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Abstract

Signal transduction typically begins by ligand-dependent activation of a concomitant partner 

which is otherwise in its resting state. However, in cases where signal activation is constitutive by 

default, the mechanism of regulation is unknown. The Arabidopsis thaliana heterotrimeric Gα 

protein self-activates without accessory proteins, and is kept in its resting state by the negative 

regulator, AtRGS1 (Regulator of G protein Signaling 1), which is the prototype of a seven 

transmembrane receptor fused with an RGS domain. Endocytosis of AtRGS1 by ligand-dependent 
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endocytosis physically uncouples the GTPase accelerating activity of AtRGS1 from the Gα 

protein, permitting sustained activation. Phosphorylation of AtRGS1 by AtWNK8 kinase causes 

AtRGS1 endocytosis, required both for G protein-mediated sugar signaling and cell proliferation. 

In animals, receptor endocytosis results in signal desensitization, whereas in plants, endocytosis 

results in signal activation. These findings reveal how different organisms rearrange a regulatory 

system to result in opposite outcomes using similar phosphorylation-dependent endocytosis.
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Many cells employ coordinated mechanisms to control the amplitude, duration and spatial 

distribution of G-protein mediated responses to extracellular signals that activate 7-

transmembrane (7TM) G-protein coupled receptors. One such mechanism is 7TM receptor 

internalization, which physically removes the receptor from the cell surface to desensitize 

cells from continuous stimulation of the G protein complex by the activated receptor 1, 2. 

Here we report identification of a previously unknown mechanism of signal control where 

internalization of a 7TM Regulator of G signaling (RGS) protein leads to sustained 

signaling.

Recently, we discovered that the model plant organism, Arabidopsis thaliana, employs 

signal regulation mechanisms distinct from those identified in animals 3, 4. In contrast to 

animals, the Arabidopsis Gα protein self-activates without the aid of a receptor because its 

rate of guanine nucleotide exchange is about 100 times faster than its rate of GTP 

hydrolysis 3, 4. Consistent with this self-activating property, the Arabidopsis genome 

encodes no canonical 7TM, G protein-coupled receptors (GPCR) 5, 6. However, the 

Arabidopsis genome encodes a 7TM domain fused to an RGS protein, AtRGS1, that 

stimulates the rate-limiting GTPase activity of the Arabidopsis Gα subunit, AtGPA1 3, 7, 8.

AtRGS1 and its cognate heterotrimeric G protein complex are required for normal glucose 

sensing, cell proliferation, cell elongation and development 8–12. Genetic evidence suggested 

that D-glucose or a sugar metabolite regulates AtRGS1 activity toward AtGPA1 3, 8, 

although direct evidence for glucose binding to RGS1 is lacking and the molecular basis of 

how D-glucose and AtRGS1 control G protein signaling is not known.

Here we show that D-glucose causes AtRGS1 endocytosis. This sugar-dependent re-

localization physically uncouples the inhibitory activity of AtRGS1 from the plant Gα 

protein, leaving the Gα protein constitutively active at the cell surface for “sustained” 

signaling. These results reveal how land plants employ RGS protein internalization to sense 

energy status and regulate growth and development. The presence of 7TM-RGS proteins in 

fungi and single-cell eukaryotes suggests this mechanism is utilized in other organisms.
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RESULTS

AtRGS1 internalizes in response to D-glucose

Mutations in Arabidopsis G proteins confer altered responsiveness to glucose 8, 13, 14. 

Because AtRGS1 contains a predicted 7TM domain reminiscent of GPCRs, localizes to the 

cell surface, and interacts with the plant Gα protein in a glucose-dependent manner, 

AtRGS1 was proposed to be a glucose receptor or co-receptor in G protein-mediated glucose 

sensing 3, 8, 13, 15, 16.

In animals, ligand-induced 7TM receptor endocytosis desensitizes cells to the ligand by 

reducing the amount of receptor at the cell surface 1. To determine the effect of the 

candidate ligand on AtRGS1 internalization, epidermal cells expressing AtRGS1-YFP were 

treated with several concentrations of D-glucose, and the subcellular localization of AtRGS1 

was captured over time (Fig. 1 and Supplementary Fig. S1A). The maximum steady-state 

level of internalized AtRGS1 at steady state varied between 60%-90%, depending on 

expression levels, and was reached within 60 min. 3-D reconstruction revealed that the 

observed change in AtRGS1 was due to internalization as opposed to clustering on the 

plasma membrane (Supplemental Movie S1). AtRGS1 internalization showed glucose dose 

dependency (Fig. 1C, Fig. 1D) and structural stereo-specificity in that D- but not L-glucose 

caused internalization (Fig. 1E). Likewise, two similar structures, gluconic and glucuronic 

acids (Fig. 1E) did not affect AtRGS1 localization. Three analogous sugars, mannose, 

fructose and sucrose, each able to yield glucose through metabolism17–19, induced AtRGS1 

internalization (Fig. 1E). General reciprocity was observed between dose-dependence and 

time-dependence of AtRGS1 internalization; 1% D-glucose induced internalization (Fig. 1C, 

D), but required 6 hr to reach maximum achieved by the acute dose of 6% in 30 minutes 

(Fig. 1F).

To eliminate the possibility that glucose caused a general and nonspecific sweep of 

membrane proteins from the plasma membrane, we tested a 7TM domain protein, 

AtMLO6 20, 21 (Supplementary Fig. S1B, bottom pair) and showed that this plasma 

membrane 7TM protein does not internalize with glucose. These results show that the effect 

of D-glucose on AtRGS1 internalization is specific, as well as time- and dose-dependent.

A critical observation was that while AtRGS1-YFP internalized by glucose, the cognate Gα, 

CFP-AtGPA1 co-expressed in the same cell, did not (Fig. 1B). No internalization of CFP-

AtGPA1, was observed at any tested glucose dose including the 6% acute treatments even 

monitored over extended observation times using both stably- (Fig. 1B) or transiently-

transformed cells (Supplementary Fig. S1B, center pair). Taken with the AtRGS1 data 

above, we conclude that glucose causes physical separation of the plant Gα subunit from 

AtRGS1.

Animal GPCRs are internalized via the endosomal pathway 22–24. To determine AtRGS1 

localization after internalization, we measured AtRGS1 co-localization with various 

compartmental markers in epidermal pavement cells. AtRGS1 co-trafficked with the 

endosomal dye, FM4-64 (Supplementary Fig. S2A), endosomal markers that reside in the 

early to late endosomes (Supplementary Fig. S2). Co-expression of AtRGS1-YFP with RFP-
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tagged compartment markers was also performed using tobacco cells because their larger 

size provides the required spatial resolution for co-localization (Supplementary Fig. S2B). 

Of particular interest was the observed 100% co-localization of AtRGS1 with SYP23 

(Supplementary Fig. S2B), a late endosomal syntaxin because AtRGS1 and SYP23 are 

known to physically interact 25. AtRGS1-YFP did not co-localize with the mitochondrial-

RFP marker (Mt-rk; Supplementary Fig. S2B) 26. These results indicate that AtRGS1-YFP 

internalization occurs through the endocytic pathway and hereafter we refer to the 

observation of AtRGS1 internalization as endocytosis.

Free Gβ, AGB1, is essential, but not sufficient, for AtRGS1 endocytosis

D-glucose-induced endocytosis of AtRGS1-YFP was reduced 40% in the absence of the Gα 

subunit, AtGPA1 (gpa1-3), and completely abrogated in the absence of the Gβ subunit 

AGB1 (Fig. 2 A,B). Loss of AtGPA1 or AGB1 individually, did not dramatically affect the 

steady-state levels of the respective protein-binding partner (Fig. 2C), suggesting that both G 

protein components, particularly the Gβ subunit, directly mediate glucose-stimulated 

AtRGS1 endocytosis.

The complete loss of AtRGS1-trafficking in the agb1-2 background was genetically 

complemented by ectopic expression of AGB1 (Fig. 2D and 2H). Ectopic overexpression of 

wild type AtGPA1 did not significantly affect AtRGS1 trafficking (Fig. 2D). However, 

over-expression of the constitutively-active AtGPA1 mutant (GTPase-deficient 

AtGPA1(Q222L)) in the absence of the wild type Gα subunit triggered AtRGS1 endocytosis 

without glucose (Fig. 2D, 2H, and 2I). This induction by AtGPA1(Q222L) of AtRGS1 

endocytosis required AGB1 (Fig. 2E, F). Taken together, these results indicate that the Gβγ 

dimer is required for AtRGS1 endocytosis induced by D-glucose and that the activated Gα 

subunit plays a role for AtRGS1 endocytosis. While these results suggest that the freed Gβ 

subunit is necessary, its release from the complex alone, an expectation for the Gα null 

mutants, is insufficient for AtRGS1 endocytosis.

Physical coupling of AtRGS1 and AtGPA1 is essential for AtRGS1 endocytosis

A charge reversal at glutamate 320 of AtRGS1 uncouples interaction between AtRGS1 and 

AtGPA1, therefore abrogates acceleration of GTP hydrolysis activity 3. To determine if 

AtRGS1 interaction with AtGPA1 is required for AtRGS1 endocytosis, we measured 

glucose-induced internalization of the AtRGS1(E320K) mutant protein. We found that 

AtRGS1(E320K)-YFP did not internalize under conditions that promoted endocytosis of the 

wild-type protein (Fig. 1D, 2D vs. 2G, and 2H). To distinguish between a loss of interaction 

or failure to accelerate GTP hydrolysis, we combined the AtGPA1(Q222L) mutation with 

the AtRGS1(E320K) mutation. Although constitutively active AtGPA1(Q222L) caused 

glucose-independent internalization of wild-type AtRGS1, AtGPA1(Q222L) failed to trigger 

AtRGS1(E320K) internalization under any condition (Fig. 2D, G). These results indicate 

that physical interaction between AtGPA1 and AtRGS1 is required for AtRGS1 endocytosis, 

but AtGPA1 cycling between inactive and active states is dispensable for initiating the 

AtRGS1 internalization process. One interpretation is that without AtRGS1 interaction with 

AtGPA1, the heterotrimer forms, thus sequestering AGB1, shown to be essential for 

AtRGS1 endocytosis (Fig. 2 A, B).
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AtWNK8 is an AtRGS1 kinase

Upon sustained ligand occupancy, mammalian GPCRs are phosphorylated by G protein 

receptor kinases (GRKs). Thisphosphorylation event is critical for assembly of the 

trafficking complex and concomitant receptor endocytosis 1, 27. Thus, we hypothesized that 

AtRGS1 phosphorylation is required for AtRGS1 endocytosis. When calyculin A, a Ser/Thr 

phosphatase inhibitor 28 was applied to Arabidopsis seedlings, a band shift for AtRGS1, but 

not AtGPA1, was observed using SDS-PAGE (Fig. 3A), suggesting the phosphorylation of 

AtRGS1 in vivo. Likewise, calyculin A accelerated receptor endocytosis even in the absence 

of glucose suggesting tonic cycling (Fig. 3B; P<0.01). In contrast, the mobility of AtRGS1 

and AtGPA1 were not changed by the tyrosine phosphatase inhibitor, sodium orthovanadate 

(Fig. 3A). These data suggest that AtRGS1 phosphorylation on Ser/Thr residues promotes 

endocytosis.

AtRGS1 has many di-serines at its C terminus, analogous to sequence found in vertebrate 

GPCRs that are phosphorylated, a requisite for endocytosis in response to their ligands 1, 27. 

Although the Arabidopsis genome encodes ten-fold more kinases than the human 

genome 29, none of these plant kinases have the GRK architecture typified by an N-terminal 

RGS-homology domain 30. Therefore, we searched ab initio for candidate AtRGS1-kinases 

among candidate AtRGS1-interacting proteins that were identified from yeast 

complementation screens 25, 31. We found several AtRGS1-interacting kinases 

(Supplementary Fig. S3A) and confirmed in vivo interactions using bimolecular 

fluorescence complementation (BiFC, Supplementary Fig. S3B). While all four kinases 

assigned to the G protein interactome interacted with AtRGS1, only AtWNK8, among these, 

phosphorylated a recombinant AtRGS1 substrate-RGSbox+Cterm (284–459 aa) under these 

in vitro conditions (Supplemental 3A).

AtWNK8 is one of eleven WITH NO LYSINE (WNK) family Ser/Thr kinases in 

Arabidopsis (Fig. 3C). This kinase family has the catalytic lysine at the expected location in 

the catalytic center at an unusual position in the linear sequences 32. To address AtRGS1 

specificity for WNK family members, we measured interactions using yeast two-hybrid 

(Supplementary Fig. S3C), BiFC (Supplementary Fig. S3B) and in vitro co-precipitation 

assays (Fig. 3D). We included AtWNK1, the most divergent from AtWNK8, and 

AtWNK10, the most similar to AtWNK8 in sequence (Fig. 3C). AtRGS1 interacted with all 

three representative WNK family kinases in all three assays, but AtRGS1 was 

phosphorylated by AtWNK8 the most under these experimental conditions (Fig. 3E, F; c.f. 

AtRGS1 phosphorylation to the respective AtWNK autophosphorylation band). Although 

AtWNK1 and AtWNK10 have lower specific activities, these kinases are clearly able to 

phosphorylate AtRGS1 under these in vitro conditions.

Having identified kinases that phosphorylate AtRGS1 in vitro, we next determined how 

these kinases affected AtRGS1 endocytosis in vivo using genetic ablation (alleles shown in 

Supplemental Fig. S3E and S3F). Toward this end, we measured AtRGS1 trafficking in the 

absence of the selected WNK kinases with and without 6% D-glucose (Fig. 3G). AtRGS1 

was internalized in Col-0 and wnk1 cells, but not in the absence of AtWNK8 (wnk8-1 and 

wnk8-2 alleles) or AtWNK10 (wnk10-2) or both AtWNK8 and AtWNK10 (wnk8-1/
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wnk10-1). These results shown in Fig. 3G indicate that AtWNK8 and AtWNK10, but not 

WNK1, are AtRGS1 kinases that drive AtRGS1 endocytosis.

AtRGS1 endocytosis requires C-terminal phosphorylation

AtRGS1 has eleven serines within its fifty most C-terminal residues that are candidate 

phosphorylation sites. Our in vitro phosphorylation of RGSbox+Cterm showed ~2 

mole 32PO4 incorporated per mole of substrate (Supplementary Fig. S4A). LS/MS/MS 

analysis of recombinant RGSbox+Cterm phosphorylated by AtWNK8 identified two 

phosphorylation sites: Ser428 and Ser435 or Ser436 (Fig. 4A, 4B and Supplementary Fig. 

S4C, 4D) in the AtRGS1 C-terminus. To validate the tandem MS results, we determined if 

AtWNK8 phosphorylates in vitro an AtRGS1 substrate lacking the C-terminal domain 

(AtRGS1-RGS box; 284–416 aa) and the isolated C-terminal domain (AtRGS1-Cterm; 400–

459 aa). AtWNK8 preferentially phosphorylated AtRGS1 substrates that contained both the 

RGS and the C-terminal domains (Fig. 4D,E) and this result correlated with stronger 

interactions in co-precipitation assays using purified proteins (Fig. 4C). In BiFC 

experiments, cYFP-AtWNK8 specifically interacted with AtRGS1-nYFP but not with the 

mutant lacking the C-terminal domain (ΔCt; 1–416 aa, Fig. 4B; (Supplementary Fig. S4E), 

although both AtRGS1-cYFP and the ΔCt mutant interacted with cYFP-AtGPA1 as a 

positive control. These results indicate that the C-terminal domain on AtRGS1 is necessary 

for phosphorylation and interaction with AtWNK8 and that the RGS box plays a structural 

role in these processes. Because our MS analyses failed to identify phosphopeptides from 

the extreme C-terminus of AtRGS1 (non-highlighted sequence in Supplementary Fig. S4B), 

we do not exclude additional phosphorylation sites in this region. However, since we 

showed that the specific activity is 2 moles phosphate per mole of AtRGS1 C-terminal 

fragment (Supplementary Fig. S4A), additional phosphorylation sites would be mutually 

exclusive to the ones identified.

We generated phospho-specific AtRGS1 antibodies for immunoblot analysis. In Arabidopsis 

seedlings lysates, AtRGS1-TAP (tandem affinity protein tagged) was phosphorylated upon 

D-glucose treatment (Fig. 4F). The phosphatase inhibitor, calyculin A, increased AtRGS1 

phosphorylation, even without D-glucose (Fig. 4F and 4G), suggesting that AtRGS1 

undergoes steady-state phosphorylation and dephosphorylation in plant cells.

Since phosphorylation of animal GPCRs is critical for their endocytosis, we engineered a C-

terminal truncation mutant (AtRGS1-ΔCtSA) and a full-length AtRGS1-3SA mutant 

(S428A/S435A/S436A) in which three phosphorylation sites identified were mutated to 

alanine residues (Fig. 4B), and assayed for D-glucose dependent endocytosis. While the 

wild-type AtRGS1-YFP was localized to the plasma membrane and endocytosed upon D-

glucose treatment, the AtRGS1-3SA mutant (Fig. 4H and 4I) or AtRGS1-ΔCtSA (Fig. 4J) 

remained at the plasma membrane with D-glucose in both stable and transient expression 

assays. While steady-state levels of phosphorylated full-length AtRGS1 increased with 

phosphatase inhibition by calyculin A, no equivalent change was observed for the AtRGS1-

ΔCtSA mutant (Fig. 4G). These results indicate that the carboxyl-terminus on AtRGS1 is the 

only phosphorylation region and that carboxyl-terminal phosphorylation is required for 

AtRGS1 endocytosis.
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Gβγ subunit interacts with AtWNK8 on the plasma membrane

AtWNK8 is known to interact with the β-propeller protein AtRACK1 25, which has a similar 

structure to the Gβ protein, AGB1 33. Thus, we hypothesized that AtWNK8 directly 

interacted with AGB1 as well. We found, using purified components, that AtWNK8 directly 

interacted with AGB1/AGG1 in co-precipitation experiments, but AtWNK8 did not interact 

with AtGPA1 (Fig. 5A, B). Using BiFC analysis, AGB1/AGG1 strongly interacted with 

AtWNK8 at the plasma membrane in both stable and transient assays (Fig. 5C and 

Supplementary Fig. S5), although the majority of WNK8 was cytoplasmic (Fig. 5D). This 

indicates that the rate-limiting factor is the level of available Gβγ dimer at the plasma 

membrane.

FRET analysis showed that AtWNK8 association with AtRGS1 increased upon treatment 

with 6% D-glucose (Fig. 5D). Within minutes of stimulation, the AtWNK8 associated with 

AtRGS1 at the plasma membrane (5 min.; P<0.05) followed by the endosomes (30 min.; 

P<0.05). The FRET results suggest that the association of AtWNK8 and AtRGS1 is 

triggered by induction of glucose causing initial interaction at the plasma membrane (Fig 

5D, 5 min. time point) continued with movement into endocytic compartments (Fig 5D, 30 

min. time point).

AtWNK8/10 is required for activation of G protein signaling

Glucose/fructose signaling through AtRGS1 is known to activate transcription of the TBL26 

gene (At4G01080) 16 and therefore glucose-induced TBL26 expression is used as a reporter 

of AtRGS1-dependent, sugar signaling. We found that TBL26 expression in cells lacking 

AtRGS1 or both AtWNK8 and AtWNK10 was at the basal level, only 20% of the expression 

detected in wild-type cells treated with 6% D-glucose (Fig. 6A). These results were 

consistent with our earlier finding that AtRGS1 is endocytosed in 6% D-glucose, and 

minimally or not at all at lower concentration and less duration of D-glucose (Fig. 1). In the 

rgs1-2 or wnk8-2/wnk10-1 double mutant cells, acute D-glucose treatment failed to stimulate 

TBL26 expression at the wild type level (Fig. 6A). Loss of WNK8 attenuated TBL26 

expression but loss of both WNK8 and 10 completely abrogated sugar signaling as reported 

by TBL26 expression (Fig 6A and B). Sugar-stimulated AtRGS1 endocytosis correlated with 

TBL26 expression.

Previously, we identified a subset of genes that were induced by D-glucose in an AtRGS1-

independent manner 16. To determine the role of AtWNK8 in expression of these additional 

genes, we quantified their induction following a brief acute treatment with D-glucose. We 

found that induction of AtRGS1-dependent genes (TBL26 and three Jacalin-like) were 

attenuated in rgs1-2, gpa1-4, agb1-2, wnk8-2 or wnk10-1 (Supplementary Fig. S6A). In 

contrast, AtRGS1-independent genes (At4G23600 and At5G48850) were similarly induced 

in all genotypes (Supplementary Fig. S6A). Likewise, the time course of D-glucose 

stimulation and reset timing after starvation was unaffected in wnk8 null mutants (Fig. 6B 

and Supplementary Fig. S6B). Together, these results suggest that sugar signals are 

mediated by several different mechanisms, and AtWNK8 and AtWNK10 influence only the 

AtRGS1-dependent sugar signals. Moreover, these results suggest that AtWNK-mediated 

endocytosis of AtRGS1 is critical for activating G protein-mediated sugar signaling.
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AtRGS1 endocytosis activates cell division

G-protein signaling is involved in cell proliferation and elongation in Arabidopsis 

seedlings 9, 10, 13. After 2 days of etiolated growth, gpa1 or agb1 seedlings have shorter 

hypocotyls than wild type seedlings because of a reduction in cell proliferation 9, 10. On the 

other hand, rgs1 plants and plants that express the constitutively active Gα, 

AtGPA1(Q222L), have longer hypocotyls 8. A visual sugar phenotype of the G mutants is 

growth arrest and this also is a cell division phenomenon. We used the standard “green 

seedling” assay in conjunction with our sugar signaling assay34 to illustrate the role of the 

WNK kinases. Fig. 6A shows that over a range of glucose, sugar signaling is greatly 

attenuated in the rgs1 single and wnk8-2/10-1 double mutants (combination of a different set 

of wnk8 and wnk10 alleles gave the same results). Loss of WNK8 alone slightly reduces 

signaling over time compared to wild type (Fig 6B). Sugar signaling as reported by TBL26 

gene expression correlates with the growth behavior on acute level of D-glucose. Growth 

arrest on 6% glucose was more than 60% for wild type yet only 15% for the wnk8-2/10-1 

double mutant and 40% for the wnk8-2 single mutant (Fig 6C). This was observed over a 

range of glucose concentrations (Fig 6D). Consistent with the loss-of-function mutations, 

ectopic over expression of either WNK8 or AtRGS1 confers the opposite effect (Fig. 6C vs. 

6D for WNK8 vs. 6E for AtRGS1). The increased sensitivity to glucose conferred by 

AtRGS1 expression requires the C-terminus and/or the serines targeted for phosphorylation 

by WNK8 (Fig 6E). The role of glucose-induced AtRGS1 endocytosis fits the context of 

sugar-induced growth arrest and also suggests that sugar signaling for this growth behavior 

originates, at least in part, at the endosome.

DISCUSSION

xSignaling through theheterotrimeric G protein complex is one mechanism by which plants 

sense sugar levels and regulate cell proliferation and cell elongation 

accordingly 3, 8–11, 13, 15, 16. Unlike in humans, where the serum glucose levels are held 

nearly constant by a feedback mechanism involving glucose uptake and metabolism, both 

the apoplastic and symplastic glucose levels in plants swing over 4 orders of magnitude 35. 

Diurnal changes in the rate of glucose production from photosynthesis account for most of 

this variation in glucose concentration, but also important are long term changes such as the 

positions and strengths of glucose sinks such as roots, meristems, and fruits 36. Yeast, like 

plants, adopt growth strategies based over wide swings in glucose levels and do so, in part, 

through a G protein coupled signaling pathway 37–39. However, the level of glucose must be 

sustained for the cell to commit to an altered growth strategy.

While the rate-limiting step for G protein activation in humans is 7TM receptor-catalyzed 

nucleotide exchange, this process is spontaneous for the Arabidopsis Gα protein3, 7. Plant 

cells must therefore utilize accessory control to keep the complex in the basal state until self-

activation is permitted. The protein prototype 7TM-GAP, AtRGS1, serves as a receptor or 

co-receptor for glucose (and/or glucose metabolites) and accelerates the intrinsic hydrolysis 

of its cognate Gα subunit, AtGPA1 3, 8 to keep the complex in its basal state 40.

WNKs may play a role in circadian and developmental timing in Arabidopsis 41–43 and in 

abiotic stress 44, 45 but until now, no specific biochemical pathway was known although 
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recently, human WNK1 was shown to coordinate signaling through PIP2 and Gq-coupled 

pathways by an interesting dual mechanism 46. Of particular interest here is that WNK1 

promotes clathrin-dependent endocytosis of renal ion transporters and potassium 

channels 47, suggesting by comparison to AtWNK8 that WNK’s regulatory role in 

membrane protein trafficking is its primordial function.

In animals, internalization of 7TM GPCRs desensitizes cells to the receptor agonists (Fig. 

7A–C), however recent data indicate that, in some cases, signaling subsequent to 

endocytosis occurs at the endosome 2, 48. The results from our epistasis analyses here 

prompt us to propose that AtRGS1 mediates sugar signaling both via the endosome and via 

G protein at the plasma membrane. For example, for many sugar phenotypes, the loss-of-

function alleles of the G protein complex (gpa1, agb1 or agg1/agg2) and AtWNK8 display 

the opposite phenotype as the rgs1 mutants, suggesting that AtWNK8-mediated AtRGS1 

endocytosis drives G protein activation at the plasma membrane. In contrast, null alleles of 

gpa1,agb1, rgs1 and wnk8/10 all abrogate signaling as measured by TBL26 (and several 

others) expression, implying that internalized AtRGS1 transmits signals from the endosome.

Here we show that glucose-induced endocytosis of AtRGS1 is achieved by AtWNK8-

mediated phosphorylation of at least 2 C-terminal serines. Although we show the elements, 

order, and mechanism of this process, one question remains. Specifically, what causes the 

instantaneous G protein activation that leads to the sustained activation mechanism we 

elucidate here? Fig. 7 illustrates a model that summarizes the key findings and our 

interpretation: In the absence of glucose stimulation, the plant self-activating Gα protein 

(Fig. 7 D, E) cycles between the GTP and GDP bound states with its binding partners, Gβγ 

and AtRGS1 (Fig. 7E,F). The GTPase accelerating activity of AtRGS1 promotes inactive 

heterotrimer formation while the self-activating property of AtGPA1 promotes association 

with AtRGS1 3. The newly-freed Gβγ dimer recruits AtWNK8 to the plasma membrane to 

phosphorylate the C-terminus of AtRGS1. Once phosphorylated, AtRGS1 undergoes 

endocytosis and the Gα protein is physically uncoupled from its negative regulator, left to 

self-activate at the plasma membrane. Each signaling component, both endosomal AtRGS1 

and plasma membrane-delimited Gα and Gβγ, consequently relays signals for a sustained 

response to the sugar signal. The initial mechanism of Arabidopsis G protein activation is 

still unknown, but we previously reported that the D-glucose stimulation increased AtGPA1 

association with AtRGS1 3. Because the RGS domain and Gβ have overlapping interaction 

interfaces on the Gα protein surface 49, 50, increased association between AtGPA1 and 

AtRGS1 would preclude heterotrimer formation and favor Gβγ release (Fig. 7F). An 

alternative hypothesis is that glucose may directly inhibit the GAP activity of AtRGS1 thus 

permitting Gα self-activation and heterotrimer dissociation. While glucose has no effect in 

vitro on the GAP activity of the RGSbox+Cterm of AtRGS1 (Supplementary Fig. S7C, D), 

it remains possible that sugar directly regulates GAP activity in the full-length protein or 

indirectly by conformation changes promoting GAP activity. Both hypotheses are consistent 

with the glucose-induced change in FRET efficiency between AtGPA1 and AtRGS1 3.

In conclusion, sustained plant G protein activation is regulated in an opposite manner as in 

animals (Fig. 7). Despite the contrasting mechanisms of G protein activation between plant 

and animal cells, there is an intriguing similarity in the requirement for phosphorylation in 
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GPCR endocytosis. While we elucidated the critical role of C terminal phosphorylation of 

AtRGS1 for its endocytosis and provide a mechanism for sustained G protein-dependent 

signaling, we raised questions of whether trafficking mechanisms of mammals and of 

Arabidopsis 7TM proteins (e.g. GPCRs vs. 7TM-RGS) share evolutionary history, and how 

Arabidopsis and mammals independently combined similar functional compatibilities from 

different gene products to evolve receptor-trafficking mechanisms.

METHODS

Plant materials

The gpa1-3, agb1-2, gpa1-4 agb1-2 double, gpa1-4 agb1-2 agg1-1 agg2-1 quadruple, 

rgs1-1 and rgs1-2 mutants were described previously 8–11. The 35S::AtGPA1-Q222L 

gpa1-4, 35S::AtGPA1 gpa1-4, 35S::AGB1 agb1-2 were previously generated 9, 10. The 

35S::AtWNK8 was provided by Dr. Thomas Eulgem (UC-Riverside). wnk1, wnk8-1, 

wnk8-2, wnk10-1 and wnk10-2 mutants were obtained from the ABRC stock center 

(SALK_015778, SALK_103318, SALK_024887, SALK_012899, and SALK_071328C). 

All DNA-insertion lines were made homozygous and the T-DNA insertions were confirmed 

by PCR of genomic DNA with the following primer sets;

wnk8-1_RP: TGCCATGAATTCAGGAGTACC,

wnk8-1_LP: AAAGATCCTTCTGGCCGTTAC,

wnk8-2_RP: TACTCCTGAATTCATGGCACC,

wnk8-2_LP: CAGCAGATCTTGGAAGGACTG,

wnk1_RP: CGCAAGACATTCTTCGAATTC,

wnk1_LP: GGGAATCAAGGAGAGGTCAAG,

wnk10_RP: TGCTCTTCTGCTAAAAGCAGC,

wnk10_LP: GGGTCCATTCCTCTCTCTCAG, and

T-DNA_LB: ATTTTGCCGATTTCGGAAC (Supplementary Fig. S3E).

Transient expression in plants

Transient expression in tobacco was as described by Sparkes, et al 51 with the following 

modifications to the infiltration buffer (10 mM MgCl2, 10 mM MES, 200 µM 

acetosyringone). Agrobacterium tumefacien was incubated in infiltration solution for at least 

4 h. Images were typically captured 3 days after inoculation to obtain the lowest detectable 

expression. Transient expressions in Arabidopsis seedlings were as described by Grefen, et 

al. 52. Equal volumes of the A. tumefacien (O.D.600=1.0) harboring the plasmids were 

mixed just prior to the dipping step in the Arabidopsis transformation protocol.

BiFC was performed using 4–5 week-old tobacco leaves that were infected with A. 

tumefacien to express nYFP- and cYFP-tagged proteins as described previously 16 except 

with the following modifications. pENTR clones of the genes of interest were subcloned 

into one or more of the BiFC vectors pBatTL-sYFP-N or pBatTL-sYFP-C (for C-terminal 
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tagged nYFP and cYFP halves, respectively) and pCL112_JO or pCL113_JO (for N-

terminal tagged nYFP and cYFP halves, respectively). An internal positive transformation 

control (mitochondrial RFP marker; Mt-rk obtained from Arabidopsis Biological Resource 

Center (CD3-991)) was included to address the issue of transgene silencing (p19 gene 

silencing suppressor, mt-rk and two BiFC halves).

Plasmids, Recombinant Proteins, and Antibodies

cDNA for AtWNK1 was obtained from Dr. Norihito Nakamichi, and cDNAs for AtWNK8 

and AtWNK10 were obtained from the Arabidopsis Biological Resource Center. AtWNK 

coding sequences were subcloned into pDEST15 (N-terminal GST), pCL113_JO (N-

terminal split-cYFP), pACTGW-attR and pB7WGC2 (N-terminal CFP). Ara7, Rha1, 

RabA5d, VTI11 and SYP23 were obtained from the ABRC and subcloned into 

pEarleyGate101 (C-terminal YFP-HA), pEarleyGate102 (C-terminal CFP), and 

pEarleyGate104 (N-terminal YFP) plasmids. AtRGS1 (encoding 1–459 aa) and its C-

terminal truncated mutant (encoding 1–416 aa, designated as AtRGS1-ΔCt) were subcloned 

to pEarleyGate205 (C-terminal TAP), pEarleyGate101 and pBAT-TL-B-sYFP-N (C-

terminal split-nYFP). Coding sequences for cytoplasmic region of AtRGS1 were 

synthesized by Celtek Bioscience (Nashville, TN, USA) with codons optimized for 

expression in E. coli. AtRGS1-coding sequences RGSbox+Cterm (284–459 aa), RGSbox 

(284–416 aa) and Cterm (400–459 aa) of AtRGS1 were subcloned into pENTR-TEV-

TOPO, pAS-attR and pDEST17 (N-terminal His) or pDEST15. AtRGS1-ΔCtSA (1–416 aa, 

S405A/S406A) was generated with QuickchangeTM by direct mutagenesis. Recombinant 

GST- or His-tagged proteins were expressed in E. coli (ArcticExpress RP, Agilent 

Technologies) with 0.5 mM IPTG at 12°C, solubilized in buffer A (50 mM Tris-HCl (pH 

7.5), 100 mM NaCl, 5 mM 2-Mercaptoethanol, 1 mM PMSF and 1 µg/ml leupeptin) with 

0.25 mg/ml lysozyme and 0.2 % NP-40, purified from the soluble fraction using glutathione-

Sepharose 4B (GE Healthcare) or TALON Metal Affinity Resin (Clonetech), washed with 

buffer A containing 500 mM NaCl and 0.1% sodium cholate, and eluted with 20 mM 

glutathione or 500 mM imidazole, respectively. For His-tagged proteins, 5 mM imidazole 

was included in crude extracts to reduce nonspecific binding. The purified proteins were 

dialyzed in buffer B (20 mM Tris-HCl (pH 7.5), 50 mM NaCl, 1 mM MgCl2, 1 mM EDTA, 

1 mM DTT and 1 mM PMSF).

The AtGPA1 and AGB1 antibodies were described previously 10, 53. The AtRGS1 and 

phosphor-specific AtRGS1 antisera were raised with the His-tagged RGS1box+Cterm 

protein or the phosphorylated AtRGS1 peptide (424–440 aa): CKEGY-pS-FSSPRL-pS-pS-

VQGS (pS; phosphorylated-serine) (YenZym Antibodies). The anti-phospho-AtRGS1 

antibody was purified by affinity chromatography using the phosphorylated AtRGS1 peptide 

conjugated to affinity matrix. The purified antibody was further cleaned up with 

unphosphorylated-AtRGS1 peptide (424–440 aa) to remove phosphorylation-independent 

AtRGS1 antibody. The specificity of the antibody against phosphorylated- and 

unphosphorylated-AtRGS1 peptides was checked with ELISA. Scans of blots used in 

figures here are shown in Supplemental Figure S8.
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Microscopies

Vertical optical sections (Z stacks) of hypocotyl epidermal cells of dark grown seedlings 

located approximately. 3–4 mm from the cotyledon were imaged using a Zeiss LSM710 

confocal laser scanning microscope equipped with a Plan-NeoFluor 20×/0.5 objective and a 

C-Apochromat 40×/1.20 water immersion objective. YFP, CFP and RFP were excited by a 

514nm and 458nm Argon laser and a 560nm diode laser, respectively, and their respective 

emissions were detected at 526–569, 460–520 and 565–621 nm by a photomultiplier 

detector. The digital images were analyzed with Zen software (Zeiss).

Some fluorescence images of tobacco transients and Arabidopsis seedlings were captured by 

using an Olympus IX81 inverted microscope (Olympus America, Merville, NY) with a 

Hamamatsu CCD C4742-80-12AG (Hamamatsu Photonics, Bridgewater, NJ) and analyzed 

using Slidebook 5.0 (3i). Filter sets used were YFP (excitation, 500/20 nm; emission, 535/30 

nm; same filter for GFP-tag), CFP (excitation, 436/20 nm; emission, 480/40 nm).

FRET measurements in CFP/YFP double labeled cells was determined by the acceptor 

photobleaching method. The intracellular region of interest (ROI) varied in size depending 

on the substructure analyzed but fell into two categories: (i) initial regions at or adjacent the 

plasma membrane, and (ii) regions inside the cell or not adjacent to the plasma membrane. 

The laser intensity and duration was optimized to achieve at least 80% YFP photobleaching 

without affecting donor emission quantum yield. CFP and YFP were excited by the 458 nm 

and 514 nm lines of an Argon laser, respectively, Emissions were detected at 460–520 and 

526–569 nm. Pre- (Ipre.λ) and post-bleaching (Ipost.λ) fluorescence intensities of both CFP 

and YFP were obtained and the FRET efficiencies in the ROI were calculated using the 

following equation:

The digital images and FRET analysis were analyzed with Zen software (Zeiss).

Quantitation and Statistics

Fluorescence quantitation was obtained using the software ImageJ 54. Randomly selected 

hypocotyl images from at least five (5) whole Z-section image stacks from 3 independent 

experiments were selected for quantification. Images were thresholded for fluorescence 

signal prior to selecting regions. Boxed regions of fluorescence from within cells were 

selected and subtracted from the total hypocotyl fluorescence of the hypocotyl in the image 

(fluorescence not in the hypocotyl was excluded from measurements). Boxed regions were 

chosen distant from the cell periphery as determined in the bright field/DIC images.

Statistical comparison of mean fluorescence was performed using Analysis of Variance to 

confirm differences in treatments and genotypes followed by mean analysis by Tukey’s test. 

Typically, a minimum of 5 Z-sections of the root were randomly selected and used for 

quantitation. There is little variation between different Z sections of cells in the scan range 

which was typically 20–30 nm from root surface.
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In vitro Co-precipitations

Seventy five pmol of His-RGSbox+Cterm and 50 pmol of GST-AtWNK kinases were 

mixed with 10 µl of glutathione-Sepharose 4B (GE Healthcare) in 250 µl of buffer C (50 

mM MES (pH 6.0), 10 mM MgCl2, 5 mM MnCl2, 2 mM DTT, 1 mM PMSF and 1 µg/ml 

leupeptin). The tubes were rotated for 60 min at 4°C, and the resin was washed with buffer 

C with 0.1% NP-40 four times. The co-precipitated or input proteins were visualized by 

immunoblot analysis with anti-AtRGS1 antisera and Coomassie Brilliant Blue (CBB) 

staining. To test binding with AtGPA1, the same procedure was followed except that 50 µM 

GDP with or without aluminum tetrafloride (30 µM AlCl3, 10 mM MgCl2 and 5 mM NaF) 

was added into buffer C.

Yeast Two Hybrid

pAS-RGSbox+Cterm, RGSbox or Cterm of AtRGS1 and pACTGW-AtWNK1, AtWNK8 or 

AtWNK10 were transformed into AH109 yeast cells. The colonies grown on SD (-LW) 

plates were inoculated into SD (-LW) liquid media and cultured overnight at 30°C. The β-

galactosidase activity of yeast was determined per the manufacturer’s instruction 

(Clonetech).

Physiological Assay

Approximately 40 seeds of Arabidopsis were sterilized, vernalized and sown on ½ X MS 

plates containing 0%, 3%, 4%, 5% and 6% D-glucose. The plates were incubated at 23°C 

under continuous light (50 µmol s−1 m−2) for 10 days for 0%, 3%,5% and 6%. Number of 

green seedlings was divided by number of germinated-seeds. Score was presented with 

SEM.

In vitro and in vivo Phosphorylation Assays

Seventy-five pmol of His-RGSbox+Cterm, -RGSbox or GST-AtRGS1-Cterm was incubated 

with 0.05 pmol of GST, GST-AtWNK1, GST-AtWNK8 or GST-AtWNK10 in 15 µl of 

buffer C containing 0.2 mM [γ-32P]ATP for 6 h at room temperature. The reactions were 

terminated by adding Laemmli sample buffer and separated by SDS-PAGE. Incorporation 

of 32P into the separated proteins was visualized with a phosphor screen (Molecular 

Dynamics).

Approximately 50 sterilized and stratified seeds were grown in ½ X MS liquid media with 

1% sucrose at 23°C, at 100 rpm under low light (50µE) condition. After 7 days culture, 

seedlings were starved of sugars with ½ X MS media lacking sucrose for 2 days in a dark 

chamber, and then stimulated with 6% D-glucose, 100 nM calyculin A and 10 mM sodium 

orthovanadate, as indicated. The seedlings were frozen, powdered with mortar and pestle 

then lysed with buffer D (150 mM Tris-HCl (pH 7.5), 300 mM NaCl, 20% glycerol, 5 mM 

DTT, 2 mM Na3VO4, 10 mM NaF, 20 mM β-glycerophosphate, 1 mM PMSF, 2 µg/ml 

leupeptin and 1% ASB-14). After 2 h incubation at 4°C, the lysates were centrifuged and the 

supernatants were subjected to SDS-PAGE and immunoblot analysis. The phosphorylated 

AtRGS1 was detected with anti-phospho-RGS1 antibody. Total AtRGS1-TAP amount was 

determined with peroxidase anti-peroxidase soluble complex (PAP). To observe a band shift 

of AtRGS1-TAP, AtRGS1-ΔCtSA-TAP or AtGPA1, total extracts were separated with 
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12.5% Anderson’s gel 55 and subjected to SDS-PAGE and immunoblot analyses using PAP 

or anti-AtGPA1 antisera.

Quantitative Real Time PCR

Approximately 150 seeds were grown in ½ X MS liquid media with 1% glucose at 23°C 

with low light (50µE). After 7 days culture, seedlings were starved with ½ XMS media for 2 

days in the dark. Then, seedlings were stimulated with 6% sugar for 3 h in dark condition. 

The mRNA and cDNA were prepared with RNAeasyTM (Qiagen) and Superscript IIITM 

(Invitrogen) per the manufacturer’s instruction. Expression of TBL26 and TUB4 were 

analyzed by real-time PCR with SYBRgreenTM or Taqman-probes using the following 

primer and probe sets. TBL26-fw; CGCCATCGAACCTTCGTCAAATTC, TBL26-rv; 

TCGTCCATTCAATAGGCAGTTCTGA, TBL26-

Taqman;CTCCCGGAAACGTTTCATCAGCAAAG, TUB4-fw; 

AGAGGTTGACGAGCAGATGA, TUB4-rv; ACCAATGAAAGTAGACGCCA, TUB4-

Taqman; CCCAAACAACGTCAAGTCCAGTGTCTGT.

Mass Spectrometry

Phosphorylated protein bands were excised from 10% polyacrylamide gels (Biorad) and 

digested as described previously 56. The trypsinized peptides were analyzed by MALDI-

TOF/TOF and by LC-ESI-MS/MS. A 90-min gradient was used and MS analysis was 

performed with an LTQ Orbitrap XL mass spectrometer (ThermoFisher Scientific). Peptide 

masses were queried using the MASCOT algorithm against the nonredundant NCBI 

database and AtRGS1 specific database with possible phosphorylations. Based on MASCOT 

results, two phosphorylated peptides (EGYSFSSPR and LSSVQGSDDPFYQEHMSK) were 

identified. Based on manual inspection of the spectra, the phosphorylation sites were 

defined.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

GAP GTPase-activating protein

GEF guanine nucleotide exchange factor

GPCR G protein-coupled receptor
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GRK G protein-coupled receptor kinase

GST glutathione S-transferase

RGS regulators of G protein signaling

TAP tandem affinity purification

WNK With No K-Lysine kinase
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Figure 1. AtRGS1 internalizes in response to sugar
AtRGS1-YFP internalized by glucose. (A) AtRGS1-YFP and (B) AtGPA1-CFP localization 

after treatment with 6% glucose in an Arabidopsis hypocotyl epidermal cell. Differential 

interference contrast (DIC) shows that 30 min of glucose does not disrupt cell integrity (last 

in series, panel A). (C) Dose-dependent internalization of AtRGS1. Arabidopsis cells stably 

expressing AtRGS1-YFP imaged after treatment with varying concentrations of glucose for 

30 min. (D) Quantitation of dosage response of AtRGS1 (open square) and AtRGS1(E320K) 

mutant (GAP dead; close circle) with increasing glucose concentrations. At the 30 min time 
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point, YFP fluorescence was measured by subtracting internalized RGS1-YFP fluorescent 

signal from total cell fluorescence. A point mutation that inhibits AtRGS1 interaction with 

AtGPA1, AtRGS1(E320K), disrupts AtRGS1-YFP internalization. Error bars = SEM, n = 5. 

(D Inset) Quantitation of the glucose dosage response of AtRGS1-YFP internalization 

imaged at 30 min post-glucose treatment. Error bars = SEM, n = 5. (E) Sugar specificity of 

AtRGS1 internalization. Several sugar and sugar analogs (6% of each) were applied to 

seedlings expressing AtRGS1-YFP for 30 min prior to imaging as described in Methods. (F) 

RGS1-YFP reciprocity of time and dose dependence. AtRGS1 seedlings stably expressing 

AtRGS1-YFP were treated without or with 1% or 6% D-glucose. After 30 min or 24 hr 

treatment, internalized AtRGS1 was quantified. Error = SEM, n = 5. Labels with ns has no 

statistical difference (P > 0.05), *** mean highly significantly different (P < 0.001). All 

scale bars = 10 µm. Quantitation of fluorescence is described in Methods.
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Figure 2. AGB1 is essential for AtRGS1 internalization
(A) AtRGS1-YFP was transiently expressed in an informative set of G-protein mutants and 

treated with 6% glucose. Internalization of AtRGS1-YFP was imaged in Col-0, rgs1-2, 

gpa1-3, agb1-2, gpa1-4 agb1-2 double null mutants (αβ-null) and gpa1-4 agb1-2 agg1-2 

agg2-1 quadruple null mutants (αβγ-null) without and with 6% glucose. (B) Quantitation of 

percent AtRGS1-YFP fluorescence (FL) internalized in epidermal cells transiently expressed 

before and after glucose stimulation. Error bars = SEM, n = 5. (C) Seedlings of Col-0, 

gpa1-3 and agb1-2 were treated with 200 mM cycloheximide (CHX). Relative steady-state 

levels of AtGPA1 and AGB1 protein in the seedling were analyzed by immunoblot analysis 

with anti-AtGPA1 and anti-AGB1 antisera. (D) AtRGS1-YFP was transiently expressed in 

rgs1-2 null mutants, 35S::AtGPA1, 35S::AtGPA1(Q222L) (active mutant) or 35S::AGB1 

lines and treated with 6% glucose. “35S::” represents a constitutive promoter from the 

Cauliflower Mosaic virus used for ectopic overexpression. (E) AtRGS1-YFP and 

35S::AtGPA1 were transiently expressed in a gpa1-4 agb1-2 double mutant and treated with 

6% glucose. (F) Both AtRGS1-YFP and 35S::AtGPA1(Q222L) were transiently expressed 

in the gpa1-4 agb1-2 double mutant and treated with 6% glucose (left panels). AtRGS1-YFP 

and 35S::AtGPA1(Q222L) were also transiently expressed in the gpa1-3 mutant (right 

panel). (G) AtRGS1(E320K)-YFP was transiently expressed in rgs1-2 null mutants, 

35S::AtGPA1, 35S::AtGPA1(Q222L) (active mutant) or 35S::AGB1 lines then treated with 

6% glucose prior to imaging.(H) Quantitation of percent AtRGS1-YFP and AtRGS1-

E320K-YFP fluorescence internalized in epidermal cells before and after 6% glucose 

stimulation. Error bars = SEM, n = 5. The genetic background is indicated: rgs1-2, ectopic 

expression of AtGPA1 (35S-GPA1 in gpa1-4 null background), ectopic expression of 

constitutively-active AtGPA1 (35S::GPA1(Q222L) in gpa1-4 null background), and ectopic 

expression of AGB1 (35S::AGB1 in agb1-2 null background). (I) Quantitation of percent of 

AtRGS1-YFP fluorescence in epidermal cells transiently expressing the AtGPA1 in the 

gpa1/agb1 double mutant (35S::AtGPA1 in gpa1-4 agb1-2 null background), constitutively-

active AtGPA1 (35S::GPA1-QL) in the gpa1/agb1 double mutant), and 35S::GPA1-QL in 
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the gpa1-3 mutant). Error = SEM, n = 5.All scale bars = 10 µm. GPA1-QL represents 

GPA1(Q222L). Quantitation of fluorescence is described in Methods.
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Figure 3. In vivo and In vitro function of AtWNK8
(A) In vivo phosphorylation of AtRGS1. Seedlings expressing AtRGS1-TAP were pretreated 

with 100 nM calyculin A and 10 mM sodium orthovanadate for 3 h followed by 6% D-

glucose stimulation for 90 min. AtRGS1-TAP or AtGPA1 in seedling lysates was separated 

on a 12.5% Anderson’s gel and detected by immunoblot with peroxidase anti-peroxidase or 

anti-AtGPA1 antibody. (B) Four-day-old AtRGS1-YFP expressing seedlings were treated 

with phosphatase inhibitors, calyculin A, for 2 h followed by 6% glucose treatment or not 

(No glucose) for 1 h prior to imaging epidermal cells. Scale bars = 10 µm. Error = SEM, n = 
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5. (C) Phylogenetic tree of the AtWNK-family kinases. Full-length amino acid sequences 

were aligned with CLUSTAL W implemented in CLC Genomics Workbench using the 

following settings; Gap open penalty, 10; Gap extension penalty 1. The neighbor joining tree 

(1000 bootstrap replicate) was created with the aligned sequences. (D) In vitro binding 

between AtRGS1 and AtWNKs. Recombinant RGSbox+Cterm was tested for interaction 

with GST (negative control) or GST-AtWNKs using glutathione-Sepharose, and detected by 

immunoblot analysis using an anti-AtRGS1 antibody. (E) In vitro phosphorylation of 

AtRGS1 by AtWNK kinases. Recombinant GST or His-RGSbox+Cterm was incubated with 

GST-AtWNKs in reaction buffer containing γ32P-ATP. Proteins were separated on SDS-

PAGE. (F) Radioactivity incorporated into the GST/RGS1 bands. Phosphorylation levels of 

three independent experiments were quantified in (E). Error bars = SEM. (G) Quantitation 

of sugar-induced AtRGS1 internalization in AtWNK-null mutants. Seedlings of Col-0, 

wnk1-1, wnk8-1, wnk8-2 or wnk10-2 transiently expressing AtRGS1-YFP were treated with 

6% D-glucose for 30 min. WNK# denotes AtWNK members in panels C-F. Error bars = 

SEM, n = 5. Quantitation of fluorescence is described in Methods.
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Figure 4. Phosphorylation and function of the carboxyl terminus of AtRGS1
(A) Phosphorylated peptides of AtRGS1 isolated and identified by tandem mass 

spectrometry. Recombinant RGSbox+Cterm was phosphorylated by AtWNK8, trypsinized 

and subjected to LC-MS/MS as described in the Methods. (B) Schematic model of AtRGS1 

mutants. Transmembrane regions are shown as black lines, AtRGS1 box as a white box and 

the identified phosphorylation sites are denoted “P”. (C) In vitro binding between AtRGS1 

truncated mutants and AtWNK8. Recombinant RGSbox+Cterm or RGSbox of AtRGS1 was 

tested for interaction with GST (negative control) or GST-AtWNK8. Inputs and precipitated 

proteins were analyzed by immunoblot analysis using an anti-AtRGS1 antibody. (D) In vitro 

phosphorylation of AtRGS1 by AtWNK8. Recombinant His-tagged RGSbox+Cterm, 

RGSbox, or GST-AtRGS1-Cterm plus γ32P-ATP were incubated with (WNK8) or without 

(−) GST-AtWNK8. Radiolabelled (32P) proteins were separated by SDS-PAGE and detected 

as described in the Methods. (E) The levels of phosphorylation were quantified. Error bars = 

SEM, n = 3. **, P < 0.01. (F) In vivo phosphorylation of AtRGS1. Seedlings expressing 

AtRGS1-TAP were pretreated with 100 nM calyculin A for 3 h followed by 6% D-glucose 

Urano et al. Page 24

Nat Cell Biol. Author manuscript; available in PMC 2013 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for 90 min. Phosphorylation of AtRGS1 was detected by immunoblot analysis using an anti-

phospho-AtRGS1 antibody or peroxidase anti-peroxidase (Total RGS1). (G) In vivo 

phosphorylation of AtRGS1 or the ΔCtSA mutant. TAP-tagged AtRGS1 or AtRGS1-ΔCtSA 

seedlings were pretreated with 100 nM calyculin A or 10 mM sodium orthovanadate for 3 h 

followed by 6% D-glucose stimulation for 90 min. AtRGS1 or AtRGS1-ΔCtSA lysates was 

separated by 12.5% Anderson’s gel and subjected to immunoblot analysis using anti-

phospho-AtRGS1 antibody or peroxidase anti-peroxidase (Total RGS1, RGS1ΔCtSA). (H) 

Internalization of AtRGS1-YFP and AtRGS1-3×SA-YFP. AtRGS1-YFP and 

AtRGS1-3×SA-YFP were transiently expressed, followed by 30 min treatment in 6% 

glucose prior to imaging. Scale bars = 10 µm. (I) Quantitation of AtRGS1-YFP and 

AtRGS1-3×SA-YFP fluorescence internalization. Error = SEM, n = 5. (J) Internalization of 

full-length and carboxyl-terminal truncated mutant of AtRGS1. AtRGS1-YFP or AtRGS1-

ΔCtSA was expressed in tobacco leaves and treated with 6% D-glucose for 30 min. WNK8 

denotes AtWNK8. Scale bars = 20 µm. Quantitation of fluorescence is described in 

Methods.
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Figure 5. AtWNK8 physically interacts with the G-protein βγ subunit
(A, B) In vitro binding between AtWNK8 and heterotrimeric G protein. Inactive, GDP-

bound AtGPA1, AtGPA1 activated by aluminum tetrafluoride (AMF: 50 µM GDP, 30 µM 

AlCl3, 10 mM MgCl2 and 5 mM NaF) or AGB1/AGG1 was co-precipitated with GST or 

GST-AtWNK8. Proteins were subjected to immunoblot analysis with anti-AtGPA1 or anti-

AGB1 antisera. The two different amounts of input protein (0.2% or 1% of total) were 

loaded as reference. (C) In vivo binding between AtWNK8 and heterotrimeric G protein. 

nYFP-tagged AtGPA1, AGG1 with AGB1, or P31 was co-transformed with cYFP-tagged 

AtWNK8 and mitochondrial marker (Mt-rk, transformation control) into tobacco leaves. 

Fluorescence complementation of split YFP and expression of RFP were observed by 
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confocal fluorescence microscopy. Scale bars = 50 µm. (D) CFP-AtWNK8 associates with 

AtRGS1-YFP. Acceptor photobleaching of CFP-AtWNK8 and AtRGS1-YFP transiently 

expressed in tobacco in no sugar and 6% D-glucose for the indicated times. Bleached zones 

are in red boxes and numbers denote the net FRET value. WNK8 denotes AtWNK8. The 

method for determining the FRET efficiency indicated by the respective boxes is described 

in the Methods. Scale bars = 20 µm.
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Figure 6. wnk8 mutant expression and phenotypes
(A) Glucose signaling as reported by gene expression analysis in wnk mutants. Dose-

dependent TBL26 expression in Col-0, rgs1-2 or wnk8-2/wnk10-1. 7-day old seedlings were 

starved for 2 days and then treated with various concentration of D-glucose for 3 h. TBL26 

transcript levels were normalized with that of Col-0 without D-glucose stimulation. Data 

shows mean ± S.D. (n = 3) from a representative experiment. (B) Time course of TBL26 

expression and the reset timing. Seedlings were starved for 2 days and either stimulated with 

6% D-glucose for 5 h or not (by moving to ½ X MS media lacking sugars). TBL26 

expressions at each time period were normalized with the expression without D-glucose 

stimulation. Data shows mean ± S.D. (n = 3) from a representative experiment. (C, D, E) 

Physiological sugar-related phenotype of wnk and rgs1 mutants. Vernalized seeds of wild 

type col-0 or the indicated mutants were grown on ½ X MS plates containing 0%, 3%, 4%, 

5% and 6% D-glucose at 23° C under continuous light (50 µmol s−1 m−2) for 10 days. The 

average number of seedlings having green cotyledons were determined and presented with 

SEM. The histogram in C provides the average plus SEM of 0% glucose (black) or 6% D-

glucose (gray). Error bars = SEM. Pairwise Student’s t test was used to compare values to 
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the Col-0. *, P < 0.05; **, P < 0.01. “35S::” represents a constitutive promoter from the 

Cauliflower Mosaic virus used here for ectopic overexpression of the indicated open reading 

frame. n (the number of independent experiments) = 2 for 0%, 4 for 6% or 3 for the other 

concentration of D-glucose.
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Figure 7. Model of sustained G protein activation in Arabidopsis; comparison of activation 
mechanisms between fast and slow nucleotide exchanging G proteins
(A, D) Rate of guanine nucleotide exchange of human G protein is slower than that of GTP 

hydrolysis. However, Arabidopsis AtGPA1 rapidly releases GDP, while GTP hydrolysis is 

slow. (B, E) Based on these intrinsic properties, human G proteins require GPCRs to form 

the active GTP-bound state. In contrast, AtGPA1 requires a constitutively active 7TM-RGS 

protein, AtRGS1, to keep the inactive GDP-bound state. Genetic evidence suggests that D-

glucose inhibits AtRGS1 to activate the Arabidopsis G protein pathway. (C, F) Many human 

GPCRs are endocytosed after phosphorylation and subsequent endocytosis causes 

desensitization of G protein signaling. In Arabidopsis, in the absence of glucose, Gα subunit 

binding is in equilibrium between the RGS and Gβ dimerization interfaces, both shared on 

the Gα subunit. Glucose shifts the equilibrium toward the Gα-RGS dimer increasing the 

time the Gβγ remains free from the heterotrimer. The free Gβγ dimer recruits AtWNK8 to 

phosphorylate AtRGS1 at its C terminus. Phosphorylation is requisite for AtRGS1 

endocytosis. Endocytosis causes uncoupling of AtGPA1 from its inhibitor, AtRGS1 and 

subsequent sustained activation of G protein signaling.
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