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Background: Cuproptosis has been recognized as a novel regulatory cell death,

which has been confirmed to promote theoccurrence anddevelopment of tumors.

However, whether cuproptosis-related lncRNA has an impact on the prognosis of

squamous cell carcinoma of the head and neck (HNSCC) is still unclear.

Methods: In total, 501 HNSCC tumor samples and 44 normal were downloaded

from the TCGA database. Cuproptosis-related lncRNAs were obtained by co-

expressed analysis. We got prognostic lncRNA that was associated with

cuproptosis by using univariate Cox regression analysis and LASSO Cox

regression. Then we constructed and validated the prognostic signature of

HNSCC and analyzed the immune landscape of the signature.

Results: The Prognostic Signature is based on 10 cuproptosis-related lncRNAs

including AC090587.1, AC004943.2, TTN-AS1, AL162458.1, AC106820.5,

AC012313.5, AL132800.1, WDFY3-AS2, CDKN2A-DT, and AL136419.3. The

results of overall survival, risk score distribution, and survival status in the low-

risk group were better than those in the high-risk group. In addition, all immune

checkpoint genes involvedwere significantly different between the two risk groups

(p < 0.05). The risk score was positively correlated with Eosinophils. M0 and

M2 phenotype macrophages, mast cells activated, NK cells activated, and

negatively related with B cells naive, mast cells resting, plasma cells, CD8T cells,

T cells follicular helper, T cells regulatory (Tregs). Consensus clustering was

identified in molecular subtypes of HNSC. More high-risk samples concentrated

in Cluster1, which had a higher Tumor Immune Dysfunction and Exclusion (TIDE)

score and Single Nucleotide Polymorphisms (SNP) alternation than Cluster2.

Conclusion:Our study elucidated the correlation between cuproptosis-related

lncRNA with prognosis and immune landscape of HNSCC, which may provide

references for further research on the exploration of the mechanism and

functions of the prognosis for HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the eighth

most common malignancy currently in the world, which contributes

to the global cancer burden (Sung et al., 2021). Smoking, alcohol

consumption, and HPV infection are recognized risk factors for

HNSCC (Jethwa and Khariwala, 2017; Sabatini and Chiocca, 2019;

Tumban, 2019). The clinical treatment plan of HNSCC is mainly

formulated according to the TNM stage of the tumor. The

comprehensive treatment is mainly carried out by surgery,

radiotherapy, chemotherapy (Marur and Forastiere, 2016), and

immunotherapy (Moskovitz et al., 2018). Over the past 30 years,

there have been advances in the treatment of HNSCC, but the 5-year

survival rate has not improved (Panvongsa et al., 2022). Therefore,

early diagnosis, accurate prognosis assessment, and further effective

treatment are urgently needed for HNSCC. A comprehensive

understanding of the pathogenesis of HNSCC is required for

improving disease outcomes.

The concept of cuproptosis was raised by Tsvetkov et al. in a

recent article published in Science (Tsvetkov et al., 2022). As a

novel regulatory cell death (RCD), cuproptosis is different from

known death mechanisms (such as pyroptosis, apoptosis, and

ferroptosis), but cooper dependent. Copper is one of the

essential trace elements in the human body (Kim et al., 2008),

which is also a key component in many essential enzymes

(Grubman and White, 2014; Matson Dzebo et al., 2016). In

organism, the distribution and homeostasis regulation of cooper

is dependent on absorption, transportation, storage, and excretion

(Narindrasorasak et al., 2004; Wang et al., 2011; Galler et al., 2020;

Shi et al., 2020). Copper balance is critical for cellular metabolism

and survival (Ge et al., 2021). Aberrant cooper accumulation may

promote the malignant transformation of cells (Gunjan et al.,

2017). Copper is involved in three key characteristics of cancer

progression: cell proliferation, angiogenesis, and metastasis

(Hanahan and Weinberg, 2011; Denoyer et al., 2015). The

levels of copper in the serum and tumor tissue of cancer

patients increase to support the growth demand for copper

(Hanahan and Weinberg, 2011). At present, a number of

studies have confirmed that the level of copper in serum and

tumor tissues of cancer patients is significantly changed from that

of normal people (Basu et al., 2013; Ding et al., 2014; Baltaci et al.,

2016; Stepien et al., 2017; Saleh et al., 2020). For head and neck

malignancy, there are also some relevant evidence of the

correlation between copper levels and the tumors. Garofalo

et al. (1980) found a significantly higher copper serum level in

advanced stages of epidermoid cancers of the head and neck. Mali

et al. (1998) explored the correlation between serum copper levels

and response to radiotherapy in patients with HNSCC. Therefore,

the study of copper and cuproptosis may provide us to explore

HNSC with new means, which is of great significance.

Long non-coding RNAs (lncRNAs) have been confirmed to

regulate transcription, epigenetic modifications, translation, and post-

translational modifications, and interact directly with signal receptors

(Arora et al., 2014; Postepska-Igielska et al., 2015; Grelet et al., 2017;

Kleaveland et al., 2018; Schmidt et al., 2020). More and more evidence

supported the involvement of lncRNAs in cell differentiation, growth,

and the pathogenesis of many diseases including cancers. However,

cuproptosis is still rarely reportedwith lncRNAs. Therefore, it is of great

significance to further study the relationship between the cuproptosis

and lncRNAs, especially in malignant tumors.

Tumor microenvironment (TME) comprises non-malignant

cells, blood vessels, nerves, lymphatic organs, lymph nodes, which

are located at the center, edge, or near the tumor lesion (Jin and Jin,

2020). The interaction between TME and tumor cells can determine

tumor development and fate (Yuan et al., 2021). Exploring the

composition and function of TME is crucial for understanding

the development of malignancy (Hinshaw and Shevde, 2019). The

immunological role of a few lncRNAs inHNSCChas been confirmed

(Li et al., 2020a; Ma et al., 2020). However, a great quantity of

immune-related lncRNAs still have not been thoroughly mined. In

our study, we attempted to analyze the distribution of cuproptosis-

related lncRNAs (Cupr-RLs) in HNSCC from a microscopic

perspective and establish the prognostic signature of Cupr-RLs

(Cupr-RLPS) in HNSCC patients of TCGA-HNSC cohort. We

also investigated the correlation between the prognostic model

and tumor immune invasion patterns, immunotherapy responses,

and sensitivity to targeted drugs. Our findings may contribute to the

prognostic prediction and immunotherapy in HNSCC and provide

the personalized treatment to patients.

Materials and methods

Data preparation and the cuproptosis-
related lncRNAs identification

Using the TCGA data portal, we obtained transcriptome

profiling data (FPKM) of HNSC patients. The HNSC data set

was annotated and subsequently converted into protein-coding

genes and lncRNAs by Perl. The lncRNAs were extracted from the

transcriptome profiling set. Clinicopathological information was

also downloaded from the TCGA data set. After excluding patients

without survival information, we merged the lncRNAs’

expressions with 501 patients’ clinical information. Then, a total

of 501 HNSC samples and 44 adjacent samples (non-tumor)

corresponding with clinical data were included in the study

cohort. Expressions of 19 cuproptosis-related genes (NFE2L2,

NLRP3, ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1,

LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A,

DBT, GCSH, and DLST) were obtained. The cuproptosis-related

lncRNAs (Cupr-RLs) were identified by using Pearson correlation

analysis (|Pearson R|>0.4, p < 0.001) (Schober et al., 2018), and the

prognostic Cupr-RLs were determined by Univariate Cox

regression analysis. The Wilcoxon rank-sum test was used to

analyze the different expression levels of Cupr-RLs between

tumor tissues and normal tissues.
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Construction and validation of
cuproptosis-related lncRNAs prognostic
signature

The entire cohortwas randomly divided at a 7:3 ratio into training

cohort and validation cohort. The chi-square test was used to

determine the differences of demographic and clinicopathological

characteristics between the two cohorts. Least absolute shrinkage and

selection operator (Lasso)-Cox regression analysis (Friedman et al.,

2010) and multivariate Cox regression analysis were applied to

construct cuproptosis-related lncRNAs prognostic signature (Cupr-

RLPS) for HNSC. The signature risk score formula =Σn
1 Coe fi ×Exp

ri (Coe fi = coefficient, Exp ri = expression value of Cupr-RLs).

Patients were then divided into the high-risk and the low-risk groups

based on the median risk score cutoff and Kaplan–Meier (K–M)

curves was generatedwith a log-rank test approach to compare overall

survival (OS) between the high-risk and the low-risk group. The

receiver operating characteristic curves (ROC) (Kamarudin et al.,

2017) and the area under the curve (AUC) values were implemented

via “time ROC” package in R software, for which to evaluate the

accuracy sensitivity of the Cupr-RLPS. Subsequently, univariate and

multivariate Cox regression analyses were used to identify the

predictive efficacy of Cupr-RLPS. GSE65858-GPL10558 cohort

from Gene Expression Omnibus (GEO) data sets was used as

external validation to verify the robustness and replicability of the

signature. A stratified analysis based on the clinicopathological

features (age, gender, stages, AJCC grade, AJCC T stage, and N

stage) was built. Furthermore, a prognostic nomogramwas conducted

based on risk score and clinical variables.

Functional enrichment analysis

Gene Ontology (GO) enrichment analysis was conducted to

search for gene functions such as molecular functions (MF), cellular

components (CC), and biological processes (BP). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) was used to

explore potential biological signaling pathways. GO and KEGG

analyses were performed by the “clusterProfiler” R package. Gene

set enrichment analysis (GSEA) was conducted using the Hallmark,

FIGURE 1
Screen out hub lncRNAs. (A) Sankey diagram showed the associations between the 19 cuptoptosis-related genes and the associated lncRNAs. (B,C)
Differential expressionsof the69prognostic cuproptosis-related lncRNAsbetween thenormal and tumor samples inHNSC. *p<0.05, **p<0.01, ***p<0.001.
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C2 KEGG v.7.4, and C5 GO v.7.4 gene sets (http://www.

broadinstitute.org/gsea).

Assessing the tumor microenvironment
landscape of cuproptosis-related lncRNAs
prognostic signature

The single-sample gene set enrichment analysis (ssGSEA)

(Barbie et al., 2009; Bindea et al., 2013) is a widely used

bioinformatics algorithm extensively adopted in cancer-related

studies, which was used to evaluate the abundance of immune

cells and the related functions or pathways (Shen et al., 2019; Shen

et al., 2020; Xiao et al., 2020; Kiessler et al., 2021). The ssGSEA can be

implemented via “GSVA” R package. By utilizing the CIBERSORT

algorithm (Newman et al., 2015; Chen et al., 2018), the difference of

immune cell infiltration of HNSC patients between the high-risk

group and low-risk group patients was evaluated. CIBERSORT is a

web portal (http://cibersortx.stanford.edu/) that provides an

estimation of the abundances of member cell types in a

population of mixed cells by using gene expression data. The

correlation between the immune checkpoint gene expressions

and the risk score in the two groups was assessed by Pearson’s

test. Spearman’s correlation analysis showed the relationship

between immune cell infiltration and the risk score.

Consensus clustering analysis

To further elucidate the characteristics of Cupr-RLPS in HNSC,

the overall samples were separated into different clusters using

“ConsensusClusterPlus” R package (Wilkerson and Hayes, 2010).

The chi-square test was used to determine the differences of

demographic and clinicopathological characteristics between the

clusters. The survival analysis was to compare the survival

outcomes and the “pheatmap” R package (Zhang et al., 2021)

was run to visualize the differential expression of Cupr-RLs and

clinicopathological parameters in different clusters.

Tumor microenvironment
characterization, tumor immune
dysfunction and exclusion, drug
sensitivity, and mutation data

To uncover the correlation between the tumor-infiltrating

immune cells in different clusters, diverse algorithms including

XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC,

CIBERSORT, and CIBERSORT-ABS were implemented.

Tumor Immune Dysfunction and Exclusion (TIDE, http://tide.

dfci.harvard.edu/) algorithm (Fu et al., 2020) was established for

predicting whether CUPR-RLPS could benefit patients in HNSC

for immunotherapy. Drug sensitivity of HNSC patients was

predicted based on the half-maximal inhibitory concentration

(IC50) values of HNSC patients estimated by the “pRRophetic”

package (Geeleher et al., 2014). The mutation data containing

somatic variants were detected by using the “maftools” R package

(Mayakonda et al., 2018), followed by the calculation of TMB.

Statistical analysis

Statistical analyses and visualization were mainly conducted

by R version 4.1.3. The Perl programming language (Version

TABLE 1 Demographic and clinicopathological characteristics of
patients with HNSCC (n = 501).

Characteristics No. %

Age (years)

≤65 326 65.07

>65 175 34.93

Genderact

Female 133 26.55

Male 368 73.45

Grade

Grade1 61 12.18

Grade2 299 59.68

Grade3 119 23.75

Grade4 2 0.40

Unknown 20 3.99

Stage

Stage I 25 4.99

Stage II 69 13.77

Stage III 79 15.77

Stage IV 260 51.90

Unknown 68 13.57

T stage

T0 1 0.20

T1 45 8.98

T2 133 26.55

T3 96 19.16

T4 171 34.13

Unknown 55 10.98

N stage

N0 170 33.93

N1 66 13.17

N2 165 32.93

N3 7 1.40

Unknown 93 18.57

M stage

M0 185 36.92

M1 1 0.20

Unknown 315 62.88
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5.30.0.1) was mainly used for data processing. Student’s t-test and

one-way ANOVA were used to calculate differences between two

groups or more. The Kaplan–Meier analysis was applied to

analyze the OS between two groups of patients. Univariate,

Lasso, and multivariate Cox regression analyses were

established to evaluate the prognostic significance. Pearson

correlation analysis was used to get the correlation of gene

expression. ROC and its AUC curve were adopted to estimate

the reliability and sensitivity of the prognostic signature. Two-

sided p < 0.05 was regarded as statistically significant.

Results

Identification of prognostic cuproptosis-
related lncRNAs in HNSC

First, 16,876 lncRNAs were screened out from TCGA-

HNSC data set, and 783 cuproptosis-related lncRNAs were

determined significantly correlated with 19 cuproptosis-related

genes by Pearson correlation analysis (Figure 1A).

Subsequently, we identified 69 prognostic lncRNAs

FIGURE 2
Construction of Cupr-RLs prognostic signature in HNSC. (A) The least absolute shrinkage and selection operator (LASSO) Cox regression analysis.
(B) Lasso coefficient values and vertical dashed lines were calculated at the best log (lambda) value. (C)Univariate Cox regression analysis supported the
remarkable prognostic significance of the Cupr-RLs. (D–M) K–M curves showed different OS with different expression levels of the 10 Cupr-RLs. (N)
Corrplot displayed the relationship between the 10 Cupr-RLs with 19 cuproptosis-related genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Additional file: Supplementary Table S1). The heatmap and

box figures show the significant differences in the expression of

these 69 OS-related lncRNAs in normal and HNSC tissues

(Figure 1B, C). After excluding patients without tumor and

survival data, we combined the survival data of 501 patients

with cuproptosis-related lncRNA expression data. Detailed

clinicopathological information of the patients is given in

Table 1.

Construction and validation of the
cuproptosis-related lncRNAs prognostic
signature

By univariate cox analysis, 69 cuproptosis-related lncRNA

(Cupr-RLs) were shown to be significantly associated with the

prognosis. In order to avoid the risk of over-fitting, we then used

LASSO Cox regression analysis to eliminate the highly correlated

ones in the above results and identified a total of 21 Cupr-RLs.

The Forest plot showed which were identified as risk factors while

hazard ratio (HR)>1, whereas the others were as protective

factors (Figures 2A–C). Subsequently, a multivariate Cox

regression analysis was used to generate a prognostic

signature of 10 Cupr-RLs for OS and the K–M curves showed

different OS with different expression levels of the 10 Cupr-RLs

(Figures 2D–M). The full names and coefficients of these

lncRNAs are shown in Table 2. The signature risk score was

used to predict the prognosis of HNSC individuals. Risk score

FIGURE 3
Evaluation of Cupr-RLPS in the training cohort. (A) Heatmap showed the expression of the 10 Cupr-RLs in high-risk and low-risk groups in
training cohort. (B) K-M curves showed the significant differences between the survival outcome in the high-risk group and low-risk group. (C) Risk
score distribution plot showed the patients’ distribution of HNSC in high-risk and low-risk groups in the training cohort. (D) Scatter plot depicted the
relationship between the survival status and the risk score in the training cohort of HSNC patients. (E) Receiver operating characteristic (ROC)
curves represented for the prognostic signature in training cohort. (F) AUC value showed 1, 3, and 5 years’ predictions in training cohort.

TABLE 2 The correlation coefficient of Cupr-RLs.

lncRNA COEF

AC090587.1 −0.3558685458

AC004943.2 0.3633694474

TTN-AS1 1.4115096293

AL162458.1 −0.5844457930

AC106820.5 −0.6835719899

AC012313.5 −0.4479466110

AL132800.1 0.3991427094

WDFY3-AS2 0.8989085686

CDKN2A-DT −0.3509342783

AL136419.3 −0.9748604128
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was calculated as follows: Risk score = (-0.3558) × expression of

AC090587.1 + 0.3637 x expression of AC004943.2 + 1.4115 x

expression of TTN-AS1 + (-0.5844) × expression of AL162458.1

+ (-0.6836) × expression of AC106820.5 + (-0.4479) × expression

of AC012313.5 + 0.3991 × expression of AL132800.1 + 0.8989 ×

expression of WDFY3-AS2 + (-0.3509) × expression of

CDKN2A-DT + (-0.9749) × Expression of AL136419.3. The

corrplot displayed the strong correlation between 10 Cupr-RLs

and cuproptosis-related genes (Figure 2N).

The entire cohort (n = 501) containing complete survival

information of patients was randomly divided at a 7:3 ratio into

the training cohort (n = 351) and the validation cohort (n =

150), with no significant differences in terms of any of the

clinicopathological parameters between them (Additional file:

Supplementary Table S2). Patients were then divided into high-

risk and low-risk groups based on the median risk score cutoff.

Patients in the training cohort were also put into the two groups

by risk scores in order to evaluate the reliability and sensitivity

of the Cupr-RLPS. The expression levels distribution of

10 Cupr-RLs in different groups are shown in Figure 3A.

OS-time, risk scores distribution plot and scatter plot in the

two groups in the training cohort were shown, respectively

(Figures 3B–D). According to the description of K–M survival

curve, the survival outcome of HNSC patients in the high-risk

group was significantly worse than that in the low-risk

group. The risk score distribution displayed higher scores in

the high-risk group, and the scatter plot indicated that the

survival time of HNSC patients in the high-risk group was

worse than that in the low-risk group. ROC curves showed the

AUC value for Cupr-RLPS was 0.675 (Figure 3E). AUC values

corresponding to 1, 3, and 5 years of survival outcomes were

0.675, 0.734, and 0.661 (Figure 3F), suggesting that the Cupr-

RLPS harbored a promising prognostic ability in the training

group.

FIGURE 4
Validation of Cupr-RLPS in testing cohort and overall cohort. (A) PCA plots showed the two parts of patients in HNSC separated by risk scores.
K–M curves showed the worse OS outcome in the high-risk group in testing cohort (B) and overall cohort (C). ROC represented for the prognostic
signatures in testing cohort (D) and overall cohort (E). AUC values showed 1, 3, and 5 years’ predictions in testing cohort (F) and overall cohort (G),
respectively. The risk score distribution plot showed the patients’ distribution of HNSC in high-risk and low-risk groups; scatter plot depicted the
relationship between the survival status and the risk scores in high-risk and low-risk groups; heatmaps showed the expression of the 10 Cupr-RLs in
high-risk and low-risk group in testing cohort (H) and overall cohort (I), separately.
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Principal components analysis (PCA) analysis revealed that

the individuals in high-risk and low-risk groups could be separated

into two sections (Figure 4A). Besides, to verify the predictive

ability of the Cupr-RLPS to predict prognosis accurately, patients

in testing and overall cohorts were also divided into high-risk and

low-risk subgroups, and the risk scores were calculated by using

the same algorithm as the training cohort. K–M survival displayed

that the survival outcomes in testing and overall cohort showed the

similar results as the training cohort (Figures 4B,C). ROC curves

showed the AUC values were 0.687 and 0.677 in the testing cohort

(Figure 4D) and overall cohort (Figure 4E). AUC values

corresponding to 1, 3, and 5 years of survival outcomes were

0.687, 0.728, and 0.675 for the testing cohort and 0.677, 0.734, and

0.667 for overall cohort, respectively, which proved the prognostic

signature has relatively good value for HNSC patients in testing

cohort (Figures 4F,G). The risk score distribution plot and the

scatter plot between high risk and low risk in two cohorts depicted

the correlations between survival status and risk score of HNSC

patients. Two heatmaps showed that the expression profiles of the

10 Cupr-RLs were consistent with those in the training cohort

(Figures 4H,I). These results all indicate that the Cupr-RLPS has a

stable prognostic-predictive efficiency.

To verify the producibility and stability of Cupr-RLPS, the

model was applied in the GEO database for external validation.

We used the cohort of GSE65858 in the GEO platform as the data

sets to verify the classification performance. The main

demographic and clinical information are given in Table 3.

The risk model was used for calculating the risk score and the

samples were divided into high-risk and low-risk groups.

Figure 5A shows a significantly different survival outcome

between the high-risk group and the low-risk group. AUC

values corresponding to 1, 3, and 5 years were 0.754, 0.684,

and 0.641 (Figure 5B). Figures 5C,D show the risk score

distribution and the survival time of the two groups. The

univariate Cox regression analysis (p < 0.001) and

multivariate Cox regression analysis (p < 0.001) indicated the

signature was an independent prognostic factor (Figures 5E,F).

We compared the established Cupr-RLPS with 2 other

prognostic models: the four-gene signature (Qian et al., 2021)

and the eight-lncRNA signature (Lina, 2021) for patients with

HNSCC (Supplementary Figure S3; Figure 4). The AUC values

for 1, 3, and 5 years survival rates for the four-gene-based model

were 0.645, 0.612, and 0.623, which were lower than the AUC

values of Cupr-RLPS. Also, the model constructed by eight-

lncRNA signatures had worse AUC results than our model.

These results showed that our model was better performed for

predicting the survival results for HNSCC patients.

Cuproptosis-related lncRNAs prognostic
signature was an independent prognostic
indicator in HNSC

To further identify whether Cupr-RLPS can predicted the

prognosis of individuals in HNSC accurately, we conducted

univariate and multivariate Cox regression analyses. The

results showed that the risk score was the independent

prognosis factor of OS in the training cohort (Figures 6A,B).

Same conclusions were also validated in the testing cohort

(Supplementary Figures S1A,B) and overall cohort

(Supplementary Figures S1C,D). Then we performed a

stratified analysis based on the clinicopathological features of

patients in HNSC to find out whether they were associated with a

risk score, so as to explore the clinical application value of the

prognostic signature. The clinicopathological features included

age, gender, stages, American Joint Committee on Cancer

(AJCC) grade, AJCC T stage, N stage. K-M curves were

performed and the results showed that in each clinical

characteristics, the high-risk group had worse OS than the

low-risk group (Figures 6C–N). There we found the

significant differences in the clinicopathological features

mentioned above between high-risk and low-risk subgroups.

Finally, we constructed a Nomogram as an applicable clinical

assessment tool to predict the 1, 3, and 5 years’ OS (Figure 6O).

The calibration curve showed the consistency between the

nomogram prediction and the actual survival (Figure 6P).

Results of gene ontology, Kyoto
encyclopedia of genes and genomes, and
gene set enrichment analysis

To elucidate the relationship between the risk model and

biological processes, we performed a functional enrichment

analysis. DEGs between high-risk and low-risk groups were

TABLE 3 Clinicopathological characteristics of HNSC patients in the
cohort of GSE65858 in GEO database.

Features Cohort (n = 270)

Age (years)

≤65 185 (66.67%)

>65 85 (33.33%)

Gender

Female 47 (17.46%)

Male 223 (82.54%)

Stage

Stage I 18 (5.82%)

Stage II 37 (13.23%)

Stage III 37 (15.34%)

Stage IV 178 (65.61%)

HPV status

Positive 73 (24.34%)

Negative 196 (75.13%)

Unknown 1 (0.53%)
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performed to conduct GO and EKGG enrichment. The top five

GO terms for biological processes were humoral immune

response mediated by circulating immunoglobulin;

phagocytosis, recognition; B cell receptor signaling pathway;

complement activation, classical pathway; complement

activation. The top four GO terms for cellular components

were immunoglobulin complex; immunoglobulin complex,

circulating; external side of plasma membrane; blood

microparticle. And the top five GO terms for molecular

functions were antigen binding; immunoglobulin receptor

binding; receptor ligand activity; signaling receptor activator

activity; monooxygenase activity (Table 4; Figure 7A). The top

five KEGG signaling pathways were drug metabolism-

cytochrome P450; metabolism of xenobiotics by cytochrome

P450; estrogen signaling pathway; cytokine−cytokine receptor

interaction; chemical carcinogenesis-DNA adducts (Table 5;

Figure 7B). Via GSEA analysis, we selected the top pathways

enriched in the high-risk group involving proteasome; ribosome;

focal adhesion; regulation of actin cytoskeleton; purine

metabolism, and pyrimidine metabolism (Figures 7C–H).

FIGURE 5
Validation of Cupr-RLPS of GSE65858 cohort. (A) K–Mcurves showed the significant differentOS outcomes between the high-risk and low-risk
groups. (B) AUC values showed 1, 3, and 5 years’ predictions in the cohort. (C) The risk score distribution plot displayed the patients’ distribution in
high risk and low risk in the cohort. (D) The Scatter plot manifested the relationship between the survival status and the risk scores in high-risk and
low-risk groups. (E) Univariate and (F) multivariate Cox regression analysis further indicated that the signature was an independent factor.
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FIGURE 6
Cupr-RLPS is an independent prognostic indicator. Univariate Cox regression analysis (A) and multivariate Cox regression analysis (B) all
demonstrated the risk score was the independent prognostic factor in the training cohort. Survival analysis stratified by age (C,D), gender (E,F), grade
(G,H), clinical-stage (I,J), T stage (K,L), and N stage (M,N). Nomogram predicted the 1, 3, and 5 years’ OS (O) and calibration curve (P) showed the
consistency between the nomogram prediction and the actual survival.
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Immune landscapes of cuproptosis-
related lncRNAs prognostic signature

To enucleate the immune status correlated with the signature, we

assessed the abundance of diverse immune cells and related functions

by applying ssGSEA. The immune infiltration of high-risk and low-risk

subgroups was evaluated by the CIBERSORT algorithm. Comparison

of immune cells and functions confirmed the differences of B cell,

CD4T cell, CD8T cell, dendritic cell, CD56 killer cell, immature B cell,

immature dendritic cell, MDSC, macrophage, mast cell, monocyte,

natural killer T cell, neutrophil, type1T helper cell, type 17 T helper cell,

APC co-stimulation, checkpoint, HLA, inflammation promoting,

T cell co-inhibition, T cell co-stimulation, type I IFN response, and

type II IFN response in high risk and low risk (Figures 8A,B). We also

discovered the significant differences of immune checkpoints between

two subgroups (Figure 8C). The immune score of the high-risk group

was lower than that of the low-risk group (Figure 8D). Besides, scatter

plots were generated to show the association between risk score and

tumor lymph cells. Spearman’s correlation analysis showed that the

immune cell infiltration was positively correlated with Eosinophils,

M0 and M2 phenotype macrophages, mast cells activated, NK cells

activated, and was negatively related with B cells naïve, mast cells

resting, plasma cells, CD8T cell, T cells follicular helper, T cells

regulatory (Tregs) (Figures 8E–O). In conclusion, Cupr-RLs of

HNSC have a certain correlation with immune cell infiltration.

Consensus clustering identified in
molecular subtypes of HNSC

Consensus clustering of the Cupr-RLs was used to explore

the molecular subtypes of HNSC. To ensure the stability and

robustness of the subtype, we filtered the low-expression level

of Cupr-RLs and retained which were associated with OS after

univariate Cox regression analysis. Then the samples were

categorized into two subtypes (Cluster1, n = 166; Cluster2, n =

85) by consensus clustering while K = 2 (Figures 9A–C). The

significant difference of risk scores between Cluster1 and

Cluster2 is shown in Figure 9D, which also indicated that

the high-risk score sample is mainly concentrated in Cluster1.

The K–M curve displayed a survival difference among the two

subtypes, of which Cluster1 showed a worse survival outcome

compared to Cluster2 (p < 0.05) (Figure 9E). Heatmap

revealed the relationship between the expression of Cupr-

RLs and clinicopathological features parameters (Figure 9F).

There were no distinct differences existed in clinical variables

between the two clusters.

GSVA, tumor immune dysfunction and
exclusion, drug sensitivity, and SNP
alternation of molecular subtypes

We used GSVA to seek the associated pathways. Different

gene sets between Cluster1 and Cluster2 were displayed. The

heatmap showed the immune infiltration based on different

algorithms (including TIMER, CIBERSORT, CIBERSORT-

ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC)

(Figure 10A). TIDE algorithm was established for

predicting the immune checkpoint inhibitor (ICI)

responders of the two subtypes of patients and further to

predict whether Cupr-RLPS could benefit patients in HNSC

for immunotherapy. The results showed that

Cluster2 responded better than Cluster1 (Figure 10B). In

TABLE 4 The top 14 GO enrichment terms.

Ontology ID Dactescription p Value Qvalue Count

BP GO.0006959 humoral immune response mediated by circulating immunoglobulin 6.43E-43 1.46E-39 44

BP GO:0006910 phagocytosis, recognition 1.29E-42 1.46E-39 41

BP GO:0050853 B cell receptor signaling pathway 1.42E-42 1.46E-39 45

BP GO:0006958 complement activation, classical pathway 1.84E-42 1.46E-39 42

BP GO:0006956 complement activation 6.89E-40 4.38E-37 43

CC GO:0019814 immunoglobulin complex 5.08E-112 1.44E-109 92

CC GO:0042571 immunoglobulin complex, circulating 1.45E-50 2.05E-48 42

CC GO:0009897 external side of plasma membrane 4.46E-28 4.21E-26 55

CC GO:0072562 blood microparticle 3.29E-12 2.33E-10 21

MF GO:0003823 antigen binding 1.04E-60 4.85E-58 61

MF GO:0034987 immunoglobulin receptor binding 2.82E-49 6.58E-47 41

MF GO:0048018 receptor ligand activity 0.000103775 0.013869441 23

MF GO:0030546 signaling receptor activator activity 0.000131995 0.013869441 23

MF GO:0004497 monooxygenase activity 0.000181884 0.013869441 9
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view of the importance of chemotherapeutic agents to HNSC,

we selected five commonly used chemotherapeutic drugs and

compared the IC50 values between the two subtypes of

patients. Our data showed that the IC50 levels of Cisplatin,

Doxorubicin, Bleomycin, and Pazopanib (Figures 10C–F)

were significantly higher in the Cluster1 than that in

FIGURE 7
GO, KEGG enrichment, and GSEA analysis in HNSC patients based on the prognostic signature. (A) The circle graph showed top GO signaling
pathways involved BP, MF, and CC biological processes. (B) The circle graph showed top KEGG signaling pathways. (C–H)GSEA analysis showed top
pathways enriched in the high-risk group.
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Cluster2 and Rapamycin (Figure 10G) was significantly lower

in Cluster1 than Cluster2, which were indicated that the

HNSC patients in the Cluster1 were more sensitive to these

drugs. The correlation between risk score and the IC50 levels

of the drugs is shown in Supplementary Figures S2A–E.

According to these above results, we came to the

conclusion that the consensus clustering has the predictive

ability of immunotherapy response and drug sensitivity. In

addition, we evaluated the SNP alteration among the two

clusters and observed that Cluster1 has a higher SNP

alteration than Cluster2 (Figures 10H,I).

Discussion

As one of the top malignancies in the world, HNSCC is

difficult to elucidate the pathogenesis due to its heterogeneity

(Raudenska et al., 2021). Therefore, integrating multiple

biomarkers into a single model and evaluating its prognostic

accuracy as well as its immune relevance and sensitivity to target

drugs can individualize the treatment plans and improve the

effectiveness.

Copper has been confirmed involved in cancer, but few

studies focused on cuproptosis-related lncRNAs. In our present

study, we found 69 cuproptosis-related lncRNAs via co-

expression analysis and after further univariate Cox analysis

and LASSO Cox regression, 10 lncRNAs were identified with

prognostic values (AC090587.1, AC004943.2, TTN-AS1,

AL162458.1, AC106820.5, AC012313.5, AL132800.1,

WDFY3-AS2, CDKN2A-DT, AL136419.3). Several evidence

showed the dysregulation of TTN-AS1 had pro-oncogenic

effects (Zheng et al., 2021a). The aberrant expression of

TTN-AS1 played a key role of regulatory in the

carcinogenesis of lung cancer, liver cancer, glioblastoma, and

breast cancer (Wang et al., 2020a; Fang et al., 2020; Qi and Li,

2020; Tang et al., 2020). AC004943.2 and AC106820.5 were

related to HNSCC. As a lncRNA related to the ceRNA network,

AC004943.2 showed a value of revealing potential biomarkers

in laryngeal squamous cell carcinoma (Jing et al., 2020).

AC106820.5 is one of the m6A/m5C/m1A-related lncRNAs

that have been constructed to the accuracy prognosis in

HNSCC (Wang et al., 2021a). AC012313.5 associated with

ferroptosis predicts prognosis in colorectal cancer (Li et al.,

2022). WDFY3-AS2 has also been reported correlated with

diverse of cancers such as ovarian cancer (Li et al., 2020b),

glioma (Zheng et al., 2021b), and esophageal (Kong et al., 2021).

The following genes are lack for documented (AC090587.1,

AL162458.1, AL132800.1, CDKN2A-DT, and AL136419.3).

Thus, more studies are needed to mine the effects of these

lncRNAs.

According to the expression level of these 10 Cupr-RLs, we

conducted a risk score for each tumor sample to construct a

prognostic signature. Through the relationship between risk

score, survival status, and survival outcomes, the training and

validation set of randomly separated tumor samples proved

that the prognostic model composed of 10 lncRNAs could well

predict the prognosis of HNSC tumor patients. The univariate

and multivariate cox regression analysis indicated the

signature could be a prognostic marker independent of age,

sex, tumor grade, and stage, which further indicated that the

Cupr-RLPS had a certain prognostic value. The GEO cohort

used as external validation also proved the robustness and the

replicability of the signature. Interestingly, we included the

HPV status into the variables in the GEO cohort, the result

showed it was not an independent prognostic factor and the

specific reasons need our further study. Besides, a newly

developed nomogram was expected to improve the clinical

decision-making and may guide the development of treatment

strategies. By comparison, our signature had a stronger

prediction performance of 1, 3 and 5 years than other

signatures. Then we explored the correlation between

Cupr-RLPS and the immune status. Immune checkpoint

TABLE 5 The top 10 KEGG signaling pathways.

ID Description p Value Q value Count

hsa00982 Drug metabolism - cytochrome P450 5.58E-07 0.000119 10

hsa00980 Metabolism of xenobiotics by cytochrome P450 7.52E-05 0.007997 8

hsa04915 Estrogen signaling pathway 0.000847 0.045715 9

hsa04060 Cytokine-cytokine receptor interaction 0.00086 0.045715 14

hsa05204 Chemical carcinogenesis - DNA adducts 0.001471 0.062558 6

hsa04640 Hematopoietic cell lineage 0.002019 0.071563 7

hsa00983 Drug metabolism - other enzymes 0.003136 0.095271 6

hsa05340 Primary immunodeficiency 0.004674 0.111832 4

hsa00140 Steroid hormone biosynthesis 0.004733 0.111832 5

hsa04514 Cell adhesion molecules 0.005458 0.11606 8
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FIGURE 8
Immune landscape analysis. (A) Immune cell scores between high-risk and low-risk groups. (B) Immune function scores between high-risk and
low-risk groups. (C) Different immune scores between two risk subgroups. (D) Different expressions of immune checkpoints between high-risk and
low-risk groups. (E–O) Association between the risk scores and diverse tumor lymph cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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inhibitors do not respond well to HNSCC and only a small

number of patients benefit from immunotherapy, suggesting

that cancer stem cells may have developed other mechanisms

to evade immune surveillance. Therefore, to mine the new

biomarkers for optimizing treatment strategies is becoming

increasingly important. We found that the high expression

levels of the immune checkpoint genes in the high-risk group

were CD276, TNFRSF9, and CD44. CD276 was highly

expressed on the surface of HNSCC and acted as an

immune checkpoint to enable cancer stem cells to evade

the surveillance of the immune system, while blocking

CD276 can effectively enhance T-cell-mediated anti-tumor

immunity (Wang et al., 2021b). Recently, a published study

showed that TNFRSF9 agonist combined with PD-L1 could

effectively activate and amplify tumor-specific cytotoxic

T cells, enhancing tumor control and killing (Geuijen et al.,

2021). CD44 reduced the sensitivity of tumor cells to CTL by

down-regulating the Fas-FasL pathway, leading to tumor

escape from CTL killing (Wang et al., 2020b). TME acted a

great role in tumorigenesis and progression of HNSCC

(Wijetunga et al., 2021). We analyzed the association

between the Cupr-RLs and TME immune activity and

found the correlation between them. Among tumor

infiltration cells, the levels of Eosinophils, M0 and

M2 phenotype macrophages, mast cells activated, NK cells

activated were positively correlated with the risk score in high-

risk and low-risk groups. There were evidence that the TICs

mentioned above were related with tumorigenesis, tumor

progression, and immunotherapy efficacy in HNSCC

(Nishikawa et al., 2021; Chen et al., 2021; Jin and Qin,

2020; Moreno-Nieves et al., 2021). In addition, tumor

samples were divided into Cluster1 and Cluster2 according

to the lncRNAs expression levels by using consensus

clustering analysis. Cluster1 showed a higher risk score and

a worse survival outcome compared to Cluster2, which was

consistent with the fact that more high-risk samples were

concentrated in Cluster1. TIDE score indicated that

Cluster1 had a worse response to chemotherapeutics than

Cluster2. Therefore, the prognostic signature had the

potential predictive ability of HNSCC and may provide

FIGURE 9
Consensus clustering identified themolecular subtypes of HNSC. (A)Consensus clustering cumulative distribution function (CDF) for k = 2 to 9.
(B) Relative change in area under the cumulative CDF curve for k = 2 to 9. (C) Consensus matrix for k = 2. (D) The difference of risk scores between
Cluster1 and Cluster2. (E) The different OS between Cluster1 and Cluster2. (F) Relationships between Cupr-RLs expression and clinicopathological
parameters. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 10
GSVA, TIDE, drug sensitivity and SNP alternation. (A) The immune infiltration based on different algorithms. (B) TIDE score between Cluster1 and
Cluster2. Comparisons of the IC50 values between the two clusters for Cisplatin (C), Doxorubicin (D), Bleomycin (E), Pazopanib (F) and Rapamycin
(G). (H,I) SNP alterations were identified in Cluster1 and Cluster2. *p < 0.05, **p < 0.01, ***p < 0.001.
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references for further research on the exploration of the

mechanism and function of the prognostic value. In

summary, the study successfully constructed and verified

the prognostic risk model of cuproptosis-related lncRNA

based on TCGA and GEO databases and also analyzed the

immune landscape associated with the model in HNSCC.

The study had a few limitations. First, due to different gene

sequencing in different databases, not all lncRNAs were

included in the study for analysis. Second, more samples

and risk factors need to be recruited to build a more accurate

model. In addition, the study preliminarily explored the

molecular mechanism of cuproptosis-related lncRNA in

HNSCC, and the specific functional mechanism is worthy

of further study.

Conclusion

In conclusion, we identified 10 Cupr-RLPS with potential

prognostic value in HNSCC and a prognostic and predictive

Cupr-RLPS was developed. It is helpful to study the molecular

mechanism of HNSC tumorigenesis and predict the therapeutic

effect of HNSCC patients.
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