selected for two task conditions.

Task condition
Task condition 1 Task condition 2

Dataset A Dataset B Dataset C Dataset D

Patient state
Attending target object

in left hemifield
Ignoring distractor objects

in right hemifield
Ignoring distractor objects

in left hemifield
Attending target object

in right hemifield

Eye fixation Center Center Center Center

Electrode type Surface Surface Surface Surface

Electrode placement
International 10-20
placement system

International 10-20
placement system

International 10-20
placement system

International 10-20
placement system

Number of subjects 13 13 13 13

Number of electrodes 31 31 31 31

Number of trials from
each subject

90 90 90 90

Epoch duration 800ms 800ms 800ms 800ms
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(3) Average frequency: it defines the number of times the
signal crosses the zero value.

Average frequency = Total zero crossing points
Epoch duration

3

(4) Lempel-Ziv complexity (lz-complexity): it is a
harmonic variability metric that shows the distinct
pattern contained in the sequence as an algorithm
scans the data sequence from left to right [25]. To
compute the lz-complexity, the signal needs to be
decoded first with respect to some threshold value
which could be mean or median of the signal. In this
way, the signal greater than the threshold which
maps to 1 else to 0 to obtain the symbolic sequence
is further parsed to obtain the encoded sequence
[26]. For an encoded sequence, s(n) of length n, the
lz-complexity can be obtained as below:

Lempel − Ziv complexity = s n
n

4

(5) Band power: band power can be calculated from the
power spectrum of the signal. Power spectrum
represents the energy of a signal over the frequency
components that it possesses. For a signal x, power
spectrum can be calculated using

Power spectrum = X f f t ∗ conjugate X f f t , 5

where X f f t represents the Fourier transform of the signal x.

(6) Median power frequency (mpf): it is the frequency
below which 50% of the total power of the signal is
present, calculated over the half of the total area of
the power spectrum.

(7) Spectral edge frequency (sef): it is the frequency
below which 95% of the total power of the signal is
present, calculated over 95% of the total area of the
power spectrum.

2.4. Channel Selection. Channel selection is an important
step as it helps in selecting the channels that can distinguish
two or more datasets. This procedure can help in reducing
the computational burden by minimizing the number of
channels. A number of channel selection methods including
filters, wrappers, and embedded methods exist. Among
these methods, wrapper methods are good at providing a
reliable set of features. The stepwise discriminant analysis
(SDA) used in this study is a wrapper method that gener-
ates a reliable set of features with multivariate analysis of
variance (MANOVA).

A data matrix (Cd) is created for each subject corre-
sponding to each EEG feature. The matrix Cd is composed
of 29 channels and a total of 180 observations with respect
to targets and nontargets for both the task conditions. Rows
of the matrix represent the observations, and columns repre-
sent the channels as shown:

Cd =

ai,j … ai,j+n

⋮ ⋮ ⋮

ai+m,j … ai+m,j+n

, 6

where i and j represent the rows and column, respectively, m
represents the number of observations, and n represents the
number of channels.

The matrix Cd for each EEG feature, for a single subject,
is pooled to perform SDA to select the three best performing
channels. MANOVA compares the sample means based
on the variance-covariance between variables to test the
significance difference. MANOVA gives the significant dif-
ference value represented by lambda (λ). SDA present the
channels in descending order of discriminating power λ,
and the number of channels can further be selected as
desired based on the lambda power. In this work, we are
selecting three channels.

2.5. Statistical Analysis. Repeated measure analysis of
variance (rANOVA) was performed to analyze the statistical
significance of selected EEG features differentiating the two
datasets within the two task conditions. rANOVA investi-
gates the EEG features and task condition interaction over
repeated measurements for the two task conditions. It is used
to test null hypotheses about the mean. If the mean of the two
classes is different, then the null hypothesis rejects. The
results of rANOVA are presented in the following form:

F(dffc, dferror) = F value, p = p value,
where dffc = degree of freedom of feature and task

condition interaction,
dferror = degree of freedom of error,

Multichannel EEG data

Preprocessing (filtering and artifact removal)

Single trial analysis

Feature calculation

Channel selection

Statistical analysis

Classification and
conclusion

Figure 2: Flowchart for feature-based EEG data analysis.
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F= critical value,
p= significance value.
This test offers Greenhouse–Geisser (pGG), Huynh–

Feldt (pHF), and lower bound (pLB) corrections for multiple
comparisons to avoid false rejection of the null hypothesis.

2.6. Classification and Cross-Validation. In the present work,
we need to classify the two classes of the attentional load
from targets and distractors. To solve this two-class classi-
fication problem, this study compares the three classifica-
tion approaches, namely, artificial neural network (ANN),
K-nearest neighbor (KNN), and support vector machine
(SVM). The input and target data matrices were constructed
for the subject by taking 90 observations from each channel
with respect to each dataset. Features were normalized to
zero mean and unit variance before classification.

Artificial neural network (ANN): a pattern recognition
network architecture with three network layers; namely, the
input layer, the hidden layer, and the output layer were used.
There were 29 nodes in the input layer, ten nodes in the
hidden layer, and one node in the output layer. The tangent
sigmoid activation function was used. The network was
trained with the Levenberg–Marquardt back propagation
method of training using a preset amount of data for the
training, testing, and validation. The model was validated
using cross-validation methods.

K-Nearest neighbor (KNN): the developed KNN model
was fitted by means of the Euclidean distance metric between
the two nearest neighbors. This model selects the neighbors
with a known class from the training dataset and assigns
weights to it according to the distance to the space variable
using the exhaustive searcher. It made the decision with the
majority vote given by selected nearest neighbors. For a space
variable X, the classifier looks for the nearest neighbor among
different classes, say A and B, and assigns the class label
having the smallest distance to the space variable X.

Support vector machine (SVM): it is a supervised
classification model that classifies the data by finding the
best hyperplane offering the largest margin between two
classes. These hyperplanes are the decision planes that
can separate the objects having different class member-
ships. The developed SVM model mapped the predictor
data using radial basis kernel function. Sequential minimal
optimization (SMO) approach was used to solve this
binary classification problem.

2.7. Cross-Validation. The developed classifier models were
cross-validated using the k-fold cross-validation approach.
In this approach, the data is divided into k subsamples
randomly. At each fold, (k− 1) subsamples are used for the
training, remaining one for the testing. The process is
repeated for each fold, and mean accuracy is calculated from
the average of the results of different folds. Also, another
cross-validation approach is suggested. This approach works
similar to k-fold cross-validation except that the criteria for
the selection of training and testing datasets is different.
Unlike the k-fold approach, the datasets are not selected ran-
domly but are selected in a way that there is a maximum time
separation in the data points. This cross-validation was

performed to avoid the effect of any time-related change
in data that may occur during EEG data recording in a
block design.

Receiver operating characteristic (ROC) curves were used
to compare the performance of the different classifiers. ROC
is a plot of the two operating characteristics known as a true
positive rate (TPR) and the false positive rate (FPR), where
TPR is the probability of detection while FPR gives the
probability of false alarm.

3. Results

The preprocessed datasets corresponding to the two task
conditions were analyzed with the suggested methodology.
First, to reduce the system complexity, the channel selection
is performed. Feature selection results are given in Table 2.
Selected channels are presented in the descending order
of their discriminating powers. These results suggest that
the parietal and central parietal region electrodes are
among the best performing channels to distinguish the targets
and distractors.

Further, the distribution of the different EEG features
corresponding to the two task conditions with selected chan-
nels is studied. This distribution is shown in Figure 3.
Figures 3(a) and 3(i) show that the average frequency value
is lower for the targets in both task conditions. lz-complexity,
which gives the harmonic variability metric, offers greater
value for nontargets, suggesting distinct patterns in the signal
while ignoring the distractors as shown in Figures 3(b) and
3(j). Hjorth complexity feature’s value, which represents the
change in frequency, is higher for targets as given in
Figures 3(c) and 3(k). It shows that frequency spread is more
while attending to targets than nontargets. Figures 3(d) and
3(l) show that Hjorth mobility, which represents the mean
frequency, is higher for nontargets. Median power frequency
embodying 50% of the total signal power is higher for non-
targets as shown in Figures 3(e) and 3(m). Figures 3(f) and
3(n) show that the spectral edge frequency that represents
95% of the total power is also high while ignoring the nontar-
gets. Delta power values are higher for targets for both task
conditions as given in Figures 3(g) and 3(o). Figures 3(h)

Table 2: Selected channels corresponding to the eight EEG features.

Feature
Task condition 1 Task condition 2
Selected channels

(using SDA method)
Selected channels

(using SDA method)

Average frequency C3, CP2, PZ C3, CP2, P3

lz-complexity CP1, PZ, P4 CP2, P3, P4

Complexity CP1, PZ, P4 CP5, CP1, PZ

Mobility CP1, PZ, P4 CP1, P3, PZ

Median power
frequency

CP2, PZ, P4 CP1, P3, PZ

Spectral edge
frequency

CP1, PZ, P4 CP1, PZ, P4

Delta power CP2, PZ, P4 CP1, P3, PZ

Beta power CP1, CP2, PZ CP1, CP2, P3
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and 3(p) give higher beta power for distractors that advise
more activation of the attentional network in inhibiting the
nontargets. It can be concluded from Figure 3 that Hjorth
complexity and delta power values are higher for targets cor-
responding to the task conditions 1 and 2 while other features
show lower values.

Next, the repeated measure analysis of variance
(rANOVA) was performed for all the EEG features extracted
from the two task conditions. It was performed using
three selected channel features, two datasets, and 90 obser-
vations from each dataset. The degree of freedom (DF)
was (3− 1)= 2 for channel features, (3− 1) ∗ (2− 1) = 2

12

Average frequency
(datasets A versus B)

Hjorth complexity
(datasets A versus B)

Median power frequency
(datasets A versus B)

Delta power
(datasets A versus B)

Hjorth complexity
(datasets C versus D)

Hjorth mobility
(datasets A versus B)

Hjorth mobility
(datasets C versus D)

Lempel-Ziv complexity
(datasets A versus B)

Average frequency
(datasets C versus D)

Lempel-Ziv complexity
(datasets C versus D)

10
8
6

Av
er

ag
e f

re
qu

en
cy

Iz
-c

om
pl

ex
ity

Av
er

ag
e f

re
qu

en
cy

Iz
-c

om
pl

ex
ity

4
2
0

12
10

8
6
4
2
0

16
14
12
10

8
6
4
2
0

20

15

10

5

0

3.5
3

2.5
2

1.5
0.5

0

10

8

6

C
om

pl
ex

ity

0.2

0.15

0.1

0.05

0

M
ob

ili
ty

0.2

0.15

0.1

0.05

0

M
ob

ili
ty

3.5
3

2.5
2

1.5

0.5
1

0

C
om

pl
ex

ity

M
ed

ia
n 

po
w

er
 fr

eq
ue

nc
y

4

2

0

35
30
25
20

Sp
ec

tr
al

 ed
ge

 fr
eq

ue
nc

y

10
15

5
0

10

8

6

4

M
ed

ia
n 

po
w

er
 fr

eq
ue

nc
y

2

0

35

25
30

20
15

Sp
ec

tr
al

 ed
ge

 fr
eq

ue
nc

y

5
10

0

80

60

40

D
elt

a p
ow

er

20

0

30
25
20
15

Be
ta

 p
ow

er

10
5
0

80

60

40

20D
elt

a p
ow

er

0

35
30
25
20
15
10Be

ta
 p

ow
er

0
5

C3 CP2

(a) (b) (i) (j)

(c) (d) (k) (l)

(e) (f) (m) (n)

(g) (h)

(I) (II)

(o) (p)

PZ
Channel number

CP2 PZ P4
Channel number

Spectral edge frequency
(datasets A versus B)

CP1 PZ P4
Channel number

Median power frequency
(datasets C versus D)

CP1 P3 PZ
Channel number

Spectral edge frequency
(datasets C versus D)

CP1 PZ P4
Channel number

CP2 PZ P4
Channel number

Target
Distractor Target

Distractor

Beta power
(datasets A versus B)

CP1 CP2 PZ
Channel number

Delta power
(datasets C versus D)

CP1 CP3 PZ
Channel number

Beta power
(datasets C versus D)

CP1 CP2 P3
Channel number

CP1 PZ P4
Channel number

CP1 PZ P4
Channel number

CP5 CP1 PZ
Channel number

CP1 P3 PZ
Channel number

CP1 P4 P4
Channel number

C3 CP2 P3
Channel number

CP2 P3 P4
Channel number
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for channel feature-condition interaction, and (180 – 2) ∗
(3− 1)= 356 for error. The rANOVA results show that
four among the extracted EEG features exhibit a signifi-
cant difference for channel feature and condition interac-
tion with a significance level of p < 0 1. The result
indicates a significant channel feature and task condition
interaction with lower bound correction for Hjorth com-
plexity [F(2,356) = 6.0145, p = 0 0151], Hjorth mobility
[F(2,356) = 5.62, p = 0 0188], delta power [F(2,356)=
3.8754, p = 0 0505], and beta power [F(2,356) = 3.7965,
p = 0 0529] over the task condition 1.On the other hand, other
features including average frequency [F(2,356) = 0.42023,
p = 0 51766], lz-complexity [F(2,356)=0.68079, p = 0 41042],
mpf [F(2,356)=1.1707, p = 0 28073], and sef [F(2,356)=
2.3163, p = 0 1298] show no statistically significant differ-
ence in the target and distractor. For task condition 2,
the statistical results display a significant channel feature
and task condition interaction with lower bound correc-
tion for Hjorth complexity [F(2,356)=3.2531, p = 0 0729],
Hjorth mobility [F(2,356)=5.0276, p = 0 0261], delta power
[F(2,356)=3.5058, p = 0 0627], and beta power [F(2,356)=
2.7321, p = 0 0900]. There is no statistically significant channel
feature and task condition interaction over the average
frequency [F(2,356)=1.012, p = 0 31579], lz-complexity
[F(2,356)=0.83486, p = 0 36211], mpf [F(2,356)=1.937,
p = 0 16573], and sef [F(2,356)=2.4043, p = 0 12278].

The statistical analysis concludes that the Hjorth
complexity, Hjorth mobility, delta power, and beta power
can significantly differentiate the activity while the subject
attends to stationary targets and inhibits the distractors
present in another visual hemifield. These selected EEG fea-
tures are further explored to develop a classifier to classify
the target and distractor present in different visual hemifields.

Feature matrices with three selected channel features and
180 observations were prepared for each subject correspond-
ing to all the EEG features for the target and distractor clas-
sifications. A comparison of the three different classifiers
using the four EEG features for a subject is presented in this
section. The ROC curves of Figure 4 illustrate that the artifi-
cial neural network (ANN) classifies the target and distractor
better than the other two methods. So the details of the
classification performance parameters, namely, sensitivity,
specificity, and accuracy corresponding to the ANN classifier
only, are given in Tables 3 and 4.

Tables 3 and 4 show the mean and maximum values of
the classification results obtained from thirteen subjects for
the two task conditions using four different EEG features.
The classification was performed for each and every subject,
and then the mean was taken over the classification results
obtained from a population of 13 subjects. These mean values
and standard deviation for sensitivity, specificity, and
accuracy, corresponding to different features, are given in
Tables 3 and 4. These tables also give the maximum value
of the classification results obtained. Table 3 spectates a
maximum classification accuracy of 80.6%, 87.2%, 82.2%,
and 80% for the task condition 1 using Hjorth complexity,
Hjorth mobility, delta power, and beta power, respectively.
Table 4 shows a maximum classification accuracy of
84.4%, 86.1%, 83.3%, and 86.1% for the task condition 2

using Hjorth complexity, Hjorth mobility, delta power,
and beta power, respectively.

4. Discussion

Selective visual attention is the ability to select the visual
information of interest present in the visual field. It is a key
to various other skills like perception and recognition and
memory as well; it can also affect these skills if there is a prob-
lem with it. This paper studies the EEG correlates of visual
attention in a spatial attention task. It is important to study
features of the EEG as these are very crucial and provide
more information than the raw data. These features are the
potential candidates that can be used in neurofeedback
systems to give feedback about their performance to the sub-
jects. The present study attempts to find the EEG correlates
of attention for the task when the subject attends to target
objects present in one visual hemifield while ignoring distrac-
tor objects present in another visual hemifield. To reduce the
system complexity and increase classification accuracy, chan-
nel selection is performed [27]. Channel selection performed
over EEG features suggest that the channels with the most
discriminating power lie in the central-parietal and parietal
regions, which are involved in the visual-spatial processing
[28]. The rANOVA-based statistical analysis found that
amongst the features studied, Hjorth complexity, Hjorth
mobility, delta power, and beta power can significantly differ-
entiate the datasets corresponding to the two task conditions.
This selection suggests higher beta and lower delta for non-
targets, representing higher cognitive demand or working
memory load for inhibition which agrees with earlier studies
involving targets and nontargets [29]. Hjorth features have
been used earlier for cognitive load measurement [19]. The
present study explores these features and shows higher
Hjorth mobility and lower Hjorth complexity for nontargets
which correspond to the mean frequency and change in
frequency, respectively.

The classification system is further developed using
selected features to distinguish the activities corresponding
to targets and nontargets. The importance of such classifi-
cation lies in applications like cognitive brain-computer
interface or neurofeedback system for training where the
cognitive control measures are used to control the BCI
and train the subjects. Classification accuracy in cBCI is
limited by various internal and external factors, like sen-
sory and cognitive, comparative to reasonable accuracy in
motor BCI [30, 31]. Due to this limitation, accuracy
reported in previous research was restricted to only 75%
and 79% in spatial attention tasks [32, 33] using noninva-
sive techniques. We could reach a maximum accuracy of
87.2% and 86.1% and a mean accuracy of 76.5% and
76.2% over thirteen subjects for the two task conditions,
respectively, by using the EEG-based noninvasive method.
In this way, a classifier is developed that can classify the
peripheral attention paid to targets and distractors present
in different visual hemifields. Such a classifier can facilitate
the development of an EEG feature-based neurofeedback
system for attention [34].
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Figure 4: ROC curve for (a) and (b) Hjorth complexity, (c) and (d) Hjorth mobility, (e) and (f) delta power, and (g) and (h) beta power, using
artificial neural network (ANN), K-nearest neighbor (KNN), and support vector machine (SVM) classifiers during the testing corresponding
to task conditions 1 and 2, respectively.
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5. Conclusion

The present study explores the EEG features that can distin-
guish the targets and nontargets present in the different
visual hemifields. A classification system to classify the
targets and distractors present in opposite visual hemifields
is proposed in this paper. The analysis is done to optimize
the performance of the system. Results provide EEG
correlates of selective visual attention that can classify the
activities while attending targets and ignoring distractors.
Other EEG features can be explored to further increase the
classification accuracy and make the possibility of feature-
based neurofeedback system feasible.
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