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There is compelling evidence that the “what it feels like” subjective experience of
sensory stimuli arises in the cerebral cortex in both humans as well as mammalian
experimental animal models. Humans are alone in their ability to verbally communicate
their experience of the external environment. In other species, sensory awareness is
extrapolated on the basis of behavioral indicators. For instance, cephalopods have been
claimed to be sentient on the basis of their complex behavior and anecdotal reports
of human-like intelligence. We have interrogated the findings of avoidance learning
behavioral paradigms and classical brain lesion studies and conclude that there is no
evidence for cephalopods feeling pain. This analysis highlighted the questionable nature
of anthropometric assumptions about sensory experience with increased phylogenetic
distance from humans. We contend that understanding whether invertebrates such
as molluscs are sentient should first begin with defining the computational processes
and neural circuitries underpinning subjective awareness. Using fundamental design
principles, we advance the notion that subjective awareness is dependent on observer
neural networks (networks that in some sense introspect the neural processing
generating neural representations of sensory stimuli). This introspective process allows
the observer network to create an internal model that predicts the neural processing
taking place in the network being surveyed. Predictions arising from the internal model
form the basis of a rudimentary form of awareness. We develop an algorithm built
on parallel observer networks that generates multiple levels of sensory awareness.
A network of cortical regions in the human brain has the appropriate functional
properties and neural interconnectivity that is consistent with the predicted circuitry
of the algorithm generating pain awareness. By contrast, the cephalopod brain lacks
the necessary neural circuitry to implement such an algorithm. In conclusion, we find
no compelling behavioral, functional, or neuroanatomical evidence to indicate that
cephalopods feel pain.

Keywords: pain, consciousness, feeling, noxious stimuli, cortex, awareness, qualia

INTRODUCTION

Why has the question of whether and which animals experience pain become so vexed? Among
research topics, consciousness is unique in being private, first-personal and subjectively known.
This makes theorizing about it a “hard problem” (Chalmers, 1995) because the subjective nature
of feelings can only be definitively known by first-person experience and verbal report, i.e., by
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those creatures capable of both thought and language, namely,
humans. As yet, there is no clear understanding of how feelings
emerge from organic tissue. How is it that firing of nerve impulses
in the human brain can generate either pain or pleasure or
alternatively remain non-conscious? In the absence of both verbal
reports and a neurobiological basis of feelings, researchers tend to
rely overly on behavioral observations and “benefit of the doubt”
assumptions (i.e., the precautionary principle) to decide whether
certain species of animals are capable of feeling.

The classical approach to determining whether an animal
feels pain is to observe its behavioral response to a noxious
(harmful) stimulus. Behavioral studies are based on the premise
that the behavior reflects some qualitative feature of the
experience (e.g., an avoidance response reflects unpleasantness).
The difficulty here of course is distinguishing whether the
behavior truly demonstrates an underlying experience of pain.
Analyses can be supported by ablation studies that remove
portions of the nervous system that are believed to be involved
in conscious rather than non-conscious behaviors. This approach
then becomes laden with assumptions about which neural regions
are involved in conscious behaviors in humans and whether these
same regions and their functions are phylogenetically conserved.

To begin to address the question of whether an animal can,
or cannot, experience pain requires a working definition of
pain that is broadly applicable across phylogenetically distant
species. We simply describe pain here as an unpleasant feeling.
This definition indicates that a feeling that is not unpleasant
is not pain. Consequently lobotomized patients who claim that
they are experiencing pain that is not unpleasant (Bain, 2014)
cannot therefore be experiencing pain. Because pain is a feeling,
it is then not possible to have an unfelt pain as some have
argued (Palmer, 1975). Agreeing on what a “feeling” is has been
notoriously difficult (Searle, 2000; Carruthers and Schier, 2017).
Feelings have been variously referred to as “conscious awareness,”
“inner awareness,” (Farrell and McClelland, 2017) “subjective
experience,” (Tye, 1986; Sytsma and Machery, 2010) “something-
it-is-like” for the subject (Nagel, 1974), sentience (Harnad, 2016),
“phenomenal consciousness” (Block, 1995) and “qualia” (Tye,
1994).

It is widely acknowledged that feelings share a close
relationship with awareness (Natsoulas, 1983, 1999; Berger, 2014;
Carruthers, 2015; McClelland, 2015; Farrell and McClelland,
2017; Kouider and Faivre, 2017; LeDoux and Brown, 2017). Given
that awareness in any system is dependent on detection of change
in the state of the system, then a brain must be able to selectively
monitor internal changes in its neural information processing in
order to be subsequently aware of them. Feelings, however, are
more than detection of state change – there needs to be some
implicit knowledge (Schacter, 1992) about the nature of what
the brain is currently processing (Cleeremans, 2011). How does
a creature generate such implicit understanding? If the internal
monitor was a model of sensory processing that could accurately
predict the future state of the processing, then that model
would possess implicit knowledge or understanding of its internal
operations. By way of analogy, if an artificial neural network was
trained to predict the outcome of a chess match between two
chess champions on the basis of the opening sequence of moves

it would then possess some implicit knowledge (contained within
the synaptic weights and connectivity of the network) of the
players strategies. In comparison, a naïve observer network that
merely monitored the game so as to report the outcome would
lack any awareness of player strategy.

Returning to an animal nervous system, if a model network
was monitoring sensory processing arising from a noxious
stimulus then it would contain implicit knowledge about the type
of stimulus (e.g., burning, freezing, stabbing, or cutting) as well as
its intensity and location. Thus, establishing whether an animal’s
nervous system has the capacity to observe and predict an
outcome of its sensory processing following a noxious stimulus is
a reasonable test of the animal’s capacity to feel pain. This strategy
is not burdened by any need to explain the hard problem of how a
conscious experience might be expected to feel qualitatively. We
contend that an internal model of sensory processing is necessary
for implicit awareness but not sufficient for the explicit qualitative
feeling of pain. While the necessity of predictive modeling of
sensory processing following a noxious stimulus is a significant
first hurdle in assessing whether an animal is considered at least
a possible candidate for experiencing pain, it is considerably less
stringent then requiring an understanding of how the nervous
system generates the qualitative nature of the pain experience
itself.

Recently it has been claimed that some species of mollusca
can experience pain (Mather, 2008, 2016; Mather and Carere,
2016; Godfrey-Smith, 2017). In the following sections, we
briefly describe the molluscan nervous system before critically
evaluating evidence purportedly supporting feeling in these
creatures. This analysis will reveal that molluscs clearly exhibit
non-conscious nocifensive behaviors in response to certain types
of noxious stimuli. However, behavioral studies have been found
wanting with regards to pain in molluscs. In an attempt to
move away from weak inferences about pain based on behavioral
studies we instead adopt the necessity test for animal pain based
on a neuroanatomical framework containing model prediction
networks. After discussing this framework in detail, we conclude
that molluscs are incapable of feeling pain since the nervous
system of molluscs (unlike humans) lacks the neural architecture
required to implement the requisite computations defined within
this framework.

MOLLUSC NERVOUS SYSTEM

Mollusca consist of over 74,000 species that inhabit marine,
freshwater, and terrestrial environments (Dunn et al., 2014). They
have diverse body plans and encompass bivalvia, gastropods, and
cephalopods which include animals such as clams, mussels, snails,
squid, and octopi. The most basal lineages in this group possess
two bilateral symmetrical longitudinal nerve cords embedded in
a plexus of neural cell bodies, that coalesce and form a ring in the
head (Faller et al., 2012). This nerve ring is referred to as the brain
and contains an uncompartmentalized neuropil surrounded by
neuronal perikarya. In more differentiated nervous systems,
neurons cluster and form distinct ganglia interconnected by
nerve fibers called connectives. Cephalopods (nautilus, cuttlefish,
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squid, and octopus) have the most morphologically complex
nervous system in mollusca (Budelmann, 1995) and also display
remarkably sophisticated behavioral repertoires and cognition
(Zarrella et al., 2015; Mather and Dickel, 2017). Given these
properties and recent claims that cephalopods are the best
candidates for invertebrate consciousness (Mather, 2008; Mather
and Carere, 2016), we have restricted our discussion regarding
sensory awareness to this group and only to those few (of
∼700) species (Kröger et al., 2011) that have been experimentally
investigated.

The octopus nervous system is partitioned into three principal
regions: the brain (40 million neurons within a cartilaginous
capsule); optic lobes beneath the eyes (130 million neurons)
and the associated small peduncle and olfactory lobes; and the
peripheral ganglia of the arms (350 million neurons) (Young,
1963). The arm nervous system consists of both sensory and
motor neurons controlling simple movements that contribute to
goal directed behaviors even when the arm is severed from the
body (Sumbre et al., 2001). The brain consists of two principal
regions: a supraesophageal complex of lobes (enlarged ganglia),
which lie above the esophagus, and a subesophageal complex,
which lies below the esophagus (Figure 1). Together these regions
consist of about 25 major lobes with each comprising an outer
layer of neuronal cell bodies and an inner neuropil. The axon
connectives between these lobes are short and contribute to
making the lobes appear fused as a single large mass.

The cephalopod nervous system, like that of vertebrates,
is hierarchically organized into levels that sequentially control
behaviors (Boycott, 1961; Young, 1976, 1988; Sumbre et al., 2001;
Zullo et al., 2009; Zullo and Hochner, 2011; Kobayashi et al.,
2013). Sensory and memory brain centers such as the optic lobes
for vision, the inferior frontal lobes for tactile discrimination and
the vertical and median superior frontal lobes for memory and
learning are important in regulating elaborate behaviors such as
camouflage patterning, navigation, attack and evasive planning
(Mather and Dickel, 2017). Each of these brain centers project
directly or indirectly to the higher motor centers located in the
basal and peduncle lobes (Ba, Figure 1). The higher-order centers
coordinate complex motor action like swimming and walking.
Following ablation of the higher-order motor centers octopi are
no longer able to perform spontaneous movements. The higher
motor centers project to and regulate the intermediate and lower
motor centers (in the subesophageal region). The intermediate
motor centers coordinate simple movements such as arms
working in synchrony. The intermediate motor centers control
lower motor centers (which are motor neuron clusters present
in both the subesophageal region and arms). The lower motor
centers regulate select muscle groups such as those involved in
eye and single arm movements.

BRAIN REGIONS RESPONSIBLE FOR
BEHAVIORAL RESPONSES TO NOXIOUS
STIMULI IN MOLLUSCA

Octopus blinded by sectioning of the optic nerves can use
tactile information arising from a single arm to discriminate

FIGURE 1 | Schematic representation of a mid-sagittal section of an octopus
brain. The brain is encased in a cartilaginous capsule and consists of two
principal regions: the supraesophageal region lying above the esophagus and
the subesophageal region lying below the esophagus. The principal lobes of
the midline supraesophageal region consists of the vertical (V), subvertical
(Sv), superior frontal (S.Fr), inferior frontal (I.frontal), superior buccal (S.B),
posterior buccal (#), subfrontal (∗) and basal (Bas) lobes. The inferior frontal
consists of a median lobe (shown here) and a lateral lobe (not shown here)
that is located lateral to the midline. The subesophageal brain is partitioned
into three lobes: brachial (Br) which gives rise to the brachial nerves to the
arms, pedal (Ped) and palliovisceral (Pv) lobes.

between two texturally distinct objects (Wells, 1964). This tactile
discrimination is achieved through a reward and punishment
training regime involving a “positive” object whose selection is
rewarded by food (i.e., sardine), and a “negative” object, whose
selection is punished with a mild electric shock. This shock also
elicits an escape response involving the animal swimming away
to another place in the aquarium (Wells, 1959b). Within a few
trials, the negative object is pushed away or rejected while the
positive object is accepted and passed toward the mouth. Such
learning behavior is commonly interpreted as evidence that the
animal consciously feels pain following electric shock (Andrews
et al., 2013). If this premise is true, then it should be possible
to localize the site of pain in the octopus brain by assessing the
effects of specific brain lobe ablations on the performance of
tactile discrimination during operant conditioning.

Removal of the entire supraesophageal brain completely
destroys the ability of octopus to learn to reject objects associated
with electric shock (Wells, 1959a). When presented with negative
objects these brain-ablated individuals repetitively accept them
despite the shock punishment. This result seems consistent with
the idea that pain is generated in this part of the brain. If the
inferior frontal system (posterior buccal, inferior frontal, and
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subfrontal lobes) are selectively spared from the surgical ablation
of the supraesophageal brain, animals regain their ability to learn
to discriminate. Accordingly “pain” must be arising somewhere
in this brain region.

However, the gross motor behavior of these brain-ablated
animals is severely compromised. Animals can no longer walk
or swim and instead sit on the bottom of the holding tank
with arms in disarray (Wells, 1959a). By instead selectively
removing only the inferior frontal system, while leaving the
rest of the supraesophageal brain intact, animals display normal
gross motor behaviors (Wells, 1978). In the absence of these
lobes animals do not reject negative objects. Although these
confirmatory results support the idea that “pain” arises in this
very specific region of the supraesophageal brain, these animals
now strongly react to electric shock. After receiving an electric
shock for failing to reject the negative object, an animal lacking
the inferior frontal system rapidly swims away while dragging
the tightly grasped object in its arm (Wells, 1961). This escape
behavior demonstrates that the animal is capable of responding
to an electric shock (supposedly it can still feel “pain”) and yet
it doesn’t release the object. These results expose a dissociation
between learning and any so-called “pain” felt by the animal.
Thus “pain” is not the driver for octopus learning to respond to
negative objects. Avoidance learning is therefore not evidence of
pain. Rather, these results are consistent with the inferior frontal
system directly regulating arm motor behaviors. When present,
the inferior frontal system activates a reject motor program (or
inhibits an accept motor program) in response to a noxious
stimulus. When ablated, the reject response is not activated (or
the accept program is inhibited) and a default accept program
dominates.

It could be argued that “pain” was generated in the brachial
lobe of the subesophageal brain (an arm motor center) and then
relayed to the inferior frontal system where it regulated learning.
Thus, when only the inferior frontal system was spared ablation
in the supraesophageal brain, “pain” could still drive learning
since it arose from the lower subesophageal brain. However,
while afferent sensory fibers arising from the arms project via
the brachial nerves and innervate the brachial lobe of the
subesophageal brain, they terminate on motoneurons (Young,
1978). No second-order sensory fibers subsequently project from
the brachial lobe to the inferior frontal system. Rather, sensory
afferents from the arm enter the cerebrobrachial connective and
terminate directly in the inferior frontal system (Budelmann and
Young, 1985). Thus “pain” is not generated in the subesophageal
brain and is not relayed to the inferior frontal system.

To continue to accept that an octopus feels pain during
operant conditioning it is necessary to suppose that this pain
must be multiply realized throughout the brain. Multiple
realization is the hypothesis that a mental state (e.g., pain) can
occur in many different organisms with vastly different neural
morphologies (such as humans and molluscs) (Kim, 1992). Here,
we apply the term to include the possibility that pain would also
need to arise in many different independent regions within the
same nervous system in order to account for the ablation data
in molluscs. To adhere to the idea that molluscs feel pain one
needs to propose that pain is generated locally in the inferior

frontal system and also in all other brain regions associated
with behaviors elicited by noxious stimuli. Pain associated with
an escape swim response must be generated outside of the
inferior frontal system since this escape behavior continues in the
absence of this system. Likewise pain from electric shocks used
during operant conditioning involving visual stimuli must also
be generated elsewhere since this learning occurs in the absence of
the inferior frontal system (Wells, 1961). Since this visual learning
is dependent on the superior frontal and vertical lobes (Boycott
and Young, 1955) pain must also be generated locally within
these lobes. However, multiple realization of pain in the inferior
frontal system and the vertical-superior frontal lobes is unlikely
given that the known circuitry in these regions specifically
supports neural processing associated with learning and memory
formation (Figure 2) (Young, 1991; Shomrat et al., 2015). These
brain regions have wiring patterns that share strong structural
and functional similarities with the human hippocampus (Young,
1991; Shomrat et al., 2015). While the hippocampus is important
for learning and memory involving pain in humans, it is not
involved in the neural computations proposed to underlie the
sensation of pain (Bastuji et al., 2016; Tseng et al., 2017; Garcia-
Larrea and Bastuji, 2018). This neural processing underlying pain
in humans will be examined in more detail below.

This discussion started with the premise that octopus feels
pain. We have now shown that this assumption creates some
conceptual difficulties and leads to the conclusion that discrete
isolated regions of the brain such as the inferior frontal system
generate pain. Interestingly, the median inferior frontal lobe
within the inferior frontal system is not essential for tactile
learning during operant conditioning (Wells, 1959a; Wells and
Young, 1975; Wells, 1978). While selective removal of the
subfrontal lobe leads to markedly reduced tactile discrimination,
it is still possible to produce some learning using extended
reward and punishment training (Wells and Young, 1975; Wells,
1978). This residual learning in response to electric shock
punishment can now only be achieved by circuitry in the
remaining undamaged lateral inferior frontal lobes within the
inferior frontal system. The simple circuitry in this lobe is similar
in principal to that underlying classical conditioning of gill and
siphon withdrawal reflexes in Aplysia in response to electric
shock (Kupfermann et al., 1974; Carew et al., 1983; Benjamin and
Kemenes, 2008; Hochner and Glanzman, 2016). As noted above it
does not resemble the global, integrative neural network matrices
considered to generate pain in vertebrates (Garcia-Larrea and
Peyron, 2013; Garcia-Larrea and Bastuji, 2018). Rather than pain
driving tactile discrimination learning in octopus, the data are
more consistent with noxious sensory information autonomously
regulating local neural circuits at multiple hierarchical levels in
the octopus nervous system. This conclusion is further supported
by the isolated arm experiments described below.

Altman (1971) revealed that isolated amputated arms of
octopus are able to either accept a sardine or reject a sardine
soaked in noxious quinine hydrochloride. Thus, accept and reject
responses are reflex behaviors generated by local sensory and
motor circuitry in the arm and are not contingent upon the
animal consciously feeling pain. However, Altman (1971) showed
that different levels of the brain exhibited hierarchical control
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FIGURE 2 | Wiring diagram for the inferior frontal system controlling tactile
discrimination behaviors in Octopus as proposed by Young (1983, 1991). This
representation neglects positive sensory input associated with acceptance
behaviors and instead depicts input from noxious sensory fibers from the
arms that enter the inferior frontal lobes from the cerebro-brachial connective
(Budelmann and Young, 1985). The stylistic circuit is drawn to highlight
similarities in neural connectivity as previously described for learning and
memory circuits of the superior frontal and vertical lobes (Hochner and
Shomrat, 2013; Shomrat et al., 2015). Large projection neurons are depicted
as unfilled rounded rectangles and in the subfrontal lobe (sfl), lateral inferior
frontal lobe (lifl) and posterior buccal lobe (pbl) there are two principal types –
acceptance (A) and rejection (R) – which selectively project to one another.
The projection neurons associated with tactile discrimination in the median
inferior frontal lobe (mifl) project to both the sfl and lifl where they terminate on
small amacrine interneurons (a). Although this projection neuron is
represented as having axon branches this is simply diagrammatic and it is
most likely that there are multiple types of these neurons that have different
innervation densities in the sfl and lifl. Synapses are represented as filled
circles (inhibitory) or unfilled circles (excitatory). Noxious sensory fibers
selectively innervate projection neurons in the lifl and mifl. Electric shock would
be expected to activate R projection neurons in the lifl and depending on their
state of activation by local amacrine interneurons, these R neurons would
activate R projection neurons in the pbl and lead to a reject behavior. Noxious
sensory fibers projecting to the mifl would cause a cascade of modulatory
activity in the sfl and lifl that would robustly regulate motor behavior. With
tactile discrimination training (using either or both positive and negative
reinforcements) this circuitry outlined here would enable behavioral learning
and memory formation that could readily increase efficacy of motor actions.

of the reject reflex. When only the supraesophageal brain was
removed (leaving only the subesophageal brain intact), animals
could no longer reject objects. The reflex was regained when
the inferior frontal system was spared from this ablation. This
result revealed that the subesophageal brain inhibited the reflex
while the inferior frontal system facilitated this reflex. Recent
isolated octopus arm experiments have further demonstrated a
classic withdrawal reflex response of arms to either pinches or
noxious chemical applied to the tip of the arm (Hague et al.,
2013). The reject arm reflex in octopus has some similarity to the
spinal control of leg withdrawal reflexes of humans in response
to peripheral noxious stimuli (Hagbarth, 1960). Taken together,

the brain lesion experiments and the isolated arm preparations
reveal that nocifensive behavior in response to noxious stimuli
are stereotyped movements executed principally by local arm
circuitry but regulated hierarchically in the brain and as such
provide no evidence that octopi feel pain.

Arm injury in some octopi causes arm autotomy distal to
the injury site. Following autotomy, animals initially display
wound grooming followed by guarding behavior where the
injured limb is shielded by other arms (Alupay et al., 2014).
This behavior is accompanied by reduced local mechanosensory
threshold for arm withdrawal and escape responses. Removal of
all the supraesophageal brain except for some optic lobe stalk
and partial basal lobes (containing the higher motor centers)
did not abolish the grooming and guarding behaviors. These
behaviors were only lost with complete supraesophageal brain
removal, which is consistent with the known role of basal lobes in
controlling general body movement (Wells, 1959a). These results
further demonstrate the autonomous nature of the behavioral
responses to short term noxious stimuli and chronic injury. These
nocifensive behaviors do not provide any evidence that octopi
feel pain and that pain is driving these motor actions (Crook and
Walters, 2011; Crook et al., 2013; Butler-Struben et al., 2018).

Such behaviors are instead adequately accounted for by non-
conscious, feedforward neural circuits executing hierarchically
controlled motor actions (Hochner and Shomrat, 2013;
Shomrat et al., 2015; Hochner and Glanzman, 2016; Levy and
Hochner, 2017). Numerous studies indicate that goal-directed
movements are predominantly under control of autonomous
motor programs in the peripheral nervous system and that
the central brain is involved in activating these programs
(Sumbre et al., 2001, 2006; Levy et al., 2015; Levy and Hochner,
2017). The ability of complex behaviors to be executed using
non-conscious hierarchical control systems in octopus has been
convincingly demonstrated by progressively increasing external
microstimulation of the basal motor lobes (Zullo et al., 2009).
A variety of elementary motor actions can be recruited in various
combinations leading to the production of complex behavioral
responses as a result of simply increasing electrical stimulation to
these lobes.

BEHAVIOR IS NOT SUFFICIENT TO
INFER CONSCIOUS AWARENESS

Despite known difficulties in inferring sentience from behavior,
stimulus-response paradigms continue to be widely used in
animal studies to assess the presence of feelings such as pain (King
and Porreca, 2014; Barrett, 2015). This is particularly problematic
in molluscs when the anatomy and physiology are so divergent
from mammals (Crook and Walters, 2011). A clear distinction
needs to be drawn between nociception and pain (Crook and
Walters, 2011) and importantly, nociception in molluscs should
not be confused with evidence for pain-like states (Crook et al.,
2013). Similar arguments have been countenanced for insects
(Adamo, 2016a,b).

While many animal studies still rely on non-conscious
action responses, others have embraced an idea that complex
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behavior involving goal pursuit is a better indicator of conscious
awareness. However, the obligatory association between goal
pursuit and conscious processing is challenged even in humans
(Custers and Aarts, 2010). Many complex and goal-oriented
behaviors, such as the Drosophila male courtship ritual, can be
deconstructed into a series of innately driven and genetically
determined stereotyped subroutines (Manoli et al., 2006).
Awareness of a goal or the presence of feelings clearly plays
no role in the courtship ritual, since this complex behavior can
be performed by headless flies (Pan et al., 2011). There is no
evidence that complex learning in insects involves sentience
(Giurfa, 2013; Chittka, 2017). There is no need to assume
conscious awareness in either insects or molluscs in order to
explain complex behaviors when non-conscious neural networks
can effectively account for such abilities (Ardin et al., 2016;
Faghihi et al., 2017; Goldschmidt et al., 2017; Müller et al., 2017;
Peng and Chittka, 2017; Perry et al., 2017; Roper et al., 2017).

Given the specious relationship between complex behaviors
and conscious awareness, there is some support for the idea
that “flexible behavior” (i.e., the ability of an animal to adapt
its behavior in response to changing environments or novel
challenges; Griffin, 1976) is a better indicator of conscious
awareness (Bekoff, 2003; Edelman and Seth, 2009; Seth, 2009;
Droege and Braithwaite, 2014; Mather and Carere, 2016).
However, conflating flexible behavior with feelings remains
problematic, since even innate, stereotyped behaviors are known
to exhibit considerable plasticity. For instance, spinal central
pattern generators (CPGs) controlling limb movements during
vertebrate locomotion (Frigon, 2017) can easily adapt to changing
environments to allow an animal to locomote in both water
(swimming) and on land (stepping) using vastly different gait
kinematics (Ryczko et al., 2015). The non-conscious nature of
this flexible motor behavior is supported by evidence that distinct,
behavior-specific CPG outputs can be achieved even in the
isolated vertebrate spinal cord. The autonomous decentralized
and flexible nature of the CPG is exemplified in the millipede,
which is able to regulate kinematics of each leg in response to
local environmental cues (Kano et al., 2017).

It has been suggested that some animals (e.g., fish) are
sentient because they appear to display declarative memory,
conditioned place preference, trace conditioning and transitive
inference. However, none of these behaviors necessarily rely on
subjective awareness (Reber et al., 2012; Mudrik et al., 2014);
and so embracing these criteria will lead to erroneous inferences
concerning sentience (Key, 2015, 2016). In summary, relying on
behavior alone is not sufficient to justify claims of conscious
awareness in an animal.

Despite inherent problems with using behavior as a yardstick
for consciousness it has been argued that cephalopods possess
a simple form of consciousness referred to as “primary
consciousness” (Mather, 2008). Mather (2008) seems to associate
this type of consciousness with the ability of some cephalopods
to display complex behaviors, to learn and to learn using simple
concepts. While we have already dismissed complex and flexible
behaviors as a measure of feeling, Mather’s adoption of learning
and use of simple concepts as a measure of primary consciousness
is mistaken given that such behaviors could be either implicit

or explicit (Schacter, 1992), and only the latter could be argued
to depend upon the availability of concepts. In many instances,
anthropomorphic claims are used to defend conscious awareness
in cephalopods. For instance, Mather (2016) claims that octopi
adopt “cautious” approaches to stinging sea anemones and even
blow jets of water at the anemone and hence do not just
respond reflexively to noxious stimuli. These anthropomorphic
descriptions based on anecdotal observations need to be critically
assessed within the context of innate behaviors and implicit
learning (LeDoux and Daw, 2018).

Mather (2008) suggests that play behavior exhibited by octopi
is consistent with these animals having consciousness. Mather
defines behavior as play-like if any of the following actions were
performed with novel plastic objects: pushing or pulling of the
object in one coherent action; dragging an object by an arm across
the surface of the water in more than one direction; or passing
the object between the arms more than six times (Kuba et al.,
2006). Using these criteria 9/14 octopi in her study were reported
to engage in play-like behavior. While no evidence is provided
that such behavior actually represents any form of play there is
the underlying assumption that it involves conscious awareness
of “fun” since it is labeled as “play-like.” However, recent
optogenetic experiments in mice have revealed that craving,
selective attention and so called play-like activity toward novel
objects is automatically induced by simply activating a single
neural pathway between the medial preoptic area and the ventral
periaqueductal gray area (Park et al., 2018). The take-home lesson
here is that causes of behavior may not be extrapolated from
observation of the behavior alone and that describing animal
behavior (e.g., as play-like) based on anthropometric measures
is question-begging.

Bronfman et al. (2016) have proposed that animals capable of
specific types of associative learning (referred to as “unlimited
associative learning”) must be sentient. Unlimited associative
learning is considered to involve complex behaviors rather than
simpler forms of associative learning. This hypothesis is again
built on the false premise that complex behavior is dependent on
sentience. For instance, Bronfman et al. (2016) consider that an
animal can feel if it is capable of learning to associate an object
by a combination of its properties (e.g., color, shape, and texture)
with the future presentation of food, whereas each property alone
is not sufficient for eliciting a behavioral response. Unfortunately
no evidence is provided that this form of associative learning
necessarily involves sentience. Bronfman et al. (2016) refer to
compound operant conditioning in octopus (as in Hochner and
Shomrat, 2013) as evidence of sentience.

Hochner and Shomrat (2013) showed that octopus could
be trained not to attack a red ball (containing the integrated
properties of brightness and shape) by negative reinforcement
with electric shocks. According to Bronfman et al. (2016) this
learning was evidence of unlimited associative learning since
the animals continued to approach balls (same shape) that were
white instead of red. However, Shomrat et al. (2008) describe the
neural circuitry underlying this associative learning and conclude
that “our results fit a simple feed-forward model of octopus
avoidance-learning systems.” There is no evidence, in short, that
such behavior demands sentience (LeDoux and Daw, 2018). Of
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interest is recent research demonstrating that non-conscious (i.e.,
subliminal) sensory stimuli such as novel pairs of visual and
spoken presentations of words can mediate complex associative
learning in humans (Scott et al., 2018). This builds on earlier
research demonstrating that awareness of conditioning stimuli is
not needed for instrumental conditioning in humans (Pessiglione
et al., 2008). Such findings argue against the necessity of sentience
for unlimited associative learning in cephalopods.

A WAY FORWARD IN ADDRESSING
CONSCIOUS AWARENESS

A foundational principle of evolutionary biology is that structure
determines function. Call this the “SDF principle.” According
to the SDF principle, the morphology of any biological tissue is
the key to its physiological function. The structure of a nervous
system imposes fundamental limitations of what it can and
cannot do. For instance, the ability of an animal to perform
non-gliding flight is determined by the structure (i.e., anatomy)
of the animal’s wing or wing-like appendage. While the shape
and form of these appendages varies considerably across winged
species, there is a common design plan that enables the necessary
aerodynamic force of lift to be generated (Lindhe Norberg,
2002). The anatomy of a wing explains how it can be used for
flight. Consequently, any animal lacking the common design
feature of the wing will lack the potential to perform non-gliding
flight. Why suppose that the SDF principle does not also apply
in explaining the capacity for feeling, that there is not some
common design or structural features that explain the capacity
for feeling across different species? It is this question that frames
our current approach to the design of a nervous system that is
capable of conscious awareness.

Once the properties of neural tissue deemed both necessary
and sufficient for feeling sensory stimuli have been identified,
then the assessment of whether any particular animal is likely or
has the potential to feel or not can be reduced to the identification
of those relevant properties in the animal’s nervous system. Given
that there does not appear to be any solution to this problem in
the near future, one way forward is to define the basic underlying
design principles and use this knowledge to create a minimal
neural architecture necessary (but not sufficient) to support pain.
Two important questions provide a framework for addressing
this problem. First, what sorts of algorithms need to be executed
by a nervous system to generate pain? Second, how are those
algorithms implemented in a nervous system? An answer(s) to
the latter question would begin to expose some of the necessary
neural architectural prerequisites for pain.

An argument against trying to identify the necessary neural
architectures is that the solution to the algorithms may be
multiply realized in different animals (Weiskopf, 2011). That is,
different neural circuits may be able to implement the algorithms.
This is not reason enough to disregard this approach since all that
is needed is to identify all possible circuits in extant creatures.
Given that this is likely to prove a formidable task, a better
approach would be to define instead the generic architecture
that enables multiple realization to be captured since multiple

realization does not necessarily apply to basic computations
(Keeley, 2000).

As proof of principle, we have tested this strategy by
characterizing the necessary circuitry underlying rhythmic
motor movements during locomotion of bilaterally symmetrical
animals. The basic algorithm generating left-right rhythmical
motor activity is an alternating left-right rhythmical muscle
activity occurring at the same segmental or anterioposterior level.
That is, there is sequential contraction and relaxation of the same
muscles on the left and right sides of the body, respectively. If
these muscles fail to exhibit this cyclic activity, then the animal
no longer engages in left-right phased rhythmical locomotion. In
order for left-right phase activity to be rhythmical, left muscles
must be activated while those controlling the same muscles on
the right must be simultaneously inhibited.

Given such an algorithm, what then is the circuitry that
implements it? Reciprocal inhibition (i.e., activated neurons on
one side cause muscle contraction and also inhibit the same
muscles on the opposite side) is an essential component of left–
right rhythmical locomotion since independent pacemakers on
either side spontaneously drift in and out of phase (Friesen,
1995). While the specific interconnectivity of neurons (i.e.,
microcircuitry) that leads to reciprocal inhibition can be multiply
realized between different species, all species possess neurons
that project across the midline to reciprocally inhibit the other
side so that left muscles are activated while right muscles
are simultaneously inhibited. This crossed inhibitory circuitry
involves activation and inhibition of excitatory motor neurons in
almost all animal models, including: leeches, fish, and mammals.
To date, only nematodes achieve simultaneous contraction and
inhibition of muscles using a combination of both excitatory and
inhibitory motor neurons (Wen et al., 2012). A left excitatory
motor neuron activates right muscles and simultaneously excites
a right inhibitory motor neuron that causes right muscles to relax.
This crossed excitation of inhibitory motor neurons produces
the alternating rhythmical muscle activity. Thus, by knowing
whether an animal possesses the necessary neural architecture
required to perform cyclic inhibition of left-right muscle
activity (i.e., crossed connections that lead to simultaneous
contraction and inhibition of the same muscles on left and
right sides), it is possible to predict whether an animal is,
at least, capable of performing locomotion based on left-right
rhythmical contractions. If an animal lacks this fundamental
neural architecture, then one can confidently conclude that it
cannot perform this type of locomotion.

While we have concentrated on CPGs, there are numerous
examples of conserved circuitry that subserve similar functions
both within and across phyla (Loesel et al., 2013; Farris,
2015). For instance, basic circuitry for associative learning is
conserved in the vertical lobe in octopi, mushroom bodies in
insects and hippocampus in vertebrates (Katz, 2016). Olfactory
glomerular-like structures are also involved in processing
of olfactory sensory information in molluscs, insects and
vertebrates (Strausfeld and Hildebrand, 1999; Eisthen, 2002;
Farris, 2015). Likewise, the loss of either olfactory or visual
neural circuitries within some species in a phyla correlates
with the absence of behavioral responses to these sensory
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stimuli (Ramm and Scholtz, 2017). Interestingly, Scaros et al.
(2018) have recently failed to morphologically identify olfactory
glomeruli in embryonic and hatchling stages of development
in the cuttlefish Sepia officinalis. However, olfactory glomeruli
are not morphologically defined in developing late embryonic
mice (Royal and Key, 1999). At this stage of development
visualization of glomeruli formation relies on the expression
of odorant receptor genes (Royal and Key, 1999). Similarly,
olfactory glomeruli emerge slowly in developing Xenopus and
never achieve the morphological definition of those in mammals
(Byrd and Burd, 1991). Olfactory glomeruli are also not easily
discernible by immunohistochemical staining in the adult frog
Rana catesbeiana (Key and Akeson, 1990) and most glomeruli
in adult zebrafish are anatomically indistinguishable (Braubach
et al., 2012). The question as to whether Sepia officinalis possesses
glomeruli and its implications for olfaction must await further
more detailed investigation.

A NEURAL ARCHITECTURE
NECESSARY FOR FEELINGS

We hypothesize that one of the fundamental organizational
principles of feeling nervous systems is that they must be able
to internally monitor their own neural processing (i.e., internal
states). Such internal monitoring is critical for any system to
achieve a level of awareness of its own processes and to use that
awareness to execute functions (Kwon and Choe, 2008; Jeremy,
2014). Air conditioning systems in buildings must monitor the
internal temperatures of rooms in order to adjust air flow
accordingly. Similarly, nervous systems must possess specialized
neural circuitry to monitor their internal sensory processing of
noxious stimuli in order to become aware and feel pain. We
contend that there are at least three hierarchical levels of a
system that are diagnostic for assessing whether that system has
the potential to be aware. First, there must be a change in the
internal state of the system (“internal state” in Figure 3) caused
by the stimulus. This internal state is equivalent to the sensory
processing pathways leading to some output (e.g., behavior).
Second, the system needs to be able to monitor for changes
in those internal states (“state observer” in Figure 3). Internal
monitoring has a long history in consciousness studies (Lycan,
1995). Third, the system needs to become aware of those internal
state changes (“system awareness” in Figure 3).

The role of awareness in consciousness and its independence
from report and self-reflection is well debated in the literature
(Farrell and McClelland, 2017). One of the design constraints
of this framework is that the state observer and state awareness
subsystems need to be external to (i.e., independent of) the
sensory processing pathways (internal state) so that their
processes do not mutually corrupt each other and to ensure that
the prediction (i.e., awareness) is available for the function of the
whole system (Cleeremans, 2011; Dehaene et al., 2017).

How could such an algorithm be implemented in an animal
nervous system? We propose that when a system can predict
the outcome of its current internal processes, then it must be
capable of having a level of awareness of its internal state.

FIGURE 3 | Fundamental organization of a system with awareness potency.
The ground state of the system represents a stimulus response module
whereby a stimulus (i.e., input) produces a change in the internal state of the
system and this in turn leads to a specific output. In order for the system to
begin to be aware of what it is doing there must be some independent
process of observing changes in its own internal state. This process is
performed by a state observer module that detects changes in the internal
state that are responsible for the output. The state observer has a low level of
awareness (e.g., a temperature gauge in a car engine is a state observer). An
additional system awareness module needs to subsequently monitor changes
in the state observer and to interpret this information in context of the overall
functioning of the system. This second layer of monitoring represents a higher
level of awareness (i.e., awareness of awareness). For instance, in the
example of an engine temperature this module would detect rises in
temperature and determine their significance to the car in respect to overall
performance of the engine.

Such predictions can be generated by an internal model of
its processing that makes outcome predictions about ongoing
neural activity. Modeling internal states and using the resultant
predictions to rapidly adjust ongoing processing has been central
to the field of plant engineering since the 1960s (Luenberger,
1971). For instance, the state of internal processes of a coal-fired
power station can be indirectly monitored by a “state observer”
(e.g., an artificial neural network; Paton, 2008) that continuously
receives information about the current input (coal) and output
(energy) of the station. The state observer is an “internal model”
of the ongoing processing that makes predictions about a future
output given a particular input. This prediction is then compared
with the subsequent real output of the station and the error
margin is used to adjust the processing of the coal and modify
the state observer so that it becomes a more accurate predictor of
the current processing state of the coal station (Figure 4).

The internal model (“internal model 1” in Figure 4) is a very
efficient and rapid process because it does not need to monitor
all the stages of processing in the plant. In plant engineering,
human operators oversee the function of the internal model 1 and
ensure overall fidelity of the system. In doing so, human operators
also make use of information not available to the internal model
(e.g., transport delivery systems, end-users, and global financial
markets). This same algorithm can be applied to the processing
of sensory information in a nervous system. In this case, human
operators are replaced by a second level internal model (“internal
model 2” in Figure 4). This second model and its prediction is
equivalent to “system awareness” in Figure 3. It uses a copy of
the input to a sensory system as well as “global input” (Figure 4)
from other sensory systems to create its prediction. This second
prediction (“prediction 2” in Figure 4) is a prediction of the
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FIGURE 4 | A parallel forward models algorithm that generates levels of
awareness within a system. This scheme is based on the concept that a
system that can accurately predict its future state based on its current state
has awareness that is functionally significant for the system. This form of
awareness is postulated to be necessary but not sufficient for subjective
experiences such as pain. This algorithm processes input simultaneously
along three parallel streams. The base level is the processing module that
creates an output for the system. A second level consists of a module that
creates a simplified model of the base level processing that predicts
(predictions 1) the future output of the system. That prediction is then
compared to the actual output in a separate module (comparator) and the
error generated is used to adjust the internal model 1 to better predict future
states (by attempting to reduce error 1 to zero). A second internal model
(internal model 2) uses both the input to the system and available inputs from
other systems to predict the outputs of internal model 1. Prediction 2 is
feedback into internal model 1 to facilitate a rapid and accurate prediction 1.
Prediction 1 likewise feeds back on to base level processing to control its
output.

output of the first internal model since it uses a comparator to
determine the error (“error 2” in Figure 4) between prediction
2 and prediction 1. That error is then used to adjust the internal
model 2 so as to reduce error 2. Predictions 1 and 2 both control
(directly and indirectly, respectively) the ongoing processing so
that the system produces an appropriate output.

Multiple internal models are fundamental building blocks
of self-aware computing systems and computational “feelings”
in agents (Lewis, 2016; Kounev et al., 2017; Lewis et al.,
2017; Sánchez-Escribano, 2018). First-order internal models are
restricted to monitoring specific processing events in order to
efficiently control their behavior and to reduce overall processing
time. Second-order internal models then correct errors in these
first-order models arising from the noisy environment, track
the consequences of the outcomes of the first-order models,
and determine their relevance to and suitability for the whole
functioning system. Second-order models enable the system to
learn the consequences of its internal processing and to act for the
benefit of the whole system. As such, they may be considered as
displaying a rudimentary form of subjective awareness (i.e., they
can predict the future on the basis of the system’s past experience
via prediction error feedback). In the proposed algorithm, it is
prediction 2’s (Figure 4) higher-level of awareness through its
integration of global and local information that endows it with
greater functional significance for the system, a proposed defining
feature of conscious awareness (Dehaene et al., 2017). We argue
that prediction 2 is a necessary (but not sufficient) condition
for feelings. Even though such an “awareness” might become
conscious, it is not sufficient to explain why it should feel like
something, rather than nothing. As noted above, the aim here is
not to provide a reductive analysis of what feeling is, but only

to establish the legitimacy of demarcating boundaries between
species of animals that are candidates for attributions of feeling
and those that are not.

RELATIONSHIP TO HIGH-ORDER
THEORIES OF AWARENESS

Our algorithm (Figure 4) is distinct from Rosenthal’s higher-
order theory of awareness (Rosenthal, 1993) in that we recognize
the existence of multiple levels of awareness without asserting
that awareness becomes immediately conscious through a higher-
order representations of awareness. At present, our proposed
algorithm is neutral on the necessity of higher-order thoughts.
Its explanatory power can, however, be extended by exploring
contributions made by other types of neural processing. Internal
models are just one type of state observer (Figure 3). Working
memory can temporarily store a copy of a sensory stimulus
that can be compared subsequently with new incoming sensory
information to assess changes in neural states. Such assessments
are a form of internal monitoring and hence represent a level
of awareness of internal state changes. Although we plan to
examine how frameworks involving working memory could
explain feeling states in future, this is a controversial topic given
the importance of the prefrontal cortex to working memory
and suggestions that this cortical region is not necessary for
consciousness (Boly et al., 2017). How other types of memory
(short-term, long term and associative), attention, ensemble
coding, saliency, and executive control networks interact with
and might further strengthen the framework also need to be
explored.

RELATIONSHIP TO HIERARCHICAL
PREDICTIVE CODING

We refer to our proposed framework as a parallel forward models
algorithm (Figure 4). By definition forward internal models
use inputs (e.g., sensory data) to predict outputs (i.e., motor
behaviors). In our framework, the forward models run in parallel
whereas in hierarchical predictive coding the internal generative
models run in series and are interconnected by feedforward and
feedback connections (Rao and Ballard, 1999). The feedforward
ascending connections constitute an inverse model (i.e., using
outputs to predict inputs) (Harth et al., 1987; Kawato et al., 1993;
Friston, 2005). The difference between the output of a higher-
level model and its input from a lower level model creates an
error signal that is then used to modify the next input (which
approximates using outputs to predict inputs). In contrast, the
feedback descending connections represent a forward model
(i.e., inputs from higher levels are used to generate output
predictions of what caused the lower level inputs). Consequently,
in hierarchical predictive coding, top-down predictions modulate
bottom up processing. In our algorithm, bottom-up predictions
lie outside of the causal chain of processing and hence are able
to contribute to an inner (implicit) sense of awareness of what is
being processing.
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Forward models as used in our algorithm have been
empirically tested and confirmed in movement performance by
robots (Tani, 2016) and in silico models of artificial self-awareness
(i.e., gambling; Cleeremans, 2011). These forward models differ
from those used in hierarchical predictive coding frameworks
to explain visual recognition (Rao and Ballard, 1999; Friston,
2005). These latter models rely on top-down inputs in a linear
hierarchy to infer what is currently being processed whereas the
models in our algorithm use bottom-up inputs that uniquely feed
into parallel models. While the hierarchical top-down models can
explain visual recognition and categorization (Friston and Kiebel,
2009), these models are an integral component of the processing
pipeline and do not act as external state observers (Figure 3) of
the type needed for the system to develop a sense of awareness
of its neural processing states (Cleeremans, 2011; Dehaene et al.,
2017).

Seth (2013) uses a hierarchy of top-down-driven forward
models to explain emotional responses with the ultimate
driver being higher-order goals. While his proposed framework
is specifically aimed at accounting for motor responses he
postulates that a conscious emotion (i.e., emotional awareness)
arises from the integration of sensory predictions across multiple
levels. Unfortunately this idea is not further interrogated in
later explorations of the role of predictive coding and active
interoceptive inference in emotions (Seth and Friston, 2016).
Nonetheless, higher level integration (lying outside of the causal
chain of emotional responses) is consistent with our idea that
integration of predictions with other pertinent system inputs
forms the basis of a higher-level of awareness necessary, but not
sufficient, for the feeling of pain.

Like Seth (2013), Barrett (2017) also believes that hierarchical
predictive coding uses internal, generative models to anticipate
and make inferences about ongoing sensory stimuli and,
hence, drive motor and visceromotor actions. In the theory
of constructed emotion, Barrett (2017) proposes that when
predictive coding is used to meaningfully categorize or
conceptualize sensations (e.g., as happiness), then one
consciously experiences that sensation (i.e., as happiness).
For Barrett (2017) an affective conscious state somehow emerges
when predictions are given conceptual meaning. Barrett (2017)
does not make it clear, however, why conceptual meaning should
feel like something rather than nothing. One could imagine that
predictions could lead to inferences about a particular mental
state, but there remains an explanatory gap with respects to how
that state could possibly feel like something.

LOCALIZATION OF PAIN AWARENESS IN
THE HUMAN BRAIN

Our proposed algorithm involves at least three hierarchical levels
(rather than two as proposed by the higher-order thought theory;
cf. Rosenthal, 1993). The first level has the external stimulus as
the object of intent (referred to as “sensory processing”). The
second level has “sensory processing” as the object of intent
(referred to as “sensory awareness”). This level is proposed
to recognize that a particular type of sensory information

is being processed. The third level has “sensory awareness”
as its object of intent (referred to as “inner awareness”).
By its ability to recognize that it is aware of some sensory
stimulus this level has created an inner awareness of its internal
processing.

There is some disagreement with respect to the cortical
localization of conscious awareness in the human brain. First-
order theorists contend that awareness directly arises in the
earliest stages of cortical processing of sensory input (Dretske,
1993). Higher-order theorists instead subscribe to the idea
that conscious experience only occurs when a higher-order
of neural processing becomes aware of first-order sensory
processing (Rosenthal, 1993). There is little neuroanatomical
and neurophysiological support for conscious experience arising
directly from first-order sensory processing. For instance, in
the visual system, conscious awareness of color is dependent
on processing occurring in V4, a higher-order cortical region
(Gegenfurtner, 2003). Lesions in this cortical region lead
to achromatopsia. Moreover, visual awareness is still present
following direct stimulation of higher visual cortices in cortically
blind subjects (due to lesions in their first-order V1 cortex)
(Mazzi et al., 2014; Bagattini et al., 2015). Feedback from
cortical areas higher than V1 is considered essential for
visual awareness in normal sighted individuals (Lamme and
Roelfsema, 2000; Pascual-Leone and Walsh, 2001; Hurme et al.,
2017). However, the role of feedback from higher visual
cortices remains unclear and continues to be investigated
(Klink et al., 2017). It is important to note that these higher-
order visual cortices might be necessary but not sufficient for
visual awareness. Higher cortical non-visual posterior areas are
also likely to be necessary for visual awareness (Koch et al.,
2016).

Although there are problems with trying to correlate
subjective experience of visual stimuli with evoked cortical
potentials (Aru et al., 2012; Koch et al., 2016), it remains
a valuable approach for providing some mechanistic insights
into the localization of awareness (Koch et al., 2016). Visual
awareness consistently correlates with a negative potential with
onset at ∼200 ms and then a positive potential arising at
∼300 ms after stimulus presentation (Koivisto and Revonsuo,
2010; Rutiku et al., 2016; Rutiku and Bachmann, 2017). There is
considerable variability between studies in the reported timing
of these potentials but there is agreement that the negative
potential (referred to as the visual awareness negativity) that
occurs over the occipital-temporal-posterior parietal cortices is a
signature of visual awareness (Koch et al., 2016; Schelonka et al.,
2017).

Some of the temporal variability is associated with technical
differences between studies. For instance, Schelonka et al.
(2017) recorded the largest amplitude of the negative potential
between 320 and 380 ms post-stimulus, whereas Rutiku et al.
(2016) reported that the mean amplitude occurred at ∼240 ms
and Shafto and Pitts (2015) timed the negative potential at
∼260–300 ms. Notwithstanding these differences, the timing
of this potential is relatively late and not consistent with
awareness arising solely from within the early visual cortex.
The role of the occipital and posterior parietal cortices in
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visual awareness have also been highlighted by functional
magnetic imaging studies during binocular rivalry with no-
report paradigms (Frässle et al., 2014). We have avoided the
controversial discussion of whether or not the prefrontal cortex
is necessary for visual awareness (Safavi et al., 2014; Boly
et al., 2017; Odegaard et al., 2017) since it is enough here to
conclude that the primary visual cortex is not sufficient for
awareness.

Unlike the visual system, there is no primary cortical region
for pain (Treede et al., 1999; Mano and Seymour, 2015; Thomas,
2017). Neuroimaging has revealed that a network of first-order
and higher-order cortical regions including somatosensory areas
I (SI) and II (SII), and insular and cingulate cortices is specifically
activated during pain awareness in humans (Figures 5A–C;
Rolls et al., 2003; Vogt, 2005; Wager et al., 2013; Vogt et al.,
2016). This result is consistent with transneuronal pathway
tracing experiments that demonstrated the terminations of
the spinothalamic tract, the main ascending tract transmitting
noxious information to the cortex, principally within the
posterior insular, SII and cingulate cortices in monkeys (Dum
et al., 2009). Similar pathways have been demonstrated by
neuroimaging studies in humans (Brooks and Tracey, 2005;
Omori et al., 2013). Human neurophysiological studies have
also revealed nociceptive responses within SI, SII, insular and
cingulate cortices (Frot et al., 2001, 2013, 2014; Liberati et al.,
2017). Lesions and electrical stimulation in these cortical regions
as well as strokes involving the spinothalamic tract in the internal
capsule have together confirmed a role of this cortical network
in human pain awareness (Ballantine et al., 1967; Berthier et al.,
1988; Kim, 1992; Cereda et al., 2002; Torta et al., 2013; Boccard
et al., 2014, 2017; Hirayama et al., 2014; Russo and Sheth,
2015; Agarwal et al., 2016; Denis et al., 2016; Wang et al.,
2017).

Most human neuroimaging studies using functional magnetic
resonance imaging are insensitive to dynamic temporal changes
in neural activity across the cortical networks (Kucyi and Davis,
2015; Morton et al., 2016) and, hence, do not adequately
reflect activity correlating with instances of pain awareness.
Intracortical electroencephalograph recordings have instead
provided more precise temporal resolution of cortical activation
following noxious stimulation (although early studies were
limited by the small number of electrodes). SII responses
contralateral to the side of noxious heat stimulation to the
wrist and hand occur initially at a peak latency of 140 ms
(Frot et al., 1999; Frot et al., 2001). These SII responses
were specifically associated with stimuli that elicited pain and
were not recorded from other sites including hippocampus,
amygdala, temporal pole, temporal neocortex, cingulate gyrus,
and orbitofrontal cortex (Frot et al., 2001). The insular cortex
responds to noxious stimuli ∼40 ms after the SII with an
initial peak at 180 ms (Frot and Mauguière, 2003). This
analysis was not able to resolve any differences in latency
of these potentials along the posterior-anterior axis of the
insula. Subsequent analyses revealed that the SII responses were
more selective for stimuli that were below pain threshold or
only mildly painful, whereas posterior insular cortex responses
more fully reflected thermal noxious stimuli clearly above pain

FIGURE 5 | Localization of human brain regions. (A,D,G,J) Lateral view of
brain, orbitofrontal cortex (mauve), dorsolateral prefrontal cortex (pink), motor
cortex (purple), somatosensory cortex (green), posterior parietal cortex (dotted
pink), lateral margin of frontal operculum (red), lateral margin of parietal
operculum (blue). On a lateral view only the lateral margins of the operculum
are exposed. The operculum forms the roof of the lateral sulcus and is only
accessible by removal of the temporal lobe (which forms the ventral floor of
the lateral sulcus). (B,E,H,K) Lateral view of brain with partial frontoparietal
lobe removed to reveal underlying gyri of insula, anterior insula (red), posterior
insula (green). (C,F,I,L) Medial wall of brain, perigenual anterior cingulate
cortex (red), posterior mid cingulate cortex (dashed red), ventral posterior
cingulate cortex (dotted red), supplementary motor area (purple),
somatosensory cortex (green), and precuneus (pink). Each of the three rows
starting at (D,G,J) represent a temporal sequence of cortical activation (red
stars). (D–F) After initial activation of the somatosensory area there is
co-activation of five cortical areas (G–I). A third wave of co-activation of five
cortical area. (J–L) A fourth wave of co-activation of three cortical areas.

threshold (Frot et al., 2006). These studies suggested that the
posterior insular cortex and SII play different roles in pain
awareness.

Intracortical electroencephalograph recordings from multiple
sites simultaneously in the cingulate cortex and SII has begun
to provide a clearer understanding of the spatiotemporal
relationships of neural activity during pain perception (Frot et al.,
2008). SII and posterior middle cingulate cortex (pMCC) co-
activate initially at around 120–140 ms and this is followed
by later activity in the posterior insula at ∼180 ms post-
stimulus. In a subsequent study, it was revealed that areas 1
and 2 in SI consistently elicited intracortically recorded neural
responses consisting of four components at ∼102, 129, 140,
and 190 ms latency to noxious stimuli (Frot et al., 2013).
Simultaneous recordings revealed a 126 ms response in the
supra-sylvian operculum (which included SII) and a ∼218 ms
latency biphasic potential in the insular cortex. The primary
motor cortex I (M1) also responded with a distinctive triphasic
potential beginning at ∼116 ms post-stimulus. A picture was
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emerging whereby noxious stimuli leads to initial processing
in the SI, followed by activity in the parietal operculum
(containing SII) and pMCC and then slightly later in the insular
cortex.

Temporal analysis of processing in the insular cortex elicited
by a noxious stimulus revealed that biphasic evoked potentials
occurred first in the two posterior insular gyri (at 212–221 ms)
and then slightly later in the three anterior insular gyri (237–
309 ms) (Frot et al., 2014). Given that the anterior insula
only receives a very minor (if any) direct projection from the
spinothalamic noxious pathway (Dum et al., 2009), it appears that
the shortest latency evoked potentials are serially processed in
the insula, passing from the posterior to the anterior insula (Frot
et al., 2014). This interpretation is consistent with known direct
connections between the posterior and anterior insula (Mesulam
and Mufson, 1982; Almashaikhi et al., 2014).

Pain awareness following a noxious laser irradiation of
the hand occurs in a broad window of 260–422 ms (mean
349 ms) post-stimulus (Bastuji et al., 2016). This latency was
measured as the time from noxious stimulation to a voluntary
motor response (finger lift) that signified sensation of pain.
However, given that cortical stimulation of the primary motor
cortex elicits a wrist motor response within 20 ms (Calancie
et al., 1987; Amassian et al., 1989), cortical activity leading up
to the experience of pain must occur before a 240–400 ms
temporal window (with a mean of 329 ms). Bastuji et al.
(2016) found three consistent waves of onset of cortical activity:
first, activity (at ∼120 ms) was detected in the posterior
insula, parietal operculum (SII), MCC and supplementary motor
area; second, activity was followed shortly later (beginning
at ∼140 ms) in the frontal operculum, precuneus (part of
superior parietal lobe), anterior insula, orbitofrontal cortex and
dorsolateral prefrontal cortex; and third, activity beginning
at 149 ms in the posterior parietal cortex, ventral posterior
cingulate cortex (vPCC) and perigenual anterior cingulate cortex
(pACC).

It should be noted that Bastuji et al. (2016) did not
distinguish between regions of the MCC although in an earlier
study they demonstrated that it was the pMCC that was
selectively activated by noxious stimuli (Frot et al., 2008). The
highest peak activity in most of these regions was reached by
319 ms, which is prior to the time of awareness (at 329 ms).
Only peak activities in vPCC and pACC occurred after pain
onset (at ∼350 and 398 ms respectively). Despite differences
in electrode placement and noxious stimulation between the
various electroencephalographic studies described above, it is
apparent that there is a specific temporal pattern of activation
of cortical regions leading up to pain. First, there is early
activity in SI; second, co-activation of the SII, posterior insular,
pMCC, M1 and supplementary motor area (Figures 5D–
F); third, co-activation of anterior insular, precuneus, frontal
operculum, orbitofrontal cortex and dorsolateral prefrontal
cortex (Figures 5G–I); and finally, activity in the posterior
parietal cortex, vPCC and pACC (Figures 5J–L). Onset
of activity in all of these regions is temporally consistent
with them contributing to neural processing leading to pain
awareness.

CORTICAL NEURAL CIRCUITS
SUPPORTING A PARALLEL FORWARD
MODELS ALGORITHM

The proposed parallel forward models algorithm (Figure 4)
imposes structural restrictions on the types of nervous systems
that could implement it. Is the structural connectivity captured
by the algorithm neuroanatomically plausible? In the primate
somatosensory system, the spinothalamic axon tract delivers
sensory input from noxious stimuli into the cerebral cortex
where it splits and terminates in three principal regions:
cingulate cortex, SII and posterior insular cortex (PIC) (Dum
et al., 2009). In humans, a main target in the cingulate cortex
regulating motor responses (e.g., facial expressions, Kunz et al.,
2011) to noxious stimuli is the pMCC (Perini and Bergstrand,
2013; Vogt et al., 2016). Each of these three regions were
shown in electroencephalographic studies (discussed above) to
be co-activated via noxious stimuli (Figures 5D–F) and by
neural pathway tracing experiments to feed forward to the
AIC (pMCC to AIC, Mufson and Mesulam, 1982; Mesulam
and Mufson, 1982; SII to AIC, Mufson and Mesulam, 1982;
Mesulam and Mufson, 1982; PIC to AIC, Almashaikhi et al.,
2014). Both SII and PIC receive strong, reciprocal feedback
from AIC (Mesulam and Mufson, 1982; Morecraft et al.,
2015). PIC projects to SII (Mesulam and Mufson, 1985;

FIGURE 6 | Human cortical circuitry consistent with the parallel forward
models algorithm as presented in Figure 4. Parallel streams of noxious
sensory input enter the posterior middle cingulate cortex (pMCC), secondary
somatosensory area (SII), and posterior insula cortex. The SII and PIC contain
internal models of pMCC and SII respectively. The outputs of these models
are predictions (green arrows) and they are relayed to a comparator module in
the anterior insular cortex (AIC). The AIC compares the output of pMCC and
SII and the error (red arrow) is fed back to the SII to adjust its internal model of
pMCC. The prediction of SII is fed back to the pMCC where it is used to refine
its response to the noxious stimulus. The prediction of the internal model in
PIC is fed forward to the AIC where it is compared with the prediction of SII.
The error is then relayed back to the PIC to fine tune its internal model of SII.
The prediction of the PIC is also fed back to the SII to refine its prediction. The
internal model in the PIC is also adjusted in response to widespread feedback
from across the cortex and the PIC has reciprocal connections with these
regions that contribute to the feeling of pain.
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Augustine, 1996; Cerliani et al., 2012), and SII in turn projects
to pMCC (Morecraft et al., 2004; Vogt et al., 2005). This
connectivity (Figure 6) is consistent with the pMCC processing
sensory information to produce an output while putative
internal models in SII and PIC create predictions that are
compared in the AIC with the outputs of the pMCC and SII,
respectively.

Somatosensory area II has previously been reported to play an
important role in conscious awareness of somatosensory stimuli
(Weisz et al., 2014), which is consistent with it participating in
awareness of sensory processing in our algorithm. Strength of
activity in SII has also been shown to be predictive for subsequent
somatosensory awareness (Hirvonen and Palva, 2016), which
also aligns to our framework. SII is additionally involved in
distinguishing awareness of self-generated touch from external
tactile stimuli (Blakemore et al., 1998). Taken together, the
awareness arising in SII is consistent with this region generating
predictions that are relayed to both AIC and pMCC where they
are then available for modulating ongoing processing within this
neural circuitry.

The prediction errors created in AIC are proposed to feed
back to fine tune the performance of the internal models in PIC
and SII (Figure 6). Functional neuroimaging studies (Metereau
and Dreher, 2013; Allen et al., 2016; Meder et al., 2016; Bastin
et al., 2017; Geuter et al., 2017) have confirmed a long-held
view (Singer et al., 2009; Bossaerts, 2010; Ullsperger et al., 2010;
Klein et al., 2013) that AIC is involved in error monitoring
and awareness in humans. According to our algorithm, PIC is
a higher order internal monitor that generates the awareness
of awareness of sensory processing leading to motor behavior.
Neuroimaging evidence and lesion data support such a role
for PIC in awareness of limb position (Karnath et al., 2005)
and self-awareness of motor actions (Baier and Karnath, 2008).
We do not contend that predictions (awareness) and prediction
error related to pain do not occur elsewhere in the brain
(Ploghaus et al., 2000; Roy et al., 2014) but rather that such
processing is important in modulating PIC predictions. The
widespread connectivity of PIC (Figure 6) (Nomi et al., 2017)
and its multimodal processing of visual, tactile, nociceptive, and
vestibular information (zu Eulenburg et al., 2013; Frank et al.,
2016) strengthen the proposal that its predictions need to be
modulated by global input in order to ensure awareness functions
for the whole system.

The proposed cortical neural circuitry underlying our
algorithm (Figure 6) is supported by considerable evidence
that pain is elicited by electrical stimulation and perturbed by
lesions to the operculoinsular region (i.e., SII, AIC, and PIC;
Bassetti et al., 1993; Cereda et al., 2002; Bowsher et al., 2004;
Birklein et al., 2005; Cattaneo et al., 2007; Afif et al., 2008,
2010; Garcia-Larrea et al., 2010; Isnard et al., 2011; Mazzola
et al., 2011, 2017; Hirayama et al., 2014; Montavont et al.,
2015; Denis et al., 2016; Maesawa et al., 2016; Bouthillier and
Nguyen, 2017; Garcia-Larrea and Bastuji, 2018; Garcia-Larrea
and Mauguière, 2018). An example of one patient (referred to
as Roger) with extensive bilateral damage to the insula who
exhibited no deficits in pain sensation has been used to argue
against a role of this brain region in pain (Feinstein et al., 2016).

FIGURE 7 | Octopus brain circuitry underlying processing of noxious stimuli
based on Young (1991). The circuitry as described in Figure 2 is schematized
here to fit the parallel forward models algorithm. The circuitry can be
compared with the human cortical circuitry presented in Figure 6. Noxious
information is relayed in parallel to the brachial lobe (BL), lateral inferior frontal
lobe (LIFL), medial inferior frontal lobe (MIFL), and the vertical lobe (VL). The VL
feeds forward to the subvertical lobe (SVL). The MIFL feeds forward to the
subfrontal lobe (SFL) and the LIFL. The SVL, SFL, and LIFL all feed forward to
the posterior buccal lobe (PBL) which then feeds forward to the brachial lobe.
The brachial lobe controls motor actions. The VL also receives input from the
tactile and visual system.

However, this case report needs to be considered in the context
of the overwhelming evidence that the insula does play a key
role in human pain. Negative results are difficult to interpret and
can be explained by inter-subject variability in lesion site and
size and post-lesion cortical plasticity (Key, 2016). For instance,
Roger still had 22% of his left insula intact as well as the entire
left SII and both left and right PCC (whether this included the
pMCC was not assessed) and his lesion occurred about 30 years
prior to sensory testing (Feinstein et al., 2010; Philippi et al.,
2012).

Damasio et al. (2012) discuss another patient (patient B)
with extensive cortical lesions involving the insula whom
continued to experience pain. However, patient B had normal
right and left SII, normal right MCC and only partially
damaged left MCC. Unfortunately there was no high resolution
or quantitative analysis of the lesion sites, no quantitative
nociceptive sensory testing and no functional magnetic resonance
imaging of patient B in response to nociceptive stimuli which
makes interpretation of this case report problematic. Damasio
et al. (2012) acknowledged themselves that pain could have
been generated by a combination of undamaged cortical
regions and cortical plasticity of function in patient B. This
is an important point given that we are not contending the
necessity of insula for pain but merely using evidence of the
role of a neural circuit involving the insula to support the
implementation of our algorithm in the human brain. It is
entirely feasible that other cortical regions have internal models
and comparator modules that can implement our algorithm
(provided they possess the necessary neural interconnectivity;
Figure 6).

Frontiers in Physiology | www.frontiersin.org 13 August 2018 | Volume 9 | Article 1027

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01027 July 30, 2018 Time: 19:5 # 14

Key and Brown Neural Design Principles for Pain

CEPHALOPODS LACK THE NEURAL
CIRCUITRY FOR PAIN

Given that avoidance learning and neural lesioning approaches
involving noxious stimuli are not evidence for pain, we
next examined whether the cephalopod brain possessed the
prerequisite neural circuitry as outlined in the parallel forward
models algorithm (Figures 5, 6). The basic circuitry in the
supraesophageal brain underlying avoidance learning using
noxious electrical shock during tactile discrimination was
presented in Figure 2. When the subesophageal brachial lobe is
included in this circuitry (Figure 7), it reveals that the noxious
stimuli enter four parallel streams (which is consistent with our
algorithm). The basal stream is from the arms into the brachial
lobe and its output drives motor behavior. Noxious input also
directly enters both the lateral and median inferior frontal lobes
as well as the vertical lobe. Each of these lobes feeds forward to the
posterior buccal lobe, which, in turn feeds forward to the brachial
lobe to modulate motor actions. The vertical lobe receives global
input from the tactile and visual systems. While the circuitry
associated with noxious stimuli has some of the components as
detailed in the parallel forward models algorithm, it critically
lacks the necessary feedforward and feedback pathways between
the lobes (cf. Figure 6). If the lateral and median inferior frontal
lobes and vertical lobes were to generate predictions that were
fed forward to the posterior buccal lobe, this latter lobe lacks
the ability to feedback prediction errors to these lobes so as to
regulate their models. The overall circuitry is instead consistent
with a simple feedforward model that modulates motor outputs
from the brachial lobe.

CONCLUSION

We have argued here that behavioral responses to noxious stimuli
in animals cannot be used to assess whether an animal feels pain.
Attempting to reconcile behavioral responses to noxious stimuli
with brain lesioning approaches leads to paradoxical conclusions
about the origins of pain in the octopus brain. The experiment
findings are instead congruous with octopi responding non-
consciously to noxious stimuli. We contend that for any animal
to feel pain it must possess the appropriate neural circuitry to
perform the neural processing necessary for pain. Most extant
models of consciousness have not specifically addressed the
neural basis of feelings such as pain and have rather concentrated
on recognition and discrimination in sensory perception. We

have postulated here that feeling states are dependent on specific
neural computations. Rather than reverse engineer the human
brain in order to define these computations we have instead
used basic design principles to construct an algorithm that
forms a necessary although not sufficient basis for pain. Our
framework is built on the premise that for any nervous system
to be capable of feeling it must have the potential to be aware
of changes in its own neural states. Although awareness begins
first with detection of those changes it must also involve higher
levels of awareness whereby the system becomes aware that it
has detected those changes. We suggest that dedicated neural
circuits (called state observers) must initially monitor the noxious
sensory processing that generate motor behaviors. These state
observers are themselves further monitored by additional state
observers and this tiered circuitry leads to awareness of awareness
of sensory processing – the fundamental neural basis of a feeling
state.

Our algorithm is consistent with the widely held view that
feelings have a functionally significant role for the organism.
Such a role emerges naturally when the state observer creates
an internal forward model that predicts the output of the neural
processing based on its current input. That prediction is a
cogent test of the system’s awareness of its ongoing processing.
It also plays a functional role by its ability to modulate that
same processing. We utilize an algorithm that incorporates
parallel forward models that make predictions which are
subsequently compared with future outputs. Differences between
predictions and real outputs (prediction errors) are then used
to train the forward models to become more accurate in
their predictions. Those predictions are also used to bias
sensory neural processing toward the predictions of the model
and hence enhance efficacy of the neural processing. We
show that the human brain possesses the necessary cortical
circuitry to implement the algorithm. Further, we find that
the octopus brain cannot execute this algorithm since it lacks
the necessary feedforward and feedback pathways between
brain regions associated with sensory processing of noxious
stimuli. This inability to create an awareness of awareness of
sensory processing is not consistent with the octopus feeling
pain.
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