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ABSTRACT
Studies of genome stability have exploited visualization of fluorescently
tagged proteins in live cells to characterize DNA damage, checkpoint,
and repair responses. In this report, we describe a new tool for fission
yeast, a tagged version of the end-binding protein Pku70 which is part
of the KU protein complex. We compare Pku70 localization to other
markers upon treatment to various genotoxins, and identify a unique
pattern of distribution. Pku70 provides a new tool to define and
characterize DNA lesions and the repair response.
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INTRODUCTION
The response to genome stress and DNA repair can be observed in
living cells in real time, by monitoring fluorescently-tagged DNA
damage response proteins (Lisby et al., 2004; Lukas et al., 2005;
Nagy and Soutoglou, 2009; Polo and Jackson, 2011). This has
allowed characterization of dynamic processes that respond to
damage and preserve genome integrity, including cell cycle,
checkpoint, repair, and recovery pathways. In the fission yeast
Schizosaccharomyces pombe, accumulation of foci of the single-
strand DNA binding protein Ssb1 (a subunit of Replication Protein A
/RPA), and of the recombination protein Rad52, have been used to
characterize intrinsic genome stresses as well as the response to
external genotoxins (Meister et al., 2003; Kilkenny et al., 2008;
Carneiro et al., 2010; Bass et al., 2012; Sabatinos et al., 2012). These
proteins recognize and respond to single strand DNA accumulation,
which can result from exonuclease activity, resection, processing of
replication forks, and recombination intermediates, or R-loop or
D-loop formation (Zeman and Cimprich, 2014; Sabatinos and
Forsburg, 2015). Importantly, this has led to identification of distinct
patterns of accumulation that can serve as fingerprints for different
forms of genome stress (e.g. Sabatinos et al., 2012; Sabatinos and
Forsburg, 2015; Ranatunga and Forsburg, 2016).
The fission yeast Pku70 protein is the orthologue of the Ku70

subunit of the conserved heterodimeric Ku complex (Baumann and
Cech, 2000). Ku is abundant and binds efficiently to DNA double
strand breaks (DSBs) (Fell and Schild-Poulter, 2015; Shibata et al.,
2018). Ku is associated with the non-homologous end-joining

(NHEJ) mechanism of DNADSB repair (Mahaney et al., 2009) and
protects telomeres (Baumann and Cech, 2000; Ferreira and Cooper,
2001). Additionally, it recognizes ‘one-sided’ DSBs and ends
associated with regressed replication forks (Teixeira-Silva et al.,
2017; Foster et al., 2011; Langerak et al., 2011).

Ku binding at the ends of DNA inhibits resection and accumulation
of single strandDNA that otherwise drives homologous recombination
(Shibata et al., 2018). Its activity is coordinated with the Mre11-
Rad50-Nbs1 (MRN) protein complex, another early responder to
DNADSBs (Shibata et al., 2018; Syed and Tainer, 2018).MRN is also
linked to DNA DSB end binding (Wang et al., 2014) and resection
(Shibata et al., 2014) and contributes to DNA damage checkpoint
activation (Chahwan et al., 2003; Paull, 2015). The Mre11/Rad32
subunit is able to drive endonucleolytic cleavage of DNA ends that are
blocked by covalently bound proteins such as Spo11 or Top2
(Hartsuiker et al., 2009, 2009; Milman et al., 2009; Rothenberg et al.,
2009; Garcia et al., 2011; Reginato et al., 2017). To some degree, Ku
and MRN act as mutual antagonists; Ku inhibits short-range resection
driven by MRN, and MRN removes Ku to facilitate homologous
recombination (HR) over NHEJ; and to prevent inappropriate repair of
single-end breaks (Langerak et al., 2011; Shao et al., 2012;Myler et al.,
2017; Shibata et al., 2018). Interestingly, loss of Ku partly suppresses
the sensitivity to DNA damage and replication blocking toxins
associated with mutation ofMRN (Tomita et al., 2003;Williams et al.,
2008; Limbo et al., 2007; Langerak et al., 2011; Teixeira-Silva et al.,
2017), which can lead to excessive Exo1-driven resection, but
impaired RPA recruitment (Teixeira-Silva et al., 2017).

In this report, we describe the development of a new fluorescent
marker for fission yeast, the Pku70 subunit of the Ku protein complex.
We constructed a pku70+-citrine fusion and integrated into the genome
in wild-type fission yeast under the endogenous promoter. We
examined its behavior and accumulation in treated and untreated wild-
type cells in response to different genotoxins. We compared
localization of Ku to Rad52, RPA, and Mre11 markers and observe
a pattern of foci that is distinct from other proteins. This provides a new
tool to characterize responses to different forms of genotoxic stress and
a useful addition to the fission yeast tool kit for investigation of the
3-Rs of DNA replication, repair, and recombination.

RESULTS
Construction of strains with fluorescently tagged Pku70
and Mre11
Ku (a heterodimer of Pku70/80) and MRN (Mre11/Rad50/Nbs1)
protein complexes are known for high affinity for binding DNA ends
(Fell and Schild-Poulter, 2015; Shibata et al., 2018). We tagged Pku70
on its C-terminal end with Citrine fluorescent protein and integrated
into the endogenous locus (see the Materials and Methods). Using a
similar strategy, we also tagged Mre11 on its C terminal end with
mCherry fluorescent protein. The resulting strains were compared to
wild-type, pku70Δ, mre11Δ, and rad51Δ for their growth on four
typical genotoxic drugs: methyl methanesulfonate (MMS), whichReceived 12 June 2020; Accepted 11 January 2021
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creates alkylation damage that inhibits DNA replication fork
progression; camptothecin (CPT), which blocks Topoisomerase I
cleavage; hydroxyurea (HU), which causes nucleotide starvation and
fork pausing; and Phleomycin (phleo), a radio-mimetic that causes
single- andDSBs. Both theMre11-mCherry and Pku70-Citrine tagged
strains behaved the same as wild-type under normal growth and
genotoxic stress. The Δpku70 strain also shows no sign of genotoxin
sensitivity, as reported previously (Manolis et al., 2001; Sánchez and
Russell, 2015) (Fig. 1A). In order to confirm that Pku70-Citrine is
active, we performed a plasmid religation assay showing the tagged
construct retains NHEJ function. (Fig. S1). We also find that deletion
of Pku80 abolishes Pku70-citrine localization, consistent with proper
assembly of the Ku heterodimer (Fig. S2).

Pku70 and Mre11 have increased nuclear signal following
genotoxic stress
In normal growth conditions, the tagged strains show a few scattered foci
inPku70-citrine cells anddiffusenuclear fluorescence inMre11-mCherry

cells (Fig. 1B).Weexamined the distributionof signal in cells treatedwith
MMS,CPT,Phleo, orHUat 32°Cafter 4 h.There is a significant increase
of cells with individual Pku70 nuclear foci inMMS, CPT, and to a lesser
extent Phleo. Cells treated with HU did not show any significant
difference from wild-type (Fig. 1C). In contrast, the Mre11-mCherry
signal showed diffuse pan-nuclear staining in untreated cells (Fig. 1B).
Following 4 h of treatment with the four genotoxic drugs, Mre11-
mCherry did not show obvious foci. Rather, we observed generalized
areas of increased fluorescence over threshold, but these typically were
not well-defined discrete puncta as seen with other markers.

Colocalization of Pku70 and Mre11 with other markers
of DNA damage
Previous studies of genome instability in fission yeast have imaged
the single stranded binding protein Ssb1 (Rad11, RPA) and the
homologous recombination protein Rad52 in response to different
forms of replication stress (Meister et al., 2003; Kilkenny et al.,
2008; Carneiro et al., 2010; Bass et al., 2012; Sabatinos et al., 2012).

Fig. 1. Construction of fluorescently tagged strains. (A) Frogging of fluorescently tagged strains on various genotoxic drugs. Drug concentrations are as
follows: CPT, 0.0125 mM; HU, 7.5 mM; MMS, 0.012%; Phleo, 1.5 mU. (B) Fluorescently tagged strains Pku70-Citrine::hph and Mre11-mCherry::hph both
with and without genotoxic drugs. For clarity Mre11-mCherry is shown in false color as magenta. Arrows show representative foci for Pku70 and generalized
areas of increased fluorescence for Mre11. (C) Pku-Citrine foci were counted by hand and significance testing was done using a Mann–Whitney significance
test. Six replicates were used per drug tested.
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We examined co-localization using CPT, MMS, HU and Phleo in a
strain with Pku70-citrine, Rad52-mCherry, and RPA-CFP. Four
hours after drug addition at 32°C, we determined frequency of

colocalization among all three tagged proteins. While there was
partial overlap, we observed that Pku70 is not completely
concordant with the other markers (Fig. 2A).

Fig. 2. Pku70-Citrine colocalization with DNA repair proteins. (A) These images depict colocalization of Pku70-Citrine with previously reported HR repair
proteins Rad52-mCherry and RPA-CFP under four commonly used genotoxic drugs. For clarity Rad52-mCherry is shown in false color magenta, Pku70-
Citrine is being shown in false color as green. In the composite image overlapping foci appear as white. Arrows show examples of easily visible
colocalization. (B) Percent of nuclei with either 1 or ≥2 Pku70-Citrine foci. (C) Percent of Pku70 foci that colocalize with either a Rad52 foci or a RPA foci. (D)
Percent of either Rad52 or RPA foci that have a corresponding colocalizing Pku70 foci.
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The number of foci per nucleus was calculated and binned as either
1or≥2 foci using an automatic foci counter in ImageJ as described in
the Materials and Methods (Fig. 2B). We observed that CPT 20 µM
contained the highest frequencyof Pku70 foci, thenMMS, Phleo, and
HU. The difference from prior observation likely reflects a somewhat
different drug dosage: CPT levels were raised from 10 µM to 20 µM
in order to produce an enhanced response and MMS was lowered
from 0.9 mM to 0.45 mM to better resolve single foci.
Colocalization was determined using the objects-based method in

the ImageJ plug-in JACoP (see the Materials and Methods). Fig. 2C
shows the proportion of Pku70-Citrine foci that overlap with a
thresholded region for Rad52-mCherry or RPA-CFP. For CPT,
MMS, and Phleo, these proportions vary from 60–90%. In contrast,

the scattered foci in HU showed only about 30% of Ku co-associating
with another marker. Fig. 2D shows the proportion of Rad52-
mCherry foci that have a colocalizing Pku70-Citrine focus. CPT
contained the highest proportion of Rad52 as well as RPA with
overlapping Pku70 foci, whereas HU contained the lowest.

We performed a similar study with Mre11-mCherry but could not
perform the same quantitation because Mre11-mCherry does not
form discrete foci. We observed areas of generally increased
fluorescence but never clear puncta as with Pku70, Rad52, or RPA.
Observing these cells in three-dimensional reconstruction showed
no obvious colocalization between Rad52-YFP/RPA-CFP and
Mre11-mCherry in live cell video microscopy, or in static images
(Fig. 3A,B; Fig. S3).

Fig. 3. Colocalization of Mre11-mCherry, Rad52-YFP, RPA-CFP and Pku70-Citrine. (A) Cells were treated in 0.45 mM MMS for 4 h at 32°C. Mre11-
mCherry is shown in false color as magenta and Rad52-YFP is shown in green for clarity. (B) Time-lapse microscopy of Mre11-mCherry and Pku70-Citrine.
Cells were treated in 0.45 mM MMS and time-lapses were kept 28°C. Timepoints designate time since drug addition.
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Pku dynamics in S phase specific damage
The genotoxin MMS causes alkylation damage, generating lesions
that block DNA polymerase (Lundin et al., 2005). This typically
results in replication template switching (Barbour and Xiao 2003;
Andersen et al. 2008). Previous work has suggested that Ku is
recruited by blocked and regressed replication forks (Teixeira-Silva
et al., 2017). Therefore, we investigated the dynamics of Ku
response to MMS treatment as a model for disruptions in replication
fork progression. We used live cell video microscopy to observe
cells containing Rad52-mCherry and Pku70-Citrine over a 5 h
period of MMS (0.45 mM) treatment at 28°C. We observe distinct
dynamics for Rad52 and Pku70 recruitment during treatment.While
absolute timing differs in individual cells, typically a Ku focus
appears for a short time and partially co-localizes with Rad52.
Fig. 4A shows a representative newborn cell that is likely in mid S

phase, 1 h 20 m after drug treatment. The diffuse Rad52-mCherry
signal is distributed in smaller foci which then coalesce into two
large foci. Pku70-Citrine colocalizes at the center of these large foci
for about 20–40 min. The large Rad52-mCherry foci persist for
another 60 min and then begin to dissipate. Retention time of Pku-
Citrine foci in MMS is ≤20 min with a fraction of cells maintaining
it longer between 20 and 40 min. In contrast, Rad52 foci extend over

a much longer period of time ranging from 20 all the way up to
160 min (Fig. 4B). Overall Rad52 tends to appear slightly earlier
than Pku70 in most cells and disappears much later (Fig. 4C).
(Additional time-lapse images found in Figs S4 and S5).

DISCUSSION
Localization of repair puncta in fission yeast has been a well-
established means of observing DNA damage, quantified by
counting foci, determining pixel intensity or size of foci, and three-
dimensional position in the nucleus (Green et al., 2015). The most
frequently used fluorescent tags used in S. pombe for observing DNA
lesions are the recombination protein Rad52 and single strand DNA
binding protein Rad11, a subunit of RPA (Meister et al., 2003;
Carneiro et al., 2010; Sabatinos et al., 2012). Studies have shown that
in cycling wild-type cells, approximately 10–20% of cells show
evidence of single RPA or Rad52 foci, likely due to sporadic S phase
damage. The tagged proteins show distinct patterns in response to
genotoxic stresses induced by mutations in the replication or repair
pathways (Sabatinos et al., 2012; Sabatinos and Forsburg, 2015;
Ranatunga and Forsburg, 2016), or in response to exogenous agents
such as HU, which causes replication fork stalling (Thelander and
Reichard, 1979); MMS, an alkylating agent that generates lesions that

Fig. 4. Pku70 localization in a dynamic timecourse of MMS treatment. (A) Fluorescent time lapse images of Pku70-Citrine colocalizing with Rad52-
mcherry. For clarity Rad52-mCherry is shown in magenta and Pku-Citrine is shown in green. Imaging was started at 80 min post addition of 0.45 mM MMS
and cells were imaged at 28°C. Time-course images were taken every 20 min. (B) Persistence time of Rad52-mCherry (n=205) and Pku70-Citrine (n=195).
(C) Appearance and disappearance times for Pku70-Citrine and Rad52-YFP in individual mononucleate cells. T=0 first timepoint after completion of
cytokinesis. Horizontal density shows higher quantity of foci appearing or disappearing at that timepoint. (n=35 cells).
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block the replication fork (Lundin et al., 2005); camptothecin (CPT),
a topoisomerase I inhibitor that leads to S-phase specific double
strand breaks (Li and Liu, 2001); and bleo- or phleomycin,
radiomimetic drugs that causes single- and DSBs (Povirk, 1996).
The current study seeks to expand the library of tagged proteins,

part of our strategy to develop a fingerprint for the response to
different forms of genotoxic stress. We investigated fluorescently
tagged Mre11 and Pku70 as markers for DNA breaks.
The MRN complex is one of the earliest responders to DSBs

(Shibata et al., 2018; Syed and Tainer, 2018) and is essential to drive
resection (Wang et al., 2014; Shibata et al., 2018; Langerak et al.,
2011; Teixeira-Silva et al., 2017). Our Mre11-mCherry construct
showed a diffuse pan-nuclear signal in untreated cells. We did not see
obvious focus formation ofMre11-mCherry following treatment with
genotoxins. Rather, it maintained a diffuse signal with regions of
brightness. In other systems, MRN has been shown to be an
immediate responder to DSBs induced by ionizing radiation (Maser
et al., 1997). Our failure to see this form of localizationmay be related
to the timing of our analysis, and/or the diffuse distribution of lesions
in drug-treated cells, compared to concentrated sites of damage from
of ionizing radiation.
Previous whole-cell localization of Pku70 in S. pombewas carried

out using C terminal epitope-tagged Pku70 and immunofluorescence
on fixed cells (Manolis et al., 2001). In unperturbed cells, a diffuse
pan-nuclear localization was observed. Association of Ku with DNA
ends has been investigated using chromatin immunoprecipitation; in
wild-type cells, it is not enriched unless the MRN complex is missing
(Langerak et al., 2011; Teixeira-Silva et al., 2017). Visualization of
Pku70 in live fission yeast cells has not previously been performed.
We saw few Ku foci in wild-type cells, consistent with the

previous immunofluorescence studies. Treatment for 4 h with our
panel of genotoxins showed that HU has little to no accumulation of
Ku foci. Treatment with CPT causes a modest increase in the
fraction of cells with foci at 10 µM and a more dramatic increase at
20 µM. Similarly, phleomycin, a radiomimetic that causes DNA
breaks throughout the cell cycle, has a modest but limited increase in
foci relative to untreated cells.
We found that themost dramatic increase of cellswith Pku70 fociwas

obtained by treating withMMS at 0.9 mM.MMS is an alkylating agent
that results in error-free and error prone base excision repair during S
phase, and thus leading to trans lesion synthesis (Memisoglu and
Samson, 2000). This induction in MMS is consistent with prior
observations suggesting that Ku is recruited to regressed or broken
replication forks in order to stabilize the free end (Langerak et al., 2011;
Teixeira-Silva et al., 2017). This suggests that even inMRN+ cells, there
are situations where Ku remains associated with sites of genome stress.

We observed a substantial colocalization between RPA or Rad52
and Ku, in cells treated with MMS, CPT, or Phleo. This result was a
surprise as manymodels suggest Pku should be removed by the time
resection and recombination proteins are recruited. One possibility
for the S phase specific toxins is that Pku could be binding to
reversed forks at repair centers. Previous studies suggest that Pku
plays a role at reversed forks in order to maintain genome stability,
particularly in cells with defective HR repair such as brc1Δ
(Sánchez and Russell, 2015; Teixeira-Silva et al., 2017). This may
reflect that other mechanisms than exonuclease activity can generate
ssDNA, including helicase unwinding and strand invasion.

To address this finding in dynamic conditions, we examined
MMS-treated cells as a model for stalled replication forks.
Previously, we showed that MMS induces a dramatic increase in
RPA and Rad52 foci relative to other genotoxins (Ranatunga and
Forsburg, 2016). We observe substantial recruitment of Rad52-
mCherry and brief, partial co-localization of Pku70. The Pku70
signal, largely in 1–2 foci, appears after Rad52 and disappears
before Rad52 is resolved. Further molecular work will be required to
determine what this signal represents.

It is likely that Ku foci will define distinct structures associated
with particular forms of replication stress. For example, in a recent
study, our lab showed that a mutant mcm4-dg with a defect in the
MCM helicase accumulates Ku foci (Kim and Forsburg, 2020).
This accumulation can be reversed by activation of the Mus81
resolvase. Mus81 is essential for viability in pku80Δ brc1Δ
mutants (Sánchez and Russell, 2015), indicating a collaboration
between Ku and Mus81 in response to replication stress. Our
Pku70-citrine fusion will be a key reagent in dissecting this and
other activities.

MATERIALS AND METHODS
Cell growth and physiology
Fission yeast strains are described in Table 1, and were grown as in
(Sabatinos et al., 2012).

Construction of tagged strains
All fragments were lengthened using the Expand Long Template PCR
System (Roche Diagnostics, Mannheim Germany). Primers were designed
using the NCBI Primer design tool and optimized to an annealing
temperature of 52–54°C (Ye et al., 2012). Full length fragments were
transformed using electroporation and selected using the appropriate marker
(Sabatinos and Forsburg, 2010). Upon transformation, instead of plating
directly onto selective minimal media, the cells were first plated on YES for
24 h then replica plated onto YES-Hph. Candidate colonies growing on Hph
after 4–5 days were then restreaked onto Hph twice and visually screened for
nuclear localizing foci.

Table 1. Strains

FY527 h- his3-D1 ade6-M216 ura4-D18 leu1-32 Gould et al., 1998
FY528 h+ his3-D1 ade6-M210 ura4-D18 leu1-32 Liang et al., 1999
FY8488 h+ pku70-Citrine::hph his3-D1 ade6-M210 ura4-D18 leu1-32 This study
FY8558 h- pku70-Citrine::hph his3-D1 ade6? ura4-D18 leu1-32 This study
FY8661 h+ mre11-mCherry::hph his3-D1 ade6-M210 ura4-D18 leu1-32 This study
FY8662 h- mre11-mCherry::hph his3-D1 ade6? ura4-D18 leu1-32 This study
FY8381 h- rad52-mCherry::kan ura4-D18 leu1-32 Yu et al., 2013
FY8625 h- pku70-Citrine::hph rad52-mCherry::kan his3-D1? ade6? ura4-D18 leu1-32 This study
FY8698 h90 mre11-mCherry::hph, pku70-citrine::hph, his3-D1 ade6? ura4-D18 leu1-32 This study
FY4743 h- rad11-Cerulean::hphMX rad22-YFP-natMX leu1-32 ade6-M210 ura4-D18 Sabatinos et al., 2012
FY8687 h90 mre11-mCherry::hph RPA-Cerulean::hphMX, rad52-YFP-natMX his-D1? ade6-M210 ura4-D18 leu1-32 This study
FY9381 h- rad11-Cerulean::hphMX pku70-Citrine::hph rad52-mCherry::natMX6 ura4-D18 leu1-32 his? ade? This study
FY9620 h- Δpku80::kan his3-D1 ade6-M216 ura4-D18 leu1-32 This Study
FY9619 h- pku70-Citrine::hph Δpku80::kan his3-D1 ade6-M216 ura4-D18 leu1-32 This Study
FY9663 h- pku70::kan his3-D1 ade6-M216 ura4-D18 leu1-32 This Study
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Pku-Citrine::Hph
The Pku C-terminal Citrine fragment was formed from five fragments, Pku
5’overhang (FY2710+FY2711), Citrine (FY2561+FY2562), Hph (FY2563+
FY2564), Citrine UTR (FY2565+FY2566), and Pku 3′ UTR overhang
(FY2712+FY2713). The Citrine and Citrine UTR fragments were lengthened
from Addgene plasmid pKT0139 (Sheff and Thorn, 2004). The Hph fragment
was lengthened from pFA6a-hphMX6 (Hentges et al., 2005). The 5′ and 3′
UTR overhang fragments were lengthened from phenol:chloroform extracted
WT (FY527) DNA (Forsburg and Rhind, 2006). The Citrine, Hph, and Citrine
UTR fragments were first lengthened to form a full Citrine::Hph fragment. A
single PCR reaction was then done with Pku 5′ overhang, Citrine::Hph, and
Pku 3′UTR overhang fragments forming the full fragment. This fragment was
then used for electroporation transformation. All primers used to make these
fragments can be found in Table 2.

Mre11-mCherry::Hph
The Mre11 C-terminal mCherry fragment was formed from four fragments,
Mre11 5′ overhang (FY2888+2998), mCherry (FY2890+FY2863), Hph
(FY2864+FY2892), Mre11 3′ UTR overhang (FY2891+FY2893). The
mCherry fragment was lengthened from extracted DNA, FY8381 (Yu et al.,
2013). The Hph fragment was lengthened from the previously formed Citrine::
Hph fragment above. The Mre11 5′ and 3′ UTR overhang fragments were
lengthened from extracted WT DNA (FY527). The mCherry::Hph fragment
was first lengthened. The Mre11 5′ overhang, mCherry::Hph, and Mre11 3′
UTRoverhang fragments were then combined in one PCR reaction forming the
full fragment. The fragment was then used for electroporation transformation.
All primers used to make these fragments can be found in Table 2.

Plasmid religation assay
Plasmid pAL19 (Barbet et al., 1992) was previously modified by insertion
of an mst1 derivative in the HindIII sites of the multiple cloning sequence,
creating pRCP44. pRCP44 was digested for one hour at 37°C with HindIII.
The digested fragment containing only the linearized backbone pAL19 was
gel-extracted. This ensured that any nonlinearized plasmid was not
contaminating the sample. All strains contained the leu1-32 mutation and
were transformed by lithium acetate transformation with either the
circularized backbone pAL19 or the linearized backbone pAL19 from the
digested/extracted fragments of pRCP44 containing the S. cerevisiae
LEU2+ gene. Colonies were grown on -Leu plates for 5 days. Colony counts
were normalized to wild-type plasmid religation versus circular plasmid
transformation rates.

Live cell imaging
Cells were prepared as in (Green et al., 2015). Medium for all live cell
imaging was PMG-HULALA (PMG+Histidine, Uracil, Leucine, Adenine,
Lysine, Arginine) (225 mg/l each) (Sabatinos and Forsburg, 2010). Unless
specified all drug concentrations used for imaging were as follows, MMS
0.9 mM, HU 15 mM, CPT 20 µM, Phleo 3 µM. Strains in liquid cultures at

32°C were grown to mid-log phase. Cells concentrated by a brief microfuge
spin were applied to 2% agarose pads made from PMG+HULA and
prepared on glass slides sealed with VaLaP (1/1/1 w/w/w vaseline/lanolin/
paraffin). Static images were collected at room temperature 22°C and long
term time-lapse images were taken at a constant temperature of 28°C.
Images were acquired with a DeltaVision Core (Applied Precision,
Issaquah, WA, USA) microscope using a 60× N.A. 1.4 PlanApo objective
lens and a 12-bit Photometrics CoolSnap HQII CCD. The system x-y pixel
size is 0.109 µm. softWoRx v4.1 (Applied Precision, Issaquah, WA, USA)
software was used at acquisition. Excitation illumination was from a Solid-
state illuminator, CFP was excited and detected with a 438/24,470/24 filter
set (excitation intensity attenuated to 10%) and a 400 ms exposure; YFPwas
excited and detected with a 513/17,559/38 (excitation intensity attenuated to
32% for Rad52-YFP and 50% for Pku70-Citrine) filter set and a 200 ms
exposure. A suitable polychroic mirror was used. Sections of static
timepoints were 20 0.20 µm z-sections. Long-term time-lapse videos used
8 z-steps of 0.35 µm. Three-dimensional stacks were deconvolved with
manufacturer provided OTFs using a constrained iterative algorithm, images
were maximum intensity projected for presentation. Images were contrast
adjusted using a histogram stretch with an equivalent scale and gamma for
comparability. Brightfield images were also acquired.

Image processing and analysis
Images were contrast adjusted using an equivalent histogram stretch on all
samples. Significance was assessed with Mann–Whitney tests. Long-term
time lapse videos were stabilized in ImageJ-Fiji (Schindelin et at. 2012)
using the package ‘StackReg’ by Philippe Thevanaz from the Biomedical
Imaging Group at the Swiss Federal Institute of Technology Lausanne
(Thevenaz et al., 1998). Foci were automatically quantified using a
computational algorithm based on uniform threshold per fluorescence
channel as described by the light microscopy core facility at
Duke University (https://microscopy.duke.edu/guides/count-nuclear-foci-
ImageJ). Object based colocalization analysis was performed using the
ImageJ plug-in JACoP on the same images used for the focus quantification.
However this object based colocalization analysis method still requires
observer-based thresholding before analysis. In order to mitigate observer-
based thresholding bias, the number of observed objects after thresholding
per fluorescence channel was calculated to be within 10 foci of the
automatically counted foci during the previous computer-based foci
quantification analysis described above.
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