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The building of mathematical and computer models
of cities has a long history. The core elements are
models of flows (spatial interaction) and the dynamics
of structural evolution. In this article, we develop
a stochastic model of urban structure to formally
account for uncertainty arising from less predictable
events. Standard practice has been to calibrate the
spatial interaction models independently and to
explore the dynamics through simulation. We present
two significant results that will be transformative
for both elements. First, we represent the structural
variables through a single potential function and
develop stochastic differential equations to model
the evolution. Second, we show that the parameters
of the spatial interaction model can be estimated from
the structure alone, independently of flow data, using
the Bayesian inferential framework. The posterior
distribution is doubly intractable and poses significant
computational challenges that we overcome using
Markov chain Monte Carlo methods. We demonstrate
our methodology with a case study on the London,
UK, retail system.

1. Introduction
The task of understanding the inner workings of cities
and regions is a major challenge for contemporary
science. The key features of cities and regions are
activities at locations, flows between locations and the
structure that facilitates these activities [1]. It is well
understood that cities and regions are complex systems,
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and that an emergent structure arises from the actions of many interacting individuals. The flows
between locations arise from the choices of individuals. An understanding of the underlying
choice mechanism is therefore advantageous for planning and decision-making. Economists have
long supported the idea that consumer choices are derived from utility, a measure of net benefit,
although preferences can only be measured indirectly by the phenomena they give rise to [2].

Random utility models, such as the multinomial logit model [3], provide a discrete choice
mechanism based on a utility function. These models have received considerable attention in the
econometrics literature [4]. The more conventional random utility models assume that choices
are conditionally independent and require large volumes of flow data to calibrate. It is generally
difficult to ascertain the flow data for a large number of individuals residing in a country or city,
and this may require an extensive survey that suffers from sampling biases. On the other hand,
the structure facilitating activities can be more straight-forward to measure.

It turns out that the flows between locations concern a vast number of individuals and are well
represented by statistical averaging procedures [5]. It also turns out that the evolution of urban
structure can be described by a system of coupled first-order ordinary differential equations that
are related to the competitive Lotka–Volterra models in ecology [6]. The conventional Harris and
Wilson model in [6] is obtained by combining Lotka–Volterra models with statistical averaging
procedures, after having expressed the flows in terms of the evolving structure and spatial
interaction. As it tends to be more feasible to observe the emergent structure, for example
configurations of floorspace dedicated to retail activity, our work is largely motivated by the
existing models of urban structure [1,6–9]. By adopting a similar approach, we view the flows
between locations as ‘missing data’.

We note, however, that there is an urgent need to provide an improved modelling capability
that captures the stochastic nature and uncertainty associated with the evolution of urban
structure. The key shortcoming of the Harris and Wilson model is that it is deterministic and
converges to one of multiple equilibria as determined by the initial conditions. In reality, the
behaviour provided by the Harris and Wilson model would be accompanied by fluctuations
arising from less predictable events. We instead introduce mathematically well-posed systems
of stochastic differential equations (SDEs) to address this shortcoming, and provide an associated
Bayesian inference methodology for parameter estimation and model calibration.

To this end, we take a novel approach and construct a probability distribution to represent the
uncertainty in equilibrium structures for urban and regional systems. The probability distribution
is a Boltzmann–Gibbs measure that is the invariant distribution of a related SDE model [10], and is
defined in terms of a potential function whose gradient describes how we expect urban structure
to evolve forward in time. The potential function may be interpreted as constraints on consumer
welfare and running costs from a maximum entropy argument [8,11]. For the purposes of
parameter estimation, the Boltzmann–Gibbs measure forms an integral part of the assumed data-
generating process in a Bayesian model of urban structure [12,13]. A computational statistical
challenge arises as there is an intractable term in the density of the Boltzmann–Gibbs measure
that is parameter dependent. The intractable term must be taken into consideration when using
Markov chain Monte Carlo (MCMC) to explore the probability distributions of interest [14,15].
Our approach is applicable to a wide range of applications in urban and regional modelling; we
demonstrate our approach by inferring the full distribution over the model parameters and latent
structure for the London, UK, retail system.

2. Modelling urban systems
In this section, we construct a probability distribution for urban and regional systems. We work
in the setting of the Harris and Wilson model [6] and use consumer behaviour as an archetype;
however, the methodology is general and has wider applications such as archaeology, logistics,
healthcare and crime to name a few [1]. We are interested in the sizes of M destination zones where
consumer-led activities take place, for example shopping. Similarly, there are N origin zones from
where consumers create demands for each of the destination zones. We define urban structure



3

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170700

...................................................

Tij
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Figure 1. Illustration of a flow in an urban or regional system. It is assumed that there are N origin zones (e.g. left) and M
destination zones (e.g. right). The flow Tij denotes the flow of quantities from origin zone i to destination zone j. In an urban or
regional system, there are NM flows similar to the one depicted.

as the vector of sizes W = {W1, . . . , WM} ∈ R
M
>0. In what proceeds it is more natural to work in

terms of log-sizes X = {X1, . . . , XM} ∈ R
M, where each Wj = exp(Xj). We refer to log-size as the

attractiveness, which is an unscaled measure of benefit, and by working in terms of attractiveness
we avoid positivity issues when developing a stochastic model. We first describe a stochastic
generalization of the Harris and Wilson model and then consider the equilibrium distribution as
a probability distribution of urban structure.

(a) A stochastic reformulation of the Harris and Wilson model
The flow between destination zone j and origin zone i is denoted Tij. We illustrate a component
of an urban or regional system in figure 1. For a singly constrained urban system, the demands
made by the N origin zones are

Oi =
M∑

j=1

Tij, i = 1, . . . , N, (2.1)

and are known. The demands made for the M destination zones are

Dj =
N∑

i=1

Tij, j = 1, . . . , M, (2.2)

and are to be determined. The demands for the destination zones depend on urban or regional
structure. It is assumed that larger zones provide more benefits for their use and that local
zones are more convenient and cost less to use. A suitable model of the flows is obtained by
maximizing an entropy function subject to the constraint in (2.1) in additional to fixed benefit and
cost constraints [5,8]. The resulting flows are

Tij = Oi

Wα
j exp(−βcij)∑M

k=1 Wα
k exp(−βcik)

, (2.3)

where α, β > 0 are scaling parameters and each cij ≥ 0 represents the cost or inconvenience of
carrying out an activity at zone j from i.

We expect that zones with unfulfilled demand will grow, whereas zones that do not fulfil their
capacity will reduce to a more sustainable size. It is therefore reasonable to expect a degree of
stability in the sizes of the destination zones. A suitable model of the dynamics is given by the
Harris and Wilson model [6], which is described by a system of ordinary differential equations
(ODEs)1

dWj

dt
= εWj(Dj − κWj), W(0) = w0, (2.4)

1For simplicity, we are not explicit about time dependence when describing differential equations.
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where ε > 0 is the responsiveness parameter and κ > 0 is the cost per unit floor size. The
assumption that zones aim to maximize their size until an equilibrium is reached is justified by
including the cost of capital in the running costs. A natural generalization of the Harris and Wilson
model is the following SDE with multiplicative noise that we interpret in the Stratonovich2 sense:

dWj = εWj(Dj − κWj) dt + σWj ◦ dBj, W(0) = w0, (2.5)

for a standard M-dimensional Brownian motion B and volatility parameter σ > 0. A heuristic
interpretation of the SDE is that, over a short time δt, the net capacity term ‘Dj − κWj’ in (2.4)
is randomly perturbed by centred Gaussian noise with a standard deviation of σ

√
δt. The noise

term represents fluctuations in the growth rates arising from less predictable events that are not
captured by the original model. The specification of multiplicative noise preserves the positivity
of each Wj.

With the change of variables Xj = ln Wj, the Harris and Wilson model in (2.4) can be expressed
as a gradient flow. The corresponding stochastic dynamics in (2.5) is an overdamped Langevin
diffusion. To express this notion, we introduce a potential function V: R

M → R, its gradient
∇V: R

M → R
M and an ‘inverse-temperature’ parameter γ = 2σ−2 and reformulate the stochastic

dynamics as

dX = −∇V(X) dt +
√

2γ −1 dB, X(0) = x0, (2.6)

where the potential function is

ε−1V(x) = −α−1
N∑

i=1

Oi ln
M∑

j=1

exp(αxj − βcij) + κ

M∑
j=1

exp(xj). (2.7)

It is well understood that the density of X(t), denoted ρ(x, t), evolves in time according to the
Fokker–Planck equation [10]. For the SDE in (2.6), the Fokker–Planck equation can be written as

dρ(x, t)
dt

= ∇ · (ρ(x, t)∇V(x)) + γ −1
ρ(x, t), ρ(x, 0) = δ(x − x0). (2.8)

While (2.8) is very challenging to solve, especially in higher dimensions, its steady-state solution
is available in closed form and is the density of a Boltzmann–Gibbs measure given by

ρ∞(x) = 1
Z

exp(−γ V(x)), Z :=
∫
RM

exp(−γ V(x)) dx. (2.9)

The Boltzmann–Gibbs measure described by (2.9) forms the basis of our stochastic model of
urban structure. The potential function given by (2.7) does not yield a well-defined probability
distribution as the normalizing constant in (2.9) is not finite. In order to address the issue, we
could restrict the dynamics to a bounded subset of R

M, or introduce a confining term in the
potential function. We adopt the latter approach and later argue that this approach amounts to an
economically meaningful constraint.

(b) Boltzmann–Gibbs measures for urban structure
We model urban and regional structure as a single realization of the Boltzmann–Gibbs
measure described by (2.9). The Boltzmann–Gibbs measure is the stationary distribution of the
overdamped Langevin dynamics considered; however, we acknowledge that there are other
stochastic processes that have the same stationary distribution [16]. It is desirable that the
potential function satisfies the assumptions in appendix A. It suffices to say here that smooth
potential functions that grow at least linearly but no faster than exponentially at infinity have the
desired mathematical properties.

The Boltzmann–Gibbs measure can also be obtained from a maximum entropy argument [8,
11]. The advantage of this view is that the terms in the potential function can be interpreted

2The Stratonovich interpretation is obtained from a smooth approximation of white noise, which is appropriate for the
dynamical system of interest. For further discussion, refer to [10].
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as economic constraints. We consider a potential function with three components to develop a
baseline model, although more comprehensive presentations are possible3

ε−1V(x) = VUtility(x) + κVCost(x) + δVAdditional(x), (2.10)

where κ is as before and δ > 0 is an additional parameter. The utility potential describes consumer
welfare arising from utility-based choices; the cost potential enforces capacity limits in the system;
and the additional potential is a confining term that represents government initiatives, continued
investment or a background level of demand. If we consider a random variable X ∈ R

M that is
subject to the following equality constraints:

E[VUtility(X)] = CUtility,

E[VCost(X)] = CCost

and E[VAdditional(X)] = CAdditional,

⎫⎪⎪⎬
⎪⎪⎭ (2.11)

with each Ci ∈ R, then the maximum entropy distribution of X can be written as the Boltzmann–
Gibbs measure whose density is given by (2.9) with reference to the potential function in (2.10).
We now consider the meaning of each of these constraints in turn.

(i) Utility potential

A natural candidate for a utility potential is a measure of consumer welfare. For example, welfare
may be taken to be the area under the demand curve [17], given by (2.2), that is equal to the path
integral

VUtility(x) :=
∫ x

x0

(D1(x′), . . . , DM(x′)) · dx′

= α−1
N∑

i=1

Oi ln
M∑

j=1

exp(Uij(xj)) + const., (2.12)

where we have defined the deterministic utility function

Uij(xj) = αxj − βcij. (2.13)

In appendix B, we show that (2.13), but with α dependent on i, is also obtained by seeking a utility
function consistent with a singly constrained model and the path integral in (2.12). The log-sum
function is commonly used as a welfare measure in the economics literature [17–19]. To make the
connection with random utility maximization explicit, we define the stochastic utility function for
a choice being made from origin zone i as

Ũij(xj) = Uij(xj) + ξij, (2.14)

where the ξij are independent and identically distributed Gumbel random variables. Then under
the utility maximization framework, the expected utility attained from a unit flow leaving origin
zone i is

E

[
max

1≤j≤M
Ũij(xj)

]
= ln

M∑
j=1

exp(Uij(xj)) + c, (2.15)

where c is the Euler–Mascheroni constant [17]. The utility potential may then be expressed as the
expected utility attained from all flows in units of α

VUtility(x) = α−1
N∑

i=1

OiE

[
max

1≤j≤M
Ũij(xj)

]
+ const. (2.16)

3We present a simple aggregated model to illustrate the ideas. A refined model with disaggregation does not change the
underlying arguments.
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Two remarks are in order. First, the scaling factor of α−1 is necessary to ensure that the utility
potential is non-constant in the limit α → 0. Second, the tight bounds [20]

− α−1
N∑

i=1

Oi

{
max

1≤j≤M
Uij(x) + ln M

}
≤ VUtility(x) ≤ −α−1

N∑
i=1

Oi

{
max

1≤j≤M
Uij(x)

}
(2.17)

show that VUtility(x) may be finite when any xj → −∞, and so an additional potential is needed
to prevent zones from collapsing from a lack of activity. The bounds again show that the utility
potential is closely related to the best alternative available to each of the origin zones.

(ii) Cost potential

The cost potential prevents each zone from becoming too large, and is justified by the notion
that running costs increase with size. We therefore require that limxj→+∞ V(x) = +∞. In view of
the equality constraints in (2.11), an appropriate cost potential is the total size or capacity of the
system

VCost(x) =
M∑

j=1

Wj(xj), (2.18)

in which Wj(xj) = exp(xj) is as before. Since we have

∂VCost(x)
∂xj

= Wj(xj), (2.19)

this choice of potential yields the linear cost term in the overdamped Langevin dynamics
considered in (2.6).

(iii) Additional potential

The final potential term must satisfy limxj→−∞ V(x) = +∞ and must grow sufficiently fast at
infinity in order for (2.9) to be well defined. The purpose of the additional potential is to prevent
zones from collapsing from a lack of activity. Such mechanisms are commonplace in urban and
regional systems, for example continued investment or government initiatives. In view of the
equality constraints in (2.11), a suitable potential function is

VAdditional(x) =
M∑

j=1

xj, (2.20)

which ensures that the attractiveness of each zone is finite. The partial derivatives of the
additional potential function are

∂VAdditional(x)
∂xj

= 1. (2.21)

Therefore, the finiteness constraint requires that there is an additional positive constant term in
the deterministic part of the SDE model, given by (2.6), to ensure that the SDE has a well-defined
stationary distribution.

(c) Model summary
In summary, we have specified the following potential function:

ε−1V(x) = −α−1
N∑

i=1

Oi ln
M∑

j=1

exp(αxj − βcij)

︸ ︷︷ ︸
Utility

+ κ

M∑
j=1

exp(xj)

︸ ︷︷ ︸
Cost

− δ

M∑
j=1

xj

︸ ︷︷ ︸
Additional

, (2.22)

which satisfies the assumptions in appendix A. The potential function is similar to the one
obtained by reformulating the Harris and Wilson model in (2.6) and (2.7); however, it contains
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a = 0.5 a = 1.0 a = 1.5 a = 2.0

X1 X1 X1 X1

X2

Figure 2. Illustration of the potential function for a small model comprising two competing zones. The profile of the
potential function is largely determined by the α and β pairing; here, we have held β fixed and show e−γ V(x) for
different values ofα.

an additional term to prevent zones from collapsing. A stochastic generalization of the Harris
and Wilson model is given by the overdamped Langevin diffusion in (2.6), for which the process
converges at a fast rate to the well-defined Boltzmann–Gibbs measure described by (2.9). The
corresponding size dynamics, in the form of (2.5), are given by the Stratonovich SDE

dWj = εWj(Dj − κWj + δ) dt + σWj ◦ dBj, W(0) = w0, (2.23)

which is a stochastic generalization of the original Harris and Wilson model that includes a
positive shift to the multiplicative scale factor. In the limit δ, σ → 0, we obtain the original Harris
and Wilson model in (2.4).

In the regime δ → 0, the potential function has stationary points coinciding with the fixed
points of the original Harris and Wilson model. The stationary points for the potential function
are given by M simultaneous equations

N∑
i=1

Oi

Wα
j exp(−βcij)∑M

k=1 Wα
k exp(−βcik)

= κWj − δ, j = 1, . . . , M. (2.24)

While the behaviour of the stochastic and deterministic models may be similar in low-noise
regimes over finite time intervals, we emphasize that the asymptotic behaviour differs greatly
between the two. Here, we consider a deterministic model to be given by (2.23) in the limit σ → 0.
For a deterministic model, the dynamics will converge to a stable fixed point satisfying (2.24),
as determined by the initial condition. For a stochastic model, the system will converge to a
statistical equilibrium that does not depend on the initial condition. As t → +∞, the stochastic
model spends more time around the lower values of V(x), which occur around stable stationary
points, as summarized by the limiting stationary distribution given by (2.9).

We now comment on the Boltzmann–Gibbs measure described by (2.9). The Boltzmann–Gibbs
measure is the equilibrium distribution of (2.6), but is also justified as a probability distribution
for urban and regional structures with a maximum entropy argument. When considering the
Boltzmann–Gibbs measure, we specify ε = 1 to avoid over-parametrizing the model since the
relative level of noise is controlled by the inverse temperature γ = 2σ−2. As γ → +∞,
the Boltzmann distribution collapses to a Dirac mass around the global minimum of V(x), which
is unlikely to provide a good fit to the observed urban structure. As γ → 0, the distribution of
sizes approaches an improper uniform distribution. The profile of V(x) is largely influenced by
the pair of α and β values, as illustrated in figure 2. A large α relative to β results in all activity
taking place in one of the zones, whereas this regime is unlikely when α is low relative to β.
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Lastly, we can use the deterministic model to specify appropriate values of the cost of
floorspace κ and the additional parameter δ. By defining

κ = 1
K

( N∑
i=1

Oi + δM

)
, (2.25)

the deterministic model converges to an equilibrium with a total size of K units. Setting κ as
in (2.25) is justified with a supply and demand argument [21]. For simplicity, we use K = 1; the
choice is arbitrary. We can then specify δ relative to the size of the smallest zone possible, since at
equilibrium the size of a zone with no inward flows is δ/κ .

3. Parameter estimation
In this section, we consider the inverse problem; the task of determining α and β from observed
urban structure. The value of α describes consumer preference towards more popular destinations
and the value of β describes how much consumers are inconvenienced by travel. We use retail
activity as an archetype; however, our methodology is general and can be applied to other singly
constrained systems. While α and β can be estimated using discrete choice models [22–25], this
approach requires large volumes of flow data and is impractical for large systems. We instead
make use of the model described by the Boltzmann–Gibbs measure in §2.

We formulate the task of inversion as a statistical inference problem, as advocated in [12]. The
Bayesian approach is based on the following principles: the unknown parameters are modelled
as random variables; our degree of uncertainty is described by probability distributions; and the
solution to the inverse problem is the posterior probability distribution. Unlike classical methods,
a Bayesian approach is well posed and allows us to incorporate prior knowledge of the unknowns
into the modelling process. A Bayesian approach yields a posterior probability over the model
parameters, and the parameter values can be determined from the posterior mean or maximum
a posteriori estimates.

(a) A Bayesian approach to parameter estimation
The Boltzmann distribution in §2 is assumed to form an integral part of the data-generating
process; however, further uncertainty arises from measurement noise.4 To this end, we assume
that an observed configuration of urban structure Y ∈ R

M
>0 is related to some latent sizes W ∈ R

M
>0

and multiplicative noise E ∈ R
M
>0 by

ln Y = ln W + ln E. (3.1)

Multiplicative noise is appropriate as all measurements are positive, and there is more scope for
error when measuring larger zones. As before, it is natural to work in terms of log-sizes X = ln W ∈
R

M, and we assume that X ∼ ρ∞ is a realization of the Boltzmann–Gibbs measure given by (2.9)
and (2.22). The latent variables X depend on the model parameters Θ = {α, β} ∈ R

2
>0, which we

summarize by a single variable for notational convenience. We assume that ln E ∼ N(0, Σ) is a
realization of Gaussian noise for some symmetric positive definite covariance matrix Σ ∈ R

M×M.
We specify a prior π (θ ) on the model parameters. The prior distribution for the latent variables

is denoted π (x|θ ) and is given by (2.9), which we repeat here to make the θ -dependence explicit
in our notation

π (x|θ ) = 1
z(θ )

exp(−γ Vθ (x)), z(θ ) =
∫
RM

exp(−γ Vθ (x)) dx. (3.2)

We emphasize that π (x|θ ) is only known up to a normalizing constant z(θ ) that is a function of θ .
The likelihood function π (y|x) is the Gaussian density given by (3.1). The joint posterior density

4It may be necessary to include a model error term if the Boltzmann–Gibbs measure provides a poor fit to the data.
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then has the form

π (x, θ |y) ∝ π (θ )
1

z(θ )
exp(−γ Vθ (x))π (y|x), (3.3)

and is ‘doubly intractable’ as both the normalization factor of (3.3) and the function z(θ ) are
unknown. The estimation of z(θ ) is a notoriously challenging problem as it requires the integration
of a complex function over a high-dimensional space [13,15]. The normalization constant z(θ ) is
a probability-weighted sum of all possible outcomes and is a necessary penalty against model
complexity. The θ -dependence for the z(θ )-term poses significant computational challenges as
the joint posterior density cannot be evaluated at all, not even up to an irrelevant multiplicative
constant.

(b) Computational strategies
To explore the posterior distribution, we resort to numerical simulation and use MCMC to
estimate integrals of the form

E[g(X, Θ) | Y = y] :=
∫
R

2
>0

∫
RM

g(x, θ )π (x, θ |y) dx dθ , (3.4)

where g(x, θ ) is an integrable function of interest. For example, (3.4) can be used to compute the
mean, variance and density estimates of the posterior marginals. As suggested in [13], we can use
an approximate method to estimate z(θ ). We consider the quadratic approximation of Vθ (x) that
is obtained from a second-order Taylor expansion around its global minima mθ

V̂θ (x) = Vθ (mθ ) + 1
2 (x − mθ )T
Vθ (mθ )(x − mθ ). (3.5)

As the integral for z(θ ) only has significant contributions in the neighbourhood of mθ , where (3.5)
is a good approximation, we estimate z(θ ) as

z(θ ) ≈
∫
RM

exp(−γ V̂θ (x)) dx

= exp(−γ Vθ (mθ ))
∫
RM

exp
(
−γ

2
(x − mθ )T
Vθ (mθ )(x − mθ )

)
dx

= exp(−γ Vθ (mθ ))
(2πγ −1)M/2

|
Vθ (mθ )|1/2 . (3.6)

This is known as a saddle point approximation and is asymptomatically accurate as γ →
+∞ [26]. In all but special cases, the global minima of Vθ (x) is unique and can be found
inexpensively using Newton-based optimization; for example, using the limited memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm with the right initial condition [27]. We
run the optimization procedure for multiple initializations to provide a good coverage of the
basins, although this is only necessary for α > 1. The curvature term 
Vθ (mθ ) is given by (A 5).
With (3.6), we can proceed with the MCMC scheme in appendix C.

To obtain more accurate posterior summaries, especially in the case that the saddle point
approximation performs poorly, we look towards a consistent estimator of (3.4). Despite the
intractable z(θ ) term, we are able to construct a Markov chain {X(i), Θ (i), Ω (i)}n

i=1 such that

E[g(X, Θ) | Y = y] = lim
n→+∞

∑n
i=1 Ω (i)g(X(i), Θ (i))∑n

k=1 Ω (k)
. (3.7)

The estimator requires that we can obtain unbiased estimates of the reciprocal normalizing
constant 1/z(θ ), which can be obtained by randomly truncating an infinite series involving
importance sampling estimates of z(θ ) [15,28]. The estimator given by (3.7) is an importance-
sampling-style estimator, but with each weight Ω (i) ∈ {−1, 1} equal to the sign of the unbiased
estimate of 1/z(θ ) for that iteration. The suitability of the scheme is dependent on being able to
obtain precise importance sampling estimates of z(θ ), which is challenging for low-noise regimes
due to the concentration of measure. Negative values of Ω (i) arise from imprecision in the z(θ )
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estimates and have the effect of increasing the variance of the estimator given by (3.7). Further
details of the scheme are in appendix C.

(c) Implementation details
We specify weakly informative uniform priors on α and β, restricted to the interval [0, 2] with
a suitable scaling of β determined by a preliminary study, as done in [1,21].5 In this setting,
we are able to compare our inferred α and β values with the R2 analysis performed for the
deterministic Harris and Wilson model in [1,21]. While ideally we would place priors on all
parameters that specify the Boltzmann–Gibbs measure, we acknowledge that in doing so we
would encounter both identifiability issues and tuning difficulties with regards to the importance
sampling scheme for z(θ ). We are able to proceed by fixing the remaining hyperparameters to
suitable values. We specify ε = 1 to avoid over-parametrizing the model and specify γ to reflect
a desired level of noise. We set δ to the size of the smallest zone. This is justified by considering
the Gamma distribution of a zone with no inward flows. We normalize the origin quantities and
total sizes to determine κ from (2.25). Lastly, for demonstration purposes, we specify independent
and homogeneous observation noise by setting Σ = λ2I, where λ is the standard deviation of the
noise.

To compute low-order summary statistics of the form in (3.4), we use the Monte Carlo scheme
in appendix C, consisting of a block Gibbs scheme. We use a Metropolis–Hastings random walk
with reflective boundaries for the Θ-updates and a Hamiltonian Monte Carlo (HMC) for the
X-updates. We tune the step size parameter for the Θ-updates to obtain an acceptance rate
in the range 30–70%, and we tune the step size and number of steps for the X-updates to
obtain an acceptance rate of at least 90%. For the Θ-updates, we require either global minima
of Vθ (x), for the saddle point approximation in (3.6), or unbiased estimates of 1/z(θ ), for the
pseudo-marginal MCMC framework described in appendix C. When requiring global minima
of Vθ (x), we perform multiple runs of the L-BFGS algorithm for M different initial conditions.
When requiring consistent estimates of 1/z(θ ), we use annealed importance sampling (AIS) with
HMC transition kernels. We initialize AIS with the log-gamma distribution that can be obtained
from π (x|θ ) by letting α, β → 0. We produce unbiased estimates by truncating an infinite series
of importance sampling estimates with a random stopping time T with Pr(T ≥ k) ∝ k−1.1, and
therefore requiring T + 1 runs of AIS. Running AIS a large number of times is a computationally
intensive task; however, the estimates can be obtained in parallel.

4. Case study: the London retail system
In this section, we illustrate our proposed methodology with an aggregate retail model using
London, UK, data similar to the example in [1,21]. While the model can be improved with
disaggregation to capture further problem-specific characteristics, the underlying arguments
would remain the same. We demonstrate how the Boltzmann–Gibbs measure can be used to
simulate configurations of urban structure before setting out to infer the α and β values in the
utility function. In the context of retail, the attractiveness term in (2.13) is justified by the benefit
consumers gain from the improved range of options and economies of scale, and the cost term
represents inconvenience of travel. The inverse problem is of particular interest in the context
of retail as the flow data are difficult to obtain. On the other hand, urban structure is relatively
straight-forward to measure and may be routinely available. While some attempts have been
made in the literature to estimate the parameters of a similar spatial interaction model [1,21],
these approaches are somewhat ad hoc but do provide a basis of comparison.

We obtain measurements of retail floorspace for London town centres for 2008 from a
London Town Centre Health Check report prepared by the Greater London Authority [29].
We only include town centres classified as international, metropolitan and major town centre

5In our implementation, we normalize the cost matrix so that all elements sum to 7 × 105.
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Figure 3. Visualization of the observation data Y (red) over themap of London. The redmarkers indicate the destination zones,
which are the 49 town centres, and the blue markers indicate the origin zones, which are the 625 residential wards. The sizes of
the markers are given by the respective Y and O values, and each zone is plotted at its longitude–latitude coordinate.

classifications in our study, giving M = 49 town centres. The remaining town centres are mostly
district town centres that have a relatively high concentration of convenience goods and more
localized catchment; we argue that these would be better modelled separately. We determine the
origin quantities from ward-level household and income estimates, with N = 625, published by
the Greater London Authority [30,31]. We take the origin quantities to be the spending powers as
given by the population size multiplied by the average income. The floorspace measurements and
residential data are presented in figure 3, over the map of London [32]. In our implementation,
we calculate the cost matrix from Euclidean distance, although a better representation would use
a transport network [1].

We first perform a preliminary study of our model in the limit of no observation noise λ → 0,
in which case the θ -marginal of (3.3) is

π (θ |y) ∝ π (θ )
1

z(θ )
exp(−γ Vθ (x)). (4.1)

With this simplification, we are able to evaluate the posterior probabilities over a grid of α and β

values. We evaluate the probabilities over a 100 × 100 grid for γ = 102 and γ = 104, representing
high-noise and low-noise regimes, respectively. Using the justification given in the previous
section, we specify δ = 0.006 and κ = 1.3. We produce the grid by estimating z(θ ) with the saddle
point approximation in (3.6).6 The results are presented in figure 4, in which the scales indicate
that the model with high noise provides the better explanation of the data. We find that the best
fit for the high-noise regime is α = 0.90 and β = 0.46 and the best fit for the low-noise regime is
α = 1.18 and β = 0.28. As expected, the low-noise regime suggests stronger attractiveness effects
as the model with a higher level of noise is able to explain variation by stochastic growth. The α

and β values are positively correlated; this can be seen in figure 4 and is due to the competing
effects in the utility function in (2.13).

In [1], the authors perform an R2 analysis that we replicate here for our deterministic version
of the Harris and Wilson model for a basis of comparison. The predicted value WPred is taken
to be the equilibrium obtained from the ODE model given by (2.23) with σ → 0 and the initial
condition w0 = Y. The R2 value is defined as R2 = 1 − SSres/SStot, where SSres/SStot is the ratio of

6It is very difficult to estimate z(θ) for high values of γ using importance sampling techniques due to the concentration of
measure.
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Figure 4. Evaluations of the logarithm of (4.1) over a grid of 100 × 100 values ofα andβ for a regimewith high noise (a) and
a regime with low noise (b).

the variance of the residuals Y − WPred and the variance of the observed Y. While our Bayesian
approach is fundamentally different, and we should not expect to obtain too similar results, the
R2 analysis yields a best fit of α = 1.36 and β = 0.42. This is agreeable with the findings for the
low-noise regime in figure 4. Furthermore, there are some strong similarities between the profile
of posterior probabilities and the profile of the R2-values. First, both approaches find that the
poorest fit is for a regime in which α is too high and β is too low; these values result in most
activity taking place in a single zone. Second, both approaches agree in that a good fit can be
found for 1 < α < 2.

Next, we draw the latent variables from the prior distribution π (x|θ ) to verify the suitability
of the modelling. For illustrative purposes, we consider a range of α values across [0, 2], and
hold β = 0.5 fixed. For the regime with high noise, the approximate draws are obtained by
running a Markov chain of length 10 000 using HMC combined with parallel tempering for five
different temperature levels [14]. For the regime with low noise, we plot configurations of the
global minima of Vθ (x) obtained from numerical optimization as there is little variation between
samples. The results are in figures 5 and 6, respectively. It can be seen that higher values of α

and lower values of β create a sparse structure in that all activity takes place in very few zones.
Conversely, lower values of α and higher values of β lead to a more dense structure.

We now return to the observation model in (3.1) to account for observation noise in the data.
For illustrative purposes, we specify λ = 0.1 so that the relative noise for a zone of size 1/M7 is 3%.
Although an improved specification of observation noise from a preliminary study would lead
to more accurate inferences, the arguments and methodology we are presenting would remain
the same. We run Markov chains of length 20 000. For the high-noise regime, we use the pseudo-
marginal MCMC methodology in appendix C. Our importance sampling estimates comprised 10
particles and 50 equally spaced inverse temperatures. For the low-noise regime, we were unable
to obtain precise importance sampling estimates due to the concentration of measure, so used
the MCMC methodology in appendix C with the saddle point approximation in (3.6). For both
examples, the empirical autocorrelation for α and β is below 0.2 after 25 steps. For the pseudo-
marginal MCMC scheme, 88% of the signs are positive, which is acceptably high for the scheme
to be used.

Plots of the smoothed density estimates for α and β for the high-noise regime are presented in
figure 7. Plots of the latent sizes showing the posterior mean ± 3 s.d. are presented in figure 8
alongside plots of the expected residuals and observation data. The posterior marginals of α

and β give mean ± 1 s.d. estimates of 0.35 ± 0.28 and 1.09 ± 0.46, respectively, which appear
reasonable in light of the analysis in figure 4. The plots of the expected residuals and observation

7Relative noise in this context is λ/ log M.
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a = 0.5

draw 1

draw 2

draw 3

draw 4

a = 1.0 a = 1.5 a = 2.0

Figure 5. Approximate draws of the latent variables fromπ (x|θ ) for a high-noise regime withγ = 102, obtained by running
a Markov chain of length 10 000 using HMC combined with parallel tempering. Each row shows four randomly selected states
from the Markov chain withα as specified andβ = 0.5.

a = 0.5 a = 1.0 a = 1.5 a = 2.0

Figure 6. Global minima of the latent variables fromπ (x|θ ), obtained by running the L-BFGS algorithm forM different initial
conditions. These configurations are representative of draws fromπ (x|θ ) in a low-noise regime with γ � 1.

data suggest that the model provides a reasonable fit to the data, and that the assumption of
homogeneous observation noise is reasonable. This is to be expected as the high-noise model
provides a flexible model. After taking into account the observation noise, a weaker attractiveness
effect was observed.

Similar plots are presented in figures 9 and 10 for the low-noise regime, and the posterior
marginals of α and β give a mean of 1.17 ± 0.01 and 0.26 ± 0.01, respectively. The inferred values
for the low-noise regime are in line with figure 4. Both sets of posterior summaries suggest that
attractiveness and inconvenience effects are present in the data, though the inferred α values are
considerably higher for the low-noise model. The plots of the expected residuals and observation
data suggest that the model also provides a reasonable fit to the data; however, there is more
dispersion in the plotted quantities and possibly a degree of heteroscedasticity due to the less
flexible model. The model with more noise favours the simpler explanation that most variation
is due to stochastic growth, whereas the low-noise model is more constrained. There is notably
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rings show the posterior mean± 3 s.d., respectively. (b) Expected attractiveness against the expected residual. (c) Expected
attractiveness against the observed value.

more uncertainty in the latent variables and the model parameters for the high-noise regime, as
there are more possible explanations for the observation data. The uncertainty in the α and β

estimates is so great for the high-noise regime that limited insights are gained for the purposes of
model calibration. As a result, we conclude that strong assumptions are required in the prior
modelling in order to be able to exploit known structure in the data-generating process. The
required assumptions can be made, for example, through the prior modelling of α and β or by
specifying a high value of γ . On the other hand, the low-noise regime results in very confident
posteriors. Although the resulting inferences are consistent with previous studies, care must
be taken to avoid being overconfident in a particular model by not adequately accounting for
uncertainty in the modelling process.

5. Discussion
We have developed a novel stochastic model to simulate realistic configurations of urban and
regional structure. Our model is a substantial improvement on existing deterministic models as it
fully addresses the uncertainties arising in the modelling process. Unlike existing time-stepping
schemes, our model can be used to simulate realistic configurations of urban structure using
MCMC methods without recourse to numerical error. We have demonstrated that our model can
be used to infer the components of a utility function from observed structure, thereby providing
an alternative to the existing discrete choice models. The key advantage is that we avoid the need
to collect vast amounts of flow data. While we have presented our methodology in the context of
consumer-led behaviour, our approach is applicable to other urban and regional settings such as
archaeology, logistics, healthcare and crime to suggest a few.

Our work has led to specific areas for further research. We are actively investigating the
deployment of our methodology to large-scale urban systems, for which there are substantial
computational challenges to overcome. The cost of a potential or gradient evaluation is O(NM);
however, increasing M means that the z(θ ) estimates are more challenging to obtain owing to
the curse of dimensionality. It is of interest to develop more tractable methods, for example
optimization based, so that inference can be performed for international models on a practical
time scale. We have presented an aggregate model that can be refined to better represent domain-
specific characteristics as discussed in [1]. It remains to use the proposed methodology as part of
a more realistic study with wider objectives. Lastly, we emphasize that our methodology is only
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applicable to cross-sectional data. In practice, many applications of interest require processing
time-series data that are highly correlated over time. In this setting, we would need to solve
the filtering or smoothing problem for (2.23), and in doing so would also need to account for
general trends and seasonality effects that are exogenous to our model. Our work continues to
be part of ongoing efforts to draw insights from data by making use of the known mathematical
structure [33].
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Appendix A. Assumptions for the potential function
We make the following assumptions for the potential function V(x) with reference to the
overdamped Langevin diffusion described by (2.6) and Boltzmann–Gibbs measure defined
by (2.9):

(i) V(x) is C2 and is confining in that lim|x|→+∞ V(x) = +∞ and

e−γ V(x) ∈ L1(RM), ∀γ > 0. (A 1)

(ii) V(x) satisfies the following inequality for some 0 < d < 1:

lim inf
|x|→∞

{(1 − d)|∇V(x)|2 − γ −1
V(x)} > 0. (A 2)

Assumption (i) is necessary to ensure that the Boltzmann–Gibbs measure is well defined.
Assumptions (i) and (ii) are sufficient to show that the distribution of X(t), described by (2.6),
converges exponentially fast to its Boltzmann–Gibbs measure. The reader is referred to [34] for
further details.

The integrability condition in assumption (i) is satisfied by lemma 3.14 in [35]. To show that
assumption (ii) holds, we define

Λij = exp(αxj − βcij)∑M
k=1 exp(αxk − βcik)

, (A 3)

then

|∇V(x)|2 =
M∑

j=1

∣∣∣∣∣
N∑

i=1

OiΛij − κ exp(xj) + δ

∣∣∣∣∣
2

(A 4)

and


V(x) =
M∑

j=1

{
κ exp(xj) − α

N∑
i=1

OiΛij(1 − Λij)

}
. (A 5)

Then for 0 < d < 1 we have

lim
xj→+∞(1 − d)|∇V(x)|2 − γ −1
V(x) = +∞ (A 6)

https://github.com/lellam/cities_and_regions
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and
lim

xj→−∞(1 − d)|∇V(x)|2 − γ −1
V(x) ≥ δ2 > 0, (A 7)

as claimed.

Appendix B. Utility function for a singly constrained potential
In this appendix, we present an alternative argument to obtain the utility potential VUtility as
defined by (2.12). We rewrite the destination quantities in (2.2) as a gradient flow

Dj = −∂VUtility(x)

∂xj
, (B 1)

and look towards specifications of VUtility that satisfy the constraint in (2.1). The constraint is
satisfied whenever the flows leaving the origin zones are convex sums in that

Tij(x) = Oivij(x),
M∑

j=1

vij = 1, vij ≥ 0. (B 2)

Instead we can express (B 2) in terms of utility functions Uij and some positive function ϕ so that

Tij = Oi
ϕ(Uij)∑M

k=1 ϕ(Uik)
. (B 3)

By inspection, we look for a potential function of the form

VUtility = −
N∑

i=1

Oi

⎧⎨
⎩fi ln

M∑
j=1

ϕ(Uij)

⎫⎬
⎭ , (B 4)

for some functions fi. Then by taking the gradient and substituting into (B 1), we obtain the
requirements

ϕ(Uij)∑M
k=1 ϕ(Uik)

= dfi
dxj

ln
M∑

j=1

ϕ(Uij) + fi
dϕ(Uij)

dxj

( M∑
k=1

ϕ(Uik)

)−1

, (B 5)

for i = 1, . . . , N. The requirements are satisfied for ϕ(·) = exp(·) when each utility function is linear
with respect to the attractiveness of the destination zone in question,

Uij = αixj + βij, (B 6)

provided that each αi �= 0 and that fi = α−1
i . The resulting potential function is

VUtility(x) = −
N∑

i=1

α−1
i Oi ln

M∑
j=1

exp(Uij), (B 7)

which is slightly more general than the potential considered in (2.12).

Appendix C. Markov chain Monte Carlo for doubly intractable distributions
The idea behind MCMC is to construct an ergodic Markov chain whose time average can be
used to estimate integrals of interest [14,36]. We use a block Metropolis-within-Gibbs scheme and
alternate between Θ-updates and X-updates. The following steps can be repeated in succession
to obtain a Markov-chain chain that is π (x, θ |y)-invariant.

Latent variable update. Hamiltonian Monte Carlo can be used for the X-updates to suppress random
walk behaviour [37]. We propose momentum variables P ∼ N(0, I) and update (X, P) by simulating
Hamiltonian dynamics with a volume-preserving integrator to obtain (X′, P′). We accept/reject
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according to the Metropolis–Hastings acceptance probability

aX(x′, p′|x, p) = min

{
1,

π (y|x′, θ ) exp(−γ Vθ (x′) − (1/2)|p′|2)
π (y|x, θ ) exp(−γ Vθ (x) − (1/2)|p|2)

}
, (C 1)

to correct for numerical error from numerically simulating Hamiltonian dynamics.

Model parameter update. Random walk Metropolis with reflective boundaries can be used for the
Θ-updates. The Metropolis–Hastings acceptance probability is given by

aΘ (θ ′|θ ) = min
{

1,
π (y|x′, θ ′)z(θ ) exp(−γ Vθ ′ (x))π (θ ′)
π (y|x, θ )z(θ ′) exp(−γ Vθ (x))π (θ )

}
. (C 2)

The key challenge arises from proposing new Θ-values, in which case the acceptance probability
contains an intractable ratio z(θ )/z(θ ′). We can either proceed with a deterministic estimate of z(θ ),
at the expense of a bias, or we can obtain a consistent estimator of (3.4) with pseudo-marginal
MCMC [38] provided that unbiased and reasonably precise estimates of 1/z(θ ) are available.

(a) Unbiased estimates of the reciprocal of the normalizing constant
An unbiased estimate of z(θ ) is given by averaging over a batch of importance weights. The
importance weights are evaluations of

w(x) = exp(−γ Vθ (x))
q(x)

, (C 3)

at locations drawn from a proposal distribution with density q(x). By Jensen’s inequality, the
reciprocal of an importance sampling estimate of z(θ ) is a biased estimate of 1/z(θ ). Instead,
unbiased estimates of 1/z(θ ) can be obtained by randomly truncating an infinite series: for a
sequence {Vi} satisfying limi→+∞ E[Vi] = 1/z(θ ), and a random stopping time T, the estimator

S = V0 +
K∑

i=1

Vi − Vi−1

Pr(T ≥ i)
(C 4)

gives an unbiased estimate of 1/z(θ ) [28,39–41]. We follow [15] and use the increasing averages
estimator

Vi = i + 1∑i
k=0 w(X̂(k))

, X̂(k) ∼ q, (C 5)

with reference to the importance sampling weights described by (C 3). The unbiased estimates
of 1/z(θ ) can have high variance when the importance weights are highly variable. Fortunately,
importance sampling may be carried out on an augmented state space, for example using AIS [42].

(b) Pseudo-marginal Markov chain Monte Carlo
The unbiased estimators of 1/z(θ ) given by (C 4) may be a negative estimate, which prohibits the
use of the pseudo-marginal MCMC. Fortunately, the so-called ‘sign problem’ has been addressed
in [28]. We can use the following importance sampling style of estimator that gives a consistent
estimator of (3.4) in that:

Ex,θ |y[g] = lim
n→+∞

∑n
i=1 Ω (i)g(X(i), Θ (i))∑n

k=1 Ω (k)
, (C 6)

where {X(i), Θ (i), Ω (i)}n
i=1 is a Markov chain obtained using the Metropolis-within-Gibbs scheme

described at the start of this section but with the following acceptance probability for Θ-updates:

aΘ (θ ′|θ ) = min
{

1,
π (y|x′, θ ′)|S′| exp(−γ Vθ ′ (x))π (θ ′)
π (y|x, θ )|S| exp(−γ Vθ (x))π (θ )

}
(C 7)

and Ω (i) = sgn(S(i)). It is necessary to cache the value of S(i) at each iteration as part of the pseudo-
marginal MCMC scheme.
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Appendix D. Table of key parameters and variables
For convenience, we provide a table of the key parameters and variables with brief explanations
below.

parameter explanation reference
α attractiveness scaling parameter (2.3)
β cost scaling parameter (2.3)
δ additional parameter (2.10)
ε responsiveness parameter (2.4)
γ inverse temperature (2.6)
κ cost per unit size (2.4)
λ standard deviation of observation noise (3.1)
σ noise parameter, equal to

√
2γ −1 (2.23)

Oi origin quantity for origin zone i (2.1)
Dj destination quantity for destination zone j (2.2)
Tij flow from origin zone i to destination zone j (2.1)
Uij utility function for a flow from origin zone i to destination zone j (2.13)
cij cost of a flow from origin zone i to destination zone j (2.3)
Wj size of destination zone j (2.4)
Xj attractiveness of destination zone j, given by ln Wj (2.6)
Yj observed size of destination zone j (3.1)
N number of origin zones (2.1)
M number of destination zones (2.2)
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