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Determination of roughness 
coefficient in 3D digital 
representations of rocks
Leonardo Scalco1,2*, Leandro Tonietto1,2, Raquel Quadros Velloso3, Graciela Racolte1,2, 
Luiz Gonzaga Jr.1,2 & Mauricio Roberto Veronez1,2

The roughness property of rocks is significant in engineering studies due to their mechanical and 
hydraulic performance and the possibility of quantifying flow velocity and predicting the performance 
of wells and rock mass structures. However, the study of roughness in rocks is usually carried 
out through 2D linear measurements (through mechanical profilometer equipment), obtaining a 
coefficient that may not represent the entire rock surface. Thus, based on the hypothesis that it is 
possible to quantify the roughness coefficient in rock plugs reconstructed three-dimensionally by the 
computer vision technique, this research aims to an alternative method to determine the roughness 
coefficient in rock plugs. The point cloud generated from the 3D model of the photogrammetry 
process was used to measure the distance between each point and a calculated fit plane over the 
entire rock surface. The roughness was quantified using roughness parameters ( R

a
 ) calculated in 

hierarchically organized regions. In this hierarchical division, the greater the quantity of division 
analyzed, the greater the detail of the roughness. The main results show that obtaining the roughness 
coefficient over the entire surface of the three-dimensional model has peculiarities that would not be 
observed in the two-dimensional reading. From the 2D measurements, mean roughness values ( R

a
 ) 

of 0.35µm and 0.235µm were obtained for samples 1 and 2, respectively. By the same method, the 
results of the R

a
 coefficient applied three-dimensionally over the entire rocky surface were at most 

0.165µm and 0.166µm , respectively, showing the difference in values along the surface and the 
importance of this approach.

In studies related to geomechanics, knowing the basic properties of rocks, such as their mechanical resistance, 
hydraulic flow, and fluid percolation, is essential to understanding their behavior in critical situations1,2. In this 
sense, the areas that present these properties are the fractures (joints), defined by the relationship between two 
rock surfaces separated at some points but in contact at others2,3. The anisotropic morphology of natural rock 
mass joints constantly affects their shear behavior4,5.

Some surface properties of these fractures are significant for their mechanical, hydraulic, thermal, and trans-
port behavior, and the fluid flow in these places is superior to in the rock matrix6. One of these properties is the 
roughness, which is crucial in the stability of rock masses, and essential in geotechnical studies or engineering 
works5,7–10.

The roughness study is applied in the risk assessment for possible water percolation in tunnels and natural 
coal mines, identification, and exploration of geothermal reservoirs, the capture of CO2 , studies for disposal of 
underground deposits of radioactive material, capture and use of groundwater, and classification and study of 
natural well fractures as a means of disposal and storage of crude oil7,11–13. To determine the roughness in rock 
masses joints, research was carried out to establish a relationship between the joint opening distribution and 
the fluid conductivity, and a greater roughness on any surface hinders the flow and facilitates the union between 
separate layers9,14.

The method most used to quantify the fracture roughness is the joint roughness coefficient (JRC)15. It is con-
ceptualized as the relation between the standard deviation of the variable opening and the mechanical opening 
and is obtained by comparing the fracture geometry and the standard profiles using a profile scale15. Barton 
et al.15 proposed a values classification of JRC from a sample of 136 natural rocks, defining a scale to divide the 
roughness coefficients from 0 to 20 into groups. The rock’s roughness coefficients are obtained through the visual 
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comparison of two-dimensional profiles obtained in the field and these tabulated values. Despite the importance 
of this research, the method has limitations like the visual comparison, and the results are influenced by the 
professional’s experience9,16. Furthermore, define only two-dimensional (2D) linear profiles, not covering the 
entire surface of the rock6.

In this scenario, the use of digital representations in the materials properties characterization is increasing due 
to the precision of the profile obtained and the facility to replicate a sample to reach a larger number of tests16. 
A reliable 3D digital representation is obtained from two-dimensional images (photogrammetry) or through a 
dense point cloud containing positioning information generated by laser scanning17. Through photogrammetry, 
the data acquisition has a higher resolution, and with image processing software, it is possible to reconstruct 
three-dimensional models8,17.

These techniques have advantages over conventional acquisition methods of physical samples of rock, such 
as the obtainment in inaccessible places, less dependence on the professional working in the field experience, the 
possibility of a greater quantity of rock samples with less manual work, and the possibility of 3D representation 
of the entire rock sample16,18. Another incentive for the increment of 3D models is the improvement of compu-
tational methods. Currently, two-dimensional images and referenced points obtained by photogrammetry or 
by laser scanning are efficiently processed by algorithms, reducing manual work and generating more reliable 
results17.

Some strategies to measure the roughness coefficient in rock mass joints using 3D models were developed 
to support the traditional techniques. Therefore, it is natural to carry out research that applies functional meth-
ods but is used in other areas of study to obtain roughness coefficients in digital representations of rocks16,17,19. 
Tonietto et al.20,21 calculates the roughness of a block substrate (used to build masonry walls) in height and area 
measurements to favor adhesion by contact area. The authors used a point cloud obtained by laser scanning 
(LiDAR), where each point contains position and elevation information. The roughness of the block was meas-
ured between the height difference of each point and a created plane that best represented the group of points 
(fit plane), forming peak areas (group of points above the fit plane) and valley areas (group of points below the 
fit plane)21.

Through the related works, it is possible to find limitations and research gaps to be filled. Some methods 
used two-dimensional linear results, which do not represent the entire rock surface17. The use of laser scanners 
in their methodology is another limitation found. This equipment has a high cost of acquisition and operation, 
and is laborious, as the rock samples require greater preparation than photogrammetry. With photogrammetry, 
it is possible to acquire rock samples by the non-destructive method in the field. In addition, it generates higher 
productivity and lower cost compared to laser scanners22.

The 3D roughness measurements on rock surfaces are essential for obtaining this coefficient to be realistic 
on the entire rock surface. In this sense, the method for results analysis in hierarchical division allows obtaining 
the average roughness over the total surface of rocks or rocky outcrops20. The main advance of this method in 
relation to the studies shown above is the ease of increasing (or decreasing) the level of details of results accord-
ing to the interest of the work performed, changing the analysis division. Furthermore, it can be applied both at 
the laboratory rock sample level and for application on large rocky outcrops.

This work aims at an alternative method to obtain the roughness coefficient in rock plugs samples. This objec-
tive seeks to confirm the hypothesis that it is possible to quantify the roughness coefficient in 3D reconstructed 
rock plugs using the computer vision technique. However, it was necessary to make adaptations to the method20. 
The achievement of results was in 2D linear measures (in addition to the three-dimensional), so it can be directly 
validated and compared. Another adaptation performed to the method to geomechanics was obtaining the 
roughness parameters for the global plane of the rock sample and the representation of the roughness data in a 
localized way (node grid of the quadtree)20.

Roughness identification in the hierarchical structure
The method21 quantifies the surface roughness of blocks through a roughness visual signature, calculated from 
parameters of hierarchically organized regions. The point clouds of the ceramic block samples were generated 
by laser scanning. The method developed analyzes point cloud data and roughness parameters through different 
scales in a hierarchical structure. In this scenario, roughness parameters are calculated for all points at all levels 
of spatial division. In this way, the surface roughness is measured globally (highest level of the structure—no 
division) and locally (lowest level—three divisions), totaling 64 squares for individual analysis of average rough-
ness. In the work of Tonietto et al.20, three division levels were used to compute localized roughness (with more 
details), but the method allows subdividing into more levels.

The organization and division of the hierarchical structure follow a model known as a quadtree, wherein divi-
sion behavior always has the same procedure (division into four equal parts—Fig. 1), regardless of the size of the 
analyzed sample. In this type of structure, the original quadrant has similar information to the mean established 
for the four original quadrants from its division. Thus, the subdivisions needed for each sample will depend on 
the user who will perform the test. As a result of this division model, each square resulting from the subdivision 
will have an average roughness result. Thus, the greater the degree of division, the smaller the squares generated 
and the more detailed the average roughness will be21.

For this method, the authors20 defined roughness as the average height of the point in relation to the fit plane. 
This fit plane was calculated considering the orientation and slope of the surface from the least-squares product 
technique, which makes a regression of the three-dimensional data to a plane in order to represent the fit plane 
in the entire set of points. The distance between the points and this fit plane is the roughness at that location. 
The points below this plane generate valley points, and the points above this reference generate peak points21.
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Thus, the roughness parameters from the plane coefficients were calculated, defining the mean roughness ( Ra ). 
A local analysis of the results is essential for determining a roughness signature composed of the values of each 
region subdivided in a hierarchical way. In this division, the values found in the last level are the minimum area 
values defined by the user for roughness evaluation. With this roughness signature ( Ra ), the authors compared 
each surface in a standard way. After roughness identification, the results are processed to generate graphs and 
other parameter information. In this stage, the mean roughness coefficients ( Ra ) are obtained20.

Method
The proposed method for determining the roughness coefficient in rocks from three-dimensional digital models 
(Fig. 2) consists of acquiring the cloud of points from the surface of the rock sample by employing digital photo-
grammetric and 3D readings for the calculation of the Ra and JRC. Subsequently, the Z2 and JRC are calculated 
from the 2D analysis method to compare and validate the methodology.

Acquisition and preparation of rock samples.  The rock samples used in the research are from the 
Bangú quarry in the municipality of Rio de Janeiro, Brazil (Fig. 3). This place is predominantly composed of 
gneiss rocks. The roughness analysis in them is capital for the identification, classification, and mechanisms 
of fracture formation. Gneiss rocks are metamorphic rocks. They originated from pre-existing rocks through 
chemical, mineralogical, textural, structural changes, or a combination of these factors, and this transformation 
occurs through changes in temperature and pressure23. Thus, the roughness and fluid flow characteristics in 
metamorphic rocks are related to the rocks that form them, requiring a particular study of each rock sample to 
understand their behavior24.

Figure 1.   Example of hierarchical structure division (quadtree root, first subdivision, second subdivision and 
third subdivision, respectively).

Figure 2.   Methodology flowchart.

Figure 3.   Used samples and models from photogrammetry: (A) Sample 1 and (B) Sample 2.
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In the first stage of preparing the rock samples, a block is removed from its original location, taking care 
to identify the side parallel to the fracture. This identification is essential to define the experiment to generate 
the surface to obtain the roughness coefficient that reproduces the environment. For the methodology of this 
research, rock samples need to be in a format with smaller dimensions called a plug23. This plug is cylindrical 
in shape and obtained through equipment that penetrates the rock block and collects a cylindrical sample from 
that block. In the present study, plugs were cut with an average diameter of 5.3cm and height ranging from 8cm 
to 12cm. In this study, to obtain the rough surface of the rock, the direct shear test was performed. This test is 
carried out in the laboratory, causing a displacement effort of the rock sample.

Photogrammetry point cloud generation.  In this research, the point cloud was obtained by generating 
three-dimensional models of rock samples from photogrammetry. This method aims to create 3D models from 
two-dimensional images25. This technique has two stages in its process. The first is the acquisition of photos, and 
the second is processing in software.

For photos acquisition, it was employed a support table, a mini studio, a centimeter ruler to measure the 
sample size, and a Canon Digital Camera model EOS Rebel T6i. The mini-studio utilized to capture the photo-
graphs has only one open side and is composed of green walls, ceiling, and background due to the contrast with 
the photographed samples. In addition, it has a turntable with 360◦ angular markings, so it is possible to rotate 
the entire rock without moving it. Also, there are three targets marked on the turntable to position and scale the 
rock sample. Another element of its composition is the LED lighting inside.

The rock samples were photographed at different angles to search for a mapping that best represents the 
original sample. Thus, the rock sample was photographed along its entire perimeter every 15◦ , resulting in 24 
photographs. The camera was at a distance of approximately 90cm from the rock sample and at an angle of 30◦ . 
The acquired images have 6000 pixels × 4000 pixels (width × height) of dimensions, a vertical and horizontal 
resolution of 72 dpi, 24-bit intensity, and representation of color in RGB (Red; Green; Blue), and a focal length 
of 50 mm. Figure 4 details the photogrammetry process performed for one of the samples. In the Figure, it is 
possible to observe all the previously detailed elements and their positioning throughout the process.

After photo acquisition, the second part of the photogrammetric process consists of data processing in the 
3D software Agisoft—Metashape (Agisoft Metashape 1.8.3—https://​www.​agiso​ft.​com). In this stage, the photo-
graphed rock sample was imported separately for aligning the photos and optimizing this alignment, generating 
the sparse point cloud and the dense point cloud (Fig. 5). The sparse point cloud is to identify common points 

Figure 4.   Photogrammetry process detailing all the elements as well as their positioning throughout the 
process.

Figure 5.   (A) Sparse and (B) dense point cloud1.

https://www.agisoft.com
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between the photos acquired in the first step, and the dense point cloud has greater detail and punctual preci-
sion. Subsequently, the alignment of the point cloud was to identify the position information of the points. From 
there, the mesh generation was performed by triangulation and texture generation.

After the 3D model generation, the point cloud can be represented in a spatial format with 3D position 
coordinates of each point. The quality of roughness data in the rock sample is related to the distance between the 
points obtained through the model. The greater the density of the point cloud, the greater the precision and detail 
of the peak and valley areas. In this survey, the points are apart from each other on average by 0.1 mm (Fig. 6).

Roughness coefficient by three‑dimensional method.  The method used to obtain the roughness 
coefficient considers a dense cloud of points with three-dimensional position coordinate information. As a first 
step in the methodology, the point clouds from each rock sample were cut to partially exclude the studio back-
ground and turntable base. This process was necessary to exclude outliers from the photogrammetric process. 
After, it is needed to cut the surface of each point cloud quadratically with dimensions of 3.5 cm × 3.5 cm. This 
process is relevant so that there is no interference from the edge of the plugs rock samples in the roughness cal-
culation. In these places, the edges can be identified incorrectly as roughness. The surfaces of roughness analysis 
resulting from this process are in Fig. 6.

The software20 reads each of these points individually and automatically to obtain the necessary informa-
tion for the calculation of Ra (Mean Roughness—Eq. (1)26) and Z2 (Root mean square deviation of the profile 
derivative—Eq. (2)27).

The average roughness ( Ra ) is the arithmetic mean of the absolute values, obtained by summation of the 
distance between the roughness measurement points to the fit line defined for the profile ( yi ) and the total 
length sample (L)26.

For calculating Z2 for equal ranges, it is necessary to perform the sum of squares of the differences in adjacent 
coordinates (y) along the entire length of the sample (L). This sum is divided by the range (x), and applied to 
the square root27.

For calculating the Joint Roughness Coefficient (JRC), a correlation was developed with the parameter Z2 through 
Eq. (3) for an interval of 1 mm28.

The software import the point’s coordinates through a text format file. In the imported file, each line contains 
information for each point in the cloud divided into three columns containing the three-dimensional positioning 
information (First column: x coordinate; Second column: y coordinate; and third column: z height coordinate). 
A code sequence in the same programming language identifies the coordinate of the points and the graphical 
results and fit planes displayed to the user. The generation of the fit planes occurs through the calculation of three 

(1)Ra =
1

L

L
∑

0

|yi|

(2)Z2 =
1

L
×

N−1
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(
(yi+1 − yi)

2

xi+1 − xi
)
1

2

(3)JRC = 64.22(Z2)− 2.31

Figure 6.   Square samples of 3.5 cm × 3.5 cm. The diagonal line represents the location of the two-dimensional 
readings: (A) Sample 1 and (B) Sample 2.
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individual vectors for each node of the quadtree. The hierarchical division of the rock sample surface calculated 
was 64 squares. This division is the result of 3 subdivisions performed to generate the quadtree.

In the last part of the method, the code loaded the points again to calculate the valley areas. In addition, 
in this part of the method, the graphic results are presented through a web application (valley areas, fit planes, 
unidirectional Ra differences graph, and roughness coefficient dispersion histogram).

For validating this present methodology, a comparison with a 2D method already used was made. In addition 
to the three-dimensional readings obtained over the entire surface of the rock sample, 2D linear results were 
also obtained at identical locations by the two methods. For this, the cloud of points was cut again, generating a 
line of points with a thickness of 1 mm. The rock samples were marked in the places of the first 2D results to be 
accurately measured. For this, was added to the code, a new linear read configuration. This new setup separates 
the point cloud by a thickness of 1 mm and calculates bisectors along the entire line of points, segregating the 
alignment into small squares of 1 mm × 1 mm. A mean solid line between the first and last point of the line of 
points is created to calculate the segments along the entire solid line with a distance of 1 mm from each other. 
Then the cloud points are plotted along the line. The maximum elevation point in each generated square is calcu-
lated to produce a linear profile. This process aims to create a profile that simulates the profilometer to compare 
the two methods. An example of the process is described in Fig. 7.

Roughness coefficient by two‑dimensional linear method.  A method validates the methodology of 
roughness coefficient by hierarchical structure applied to geomechanics through the parameter Z2 as a variable 
in the JRC calculation29. As an initial part of the process, the profile is printed on a profilometer, which serves to 
mold profiles and surface roughness designs for shear tests15.

It has a length of 15cm, a depth of 50 mm, and juxtaposed individual needles that change their height accord-
ing to the surface in contact. To profile the 2D rock surface roughness, the profilometer is pressed against the 
rock sample surface. In the second part of the method, the created profile is positioned to cast a shadow on a 
white background and is produced a backlit photograph.

The following steps are computational, and it is necessary to make the images in monochrome format (black 
and white). That images are processed using MATLAB (MATLAB 9.1.0—https://​www.​mathw​orks.​com/​produ​cts/​
matlab.​html) software, which reads and converts the image matrix to generate a y vector. The MATLAB (MAT-
LAB 9.1.0—https://​www.​mathw​orks.​com/​produ​cts/​matlab.​html) algorithm calculates Z2 (Root mean square 
deviation of the profile derivative—Eq. (2)27) and JRC (Joint roughness coefficient—Eq. (3)28).

The method validation applied ten profiles to draw corresponding vectors and assess their accuracy. The 
same methodology was used with vectors reconstructed from previous images, besides being visually compared.

Comparison between the methods.  For validating the methodology applied to geomechanics, the 
results found must have statistical importance. The objective is to determine if there is a significant difference 
(or advantage) between the two methods.

For this validation, the T-Student hypothesis test was used. The test is recommended for statistics with a 
sample population of less than 30 and when the sample subjects are divided into two groups (group A and 
group B)30. This estimate is used when the population standard deviation is unknown. It is important to note 
that statistics are basically about probabilities, as their result does not reflect an absolute value but a probability 
of an event occurring.

The research estimated the error rate and statistical power of the one-sample and two-sample T-tests for 
normally distributed populations. A paired T-test is feasible with an extremely small number of samples. It is 
concluded that there are no objections to using a T-test with n = 2. The derivation for the paired T-Student test 
is in the Eq. (4) ( ̄d is the mean of the sum of the differences between the values of each sample and the average 
between them, s2(d) is the variance of the differences, and n is the sample number).

(4)t =
d̄

√

s2(d)
n

1mm 1mm 1mm 1mm

Point cloud Alignment for 2D 

analysis

Point cloud cut Bisectors to generate 

1mm x 1mm squares

2D profile

Figure 7.   Method for 2D data acquisition.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Results
The results of this study are divided into three parts: results from a three-dimensional method20, results from a 
two-dimensional method29 and a comparison between the two methods.

Results from a three‑dimensional method.  First, the roughness information in each subdivision per-
formed in the hierarchical structure is shown (Figs. 8 and 9).The coloration of each quadtree represents how 
rough that place is. The color variation is represented from white scale (fewer roughness places) to black (rough-
ness locations), ranging in grayscale to median values between maximum and minimum. It is important to note 
that it does not represent the depth of valleys and peaks. The red alignment is where the 2D linear results were 
also obtained. The squares in yellow highlighted the highest and lowest roughness in each rock sample.
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Figure 8.   Average roughness for each subdivision square for Sample 1.
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Figure 9.   Average roughness for each subdivision square for Sample 2.
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Figure 10A shows the maximum (blue line), minimum (red line) roughness, and the average—the sum of 
the average roughness of each quadtree ( Ra ), divided by the number of quadtrees (magenta line). The roughness 
distribution in each square is also presented linearly. In Fig. 10B it is possible to see the histogram of roughness 
value distribution along each sample.

Another result using this methodology shows the points where valley areas occur (yellow areas in Fig. 11—the 
darker the color, the deeper the area). The color is defined by evaluating the highest valley height in the area. 
These data can be used for fluid flow prediction studies in rock masses and to evaluate the mechanical behavior 
of rocks.

To define the valley area index parameter ( △T ), the division between the surface valley area index ( △S ) and 
the total surface area ( �surface ) is performed using Eq. (5). The total surface area and the valley area are calcu-
lated through polygonal triangulation between the points connected with reference to the neighboring point. 
The first step is to separate the sample into regions where the points are below the adjustment level. Then, the 
software connects by means of triangulation the neighboring points that are below the fit plane, creating regions 
known as lakes. In this triangulation, only areas with edge points (places where the distance between the point 
and the fit plane is zero) and their inner points are used. After triangulation, it is possible to form polygons (lake 
boundaries), where the area is calculated through the dimension of the created triangles. This process makes 
the points have pixel behavior, where a binary image (black or white) is created informing if the point is above 
or below the fit plane. In this scenario, a valley region is a set of connected black pixels. The algorithm identifies 
all black points and observes the behavior of the neighboring pixel until all areas are established21.

As general results found for Sample 1, it is possible to observe that the maximum average roughness ( Ra ) found 
corresponds to 0.165µm and the minimum roughness found to 0.056µm . The valley area percentage corre-
sponds to 33.46% of the total area. In Sample 2, the maximum and minimum roughness ( Ra ) were 0.166µm and 
0.055µm , respectively. The total area of the valley found was 31.15% of the total area analyzed.

(5)△T =
△S

�surface

Figure 10.   (A) Linear distribution of surface roughness values and (B) Histogram of roughness value 
distribution: Sample 1 and Sample 2, respectively.

Figure 11.   Valley areas and peak areas on the sample surface: (A) Sample 1 and (B) Sample 2.
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Through the adaptations made to the method of hierarchical structures, were obtained the 2D results. These 
results are in pre-defined sections in the rock sample for later comparison between this method and the method 
used for its validation. For Sample 1, the average roughness found ( Ra—Eq. (1)) was 0.35µm and the coefficient 
Z2 (Eq. (2)) obtained was 0.42 with a sampling interval of 1 mm. Through Eq. (3), the joint roughness coefficient 
(JRC) through the Z2 was 22.86. With the mean roughness coefficient ( Ra ) as a variable, the result found for JRC 
was 19.18. For Sample 2, the average roughness ( Ra—Eq. (1)) was 0.235µm and the coefficient Z2 was 0.284 with 
a sampling interval of 1 mm (Eq. (2)). The joint roughness coefficient (JRC—Eq. (3)) through the coefficient Z2 
was 15.565 and the JRC through the average roughness ( Ra ) was 12.75. In Table 1 there is a description of all the 
results obtained through our methodology.

Results from a two‑dimensional method.  The results of joint roughness coefficients (JRC) by 2D linear 
metrics29 were obtained for each sample (Fig. 12). For Sample 1, the parameter Z2 , also calculated using Eq. (2), 
has a value of 0.5440 and a JRC of 28.973 (Eq. (3)). For Sample 2, the value of Z2 found was 0.3331 and JRC = 
18.293.

The methodology used to obtain these results was based on two-dimensional linear readings performed using 
a profilometer and image processing in the MATLAB (MATLAB 9.1.0—https://​www.​mathw​orks.​com/​produ​cts/​
matlab.​html) software. These results were obtained in the same alignment (Figs. 8 and 9) previously defined to 
compare the two methods and validate the methodology proposed in this work.

Comparison between the two methods.  For comparing the 2D linear results of the two methods, was 
used the T-Student test. This test was used due to the restriction of two in the number of rock samples used in 
this study (recommended for sample populations smaller than 30)30. The paired T-Student test (Eq. (4)) aims to 
compare means for the same group of subjects with a variable, with groups of n = 2 samples. For the comparison, 
the results of the coefficient Z2 were used (Table 2).

Table 1.   Our general methodology results.

Rock sample Linear Z2/JRC results Average 2D linear Ra/JRC results) Average 3D Ra results

1 0.42/22.86 0.35/19.18 0.100

2 0.284/15.565 0.235/12.75 0.090

Figure 12.   Linear two-dimensional results: (A) Sample 1 and (B) Sample 2.

Table 2.   Z2/JRC linear results for 2D comparison and validation of our methodology.

Rock sample Z2/JRC (our methodology) Z2/JRC (comparative methodology)

1 0.42/22.86 0.544/28.973

2 0.2837/15.565 0.3331/18.293

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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For Sample 1, we obtained a mean value of the differences d̄ = 0.124, variance of the differences s2(d) = 
0.003844 with the number of samples n = 2. A T-Student test value of 2.8284 was obtained. For the Sample 2, a 
mean value of differences d̄ = 0.0491 was reached, variance of differences s2(d) = 0.000603 for the same number 
of samples n = 2. The value for the T-Student test was 2.8277. For a two-tailed degree-of-freedom Student’s t-test, 
the value of the tabulated area for acceptance of the null hypothesis is 12.706. As the value found was lower than 
the tabulated value, it is possible to accept the hypothesis that there is no significant difference between the results 
of the two rock samples and those of the comparative method.

Discussion
In this section, the results are analyzed in order to prove (or refute) the hypothesis that the results obtained 
through three-dimensional reading are essential in geomechanics due to the non-regularity of the rock surface. 
The first part of this chapter, are discussed the 2D linear results using the two methods. Subsequently, the three-
dimensional results of the entire rock surface are evaluated and compared with the two-dimensional linear 
results.

Through the results of both methods, it is possible to observe differences between the values obtained for the 
coefficients Z2 and consequently in the JRC. Other research shows that the results for samples with intervals of 1 
mm (criterion used in this study) have an average difference of 13.75% and 12% for a R2 of 0.893 for the compared 
samples17,22. In our results, the difference in values for Sample 1 between the two methods was 21.1%, and for 
Sample 2 was 14.91%. It is important to note that the method used for comparison in this research29 also presents 
an average error close to that observed in the literature. Therefore, for more statistical analysis, the experiment 
must be performed with more samples. In this way, the T-Student hypothesis test, for sample size n = 231, shows 
the significance (or not) of the differences in the results found. This test was performed with the aim of validating 
the hypothesis that there are no significant differences between the results found in the two methods. As previ-
ously discussed, it was possible to validate this hypothesis for the two samples with a significance level of 95%.

For the three-dimensional analysis, average roughness results ( Ra ) were obtained in the 2D linear profiles 
and compared with the three-dimensional results of Ra for the surface of the entire rock sample. In a general 
analysis, it is possible to observe that, for two rock samples, the linear results presented values of Ra higher than 
those in all quadtrees present on the surfaces of the rock samples. In addition, the quadtrees with the highest Ra 
do not coincide with the main diagonal of the samples (where the 2D linear results of Ra were obtained—Figs. 8 
and 9). These factors highlight the hypothesis that 3D results are essential in geomechanical studies due to the 
anisotropic nature of the rock surface.

Through the results, obtaining the coefficient Ra contributes significantly to the application of the methodol-
ogy in geomechanical studies. Through the Ra , it is possible to obtain the average roughness across the entire 
surface of rocks or rocky outcrops. The main advance of this method to the published and described studies is 
the ease of increasing (or decreasing) the accuracy of the results according to the user interest, changing the 
division/quantity of quadtrees analyzed.

Conclusion
The roughness is essential in geomechanics study due to the influence on mechanical resistance, hydraulic flow, 
and fluid percolation1. Thus, the roughness of the rock surface is fundamental for research that seeks to evaluate 
and quantify the flow of fluids in geological formations and for the identification, classification, and study of 
natural fractures in wells as a means of storage of crude oil6,8,10,32.

This research had a study hypothesis that the data obtained by the three-dimensional roughness measure-
ments are important in geomechanics due to the non-regularity of the rock surface. Through this hypothesis, 
the objective was to adapt and apply a method of hierarchical division in three-dimensional digital representa-
tions of rocks to determine the roughness coefficient, comparing the results through two-dimensional readings 
performed through a conventional method.

Through our methodology, it was possible to confirm the hypothesis and emphasize the importance of 
carrying out a three-dimensional analysis of the rock surfaces in their entirety. The results show very distinct 
roughness values ( Ra ) along its surface. Furthermore, the results obtained through the two-dimensional reading 
were different from those in the three-dimensional analysis. Thus, we confirm that this difference is significant 
in geomechanical studies. The use of hierarchically organized Ra is significant for the results of the 3D surface 
roughness of a rock sample, as this method allows altering the level of details according to the user’s interest. 
The methodology also provides locally and globally analyzed roughness results showing that the average surface 
roughness of rock samples is variable according to the analyzed scale.

This research has the potential to advance to use of the 3D roughness results from this method as a variable 
in fluid flow and formation of fractures calculations. These results will be associated with porosity, permeabil-
ity, and rock wear data. Furthermore, the results from valley areas can be applied to the direction of fluid flow 
within the rock through the resulting vector. Another approach for future research is to use more rock samples 
to promote a more statistically reliable analysis and use direct acquisition methods such as a 3D scanner to the 
accuracy of 3D surface acquisition data.

Data availability
The datasets that were generated and/or analysed during the current study are freely available from the cor-
responding author on a request.
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