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Abstract

traced back to differences in toxicity parameters.

Background: Although the growth-factor G-CSF is widely used to prevent granulotoxic side effects of cytotoxic
chemotherapies, its optimal use is still unknown since treatment outcome depends on many parameters such as
dosing and timing of chemotherapies, pharmaceutical derivative of G-CSF used and individual risk factors. We showed
in the past that a pharmacokinetic and —dynamic model of G-CSF and human granulopoiesis can be used to predict
the performance of yet untested G-CSF schedules. However, only a single chemotherapy was considered so far.

In the present paper, we propose a comprehensive model of chemotherapy toxicity and combine it with our cell
kinetic model of granulopoiesis. Major assumptions are: proportionality of cell numbers and cell loss, delayed action of
chemotherapy, drug, drug-dose and cell stage specific toxicities, no interaction of drugs and higher toxicity of drugs at
the first time of application. Correspondingly, chemotherapies can be characterized by a set of toxicity parameters
which can be estimated by fitting the predictions of our model to clinical time series data of patients under therapy.
Data were either extracted from the literature or were received from cooperating clinical study groups.

Results: Model assumptions proved to be feasible in explaining granulotoxicity of 10 different chemotherapeutic drugs
or drug-combinations applied in 33 different schedules with and without G-CSF. Risk groups of granulotoxicity were

Conclusion: We established a comprehensive model of combined G-CSF and chemotherapy action in humans which
allows us to predict and compare the outcome of alternative G-CSF schedules. We aim to apply the model in different
clinical contexts to optimize and individualize G-CSF treatment.
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Background

The effectivity of antineoplastic chemotherapy of some
cancer types, such as lymphomas or breast cancer,
depends on dose density of applied cytostatic drugs [1-6].
Dose density is defined as the amount of drug given per
body surface per time unit (mg/mz/week) [7,8]. It has
been shown that a decrease in dose density such as
treatment delays or dose reductions, can have negative
impact on remission rates, recurrence rates and overall
survival rates [9-15].

Physicians are frequently forced to reduce dose dens-
ity due to serious chemotherapy-associated side effects,
of which neutropenia, i.e. a reduction of white blood
cells, is the most common one. Because neutrophils are
an essential part of the nonspecific immune system,
neutropenic patients are prone to bacterial and fungal
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infections, frequently resulting in an increased need of
antibiotics, prolonged hospitalization and a higher risk
of therapy discontinuation [16-22].

To ameliorate neutropenia, the recombinant haemato-
poietic growth factor G-CSF (granulocyte colony stimulat-
ing factor) is routinely applied. It is a major requirement
to make dose-dense therapies feasible. G-CSF increases
the mitotic activity, accelerates the maturation of different
immature granuloid precursor cells in the bone marrow
and increases the release of mature granulocytes into
blood [23,24]. Nowadays, a variety of pharmaceutical
derivatives of G-CSF are available differing in pharma-
cokinetic and —dynamic properties. In consequence,
combined chemotherapy and G-CSF treatment result
in complex dynamics of granulocytes due to the inter-
action of G-CSF pharmacokinetics, G-CSF induced
granulocytosis via different mechanisms and chemo-
therapy induced cell destruction.

We recently established a biomathematical model of
G-CSF applications in humans explaining numerous
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scenarios of G-CSF applications of the most frequently
used derivatives Filgrastim and Pegfilgrastim into healthy
volunteers and first simple chemotherapies [25]. How-
ever, the large variety of chemotherapies supported by
G-CSF in current clinical practice is not yet covered.

In the present article we introduce a substantially
refined model of chemotherapy action applicable for
different diseases and risk groups. The major objective
of our model is to allow predictions of the dynamics of
granulocytes after combined chemotherapy and G-CSF
applications especially regarding effects of alternative,
yet untested G-CSF treatment schedules on neutropenia.

Methods

We recently developed a comprehensive model of
pharmacokinetics and pharmacodynamics of Filgrastim
and Pegfilgrastim [25]. We briefly sketch this model in
the following:

PK/PD model structure and basic properties

Figure 1 depicts the structure of the PK/PD-model
Granulopoiesis is divided into five distinct cell com-
partments, representing haematopoietic stem cells (S),
early progenitors (CG), proliferating precursors (PGB),
maturing precursors (MGB) and mature granulocytes
in circulation (GRA). Dynamics of each compartment
are described by ordinary differential equations (ODE).
The system is regulated by several feed-back loops,
mostly mediated by the cytokine G-CSF. Endogenous
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G-CSF production is regulated by the cell demand of
the system.

All granulopoietic cells originate from the stem cell
compartment. Cell division and differentiation rates in
S are regulated in such a way that self-maintenance
gains priority in case of low stem cell numbers. Cells
committed to granulopoietic lineages enter the subse-
quent compartment CG, which represents the most im-
mature cell stage committed to granulopoiesis. The
next compartment, PGB, represents the mitotic granu-
loid precursors (myeloblasts, promyelocytes and myelo-
cytes). Compartment MGB represents all non-mitotic
precursors (metamyelocytes, banded cells and mature
neutrophils) in the bone marrow. The final compart-
ment, GRA, comprises all mature neutrophils in the
peripheral blood. Reductions of lymphocytes LY due to
chemotherapy are also modelled.

Without chemotherapy, changes of compartment sizes
are determined by balance equations of cell influx, cell
production and cell efflux or degradation:

dcC(t) C(t)

——= = Cyu(t) xA(t)- ==

G = Cult) A0
where di—g” represents the changing rate of compartment

size, C;,(¢) represents the cell influx rate from the pre-
ceding compartment, A(¢) the amplification of cell num-
bers and 7(¢) is the average time of a cell residing in the
compartment (transition time).
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Figure 1 Structure of the granulopoiesis model under chemotherapy and G-CSF treatment. Boxes represent major cell- or cytokine
compartments of the model: S = haematopoietic stem cells, CG = granulopoietic progenitors, PGB = granulopoietic precursors, MGB = maturing
granulopoietic precursors in bone marrow, GRA = mature granulocytes in blood, LY = lymphocytes. We modelled two G-CSF derivatives (fil = Filgrastim,
peg = Pedfilgrastim). Arrows represent cell/cytokine fluxes and interactions. CX represents the strength of chemotherapy (see below).
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Filgrastim and Pegfilgrastim are assumed to have
different pharmacodynamic properties in the model,
whereas Filgrastim and endogenous G-CSF are as-
sumed to be undistinguishable. Amplification rate and
transition time in PGB increase with G-CSF serum con-
centration. In contrast, the transition time in MGB and
the apoptosis rate are reduced with increasing G-CSF
concentrations. Details of Filgrastim and Pegfilgrastim
pharmacokinetics, pharmacodynamics, and corresponding
regulatory processes are described elsewhere [25].

On the basis of this baseline model, we aim at develop-
ing a more comprehensive model of cytotoxic chemother-
apy action on granulopoiesis. Corresponding assumptions
and equations are explained in the following. Some
detailed information can be found in [26].

Modeling chemotherapy
Next we present and discuss our assumptions reagarding
chemotherapy modelling in detail.

Assumption 1 (injection)

Injection of chemotherapy is modeled by pulse functions
according to the applied dosing and timing schedules. In
general, each drug is modeled by a separate pulse func-
tion, where the length of the pulse corresponds to the
injection time and the amplitude is normalized in such a
way that the area under the curve after a single injection
equals one (see equations below).

Assumption 2 (delayed action)

We assumed a delayed maximum of chemotherapy dam-
age after injection. This is modeled in a phenomenological
rather than mechanistic way by a set of concatenated first
order transitions resulting in a delayed maximum after
injection (see [27]).

Cl\de)u ( )
rug (i-1) dr i
dt - ‘derug ( ) lDeLigy\Ptox( )7 l
=1,...,4, with
vy (t) = CHEMO®™¥(t),
Ncycle
CHEMO®™(t) = 3 (Hv(t-t;)~HV(t=ti~tinr)) /tins
=1
i dru, .
‘{IEir)ugm (t) lDelgylPEir)ug ( ) i=1,..4,
where Hv is the Heavyside function: Hv (t) = {01,

are the time points of chemotherapy applications and tj,¢

is the infusion time. Thus, function CHEMO represents

drlg (t) repre-

sents the strength of the (delayed) toxic effect.

the chemotherapy schedule. In summary,
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Assumption 3 (toxicity)
Drug, drug-dose and cell-stage specific toxicity functions

(4)
drug

drug ( )

are derived from W (t) by multiplications with spe-

cific toxicity values: K

K& (Wl (1)

drug,,

\Pdrug ( )

drug

The quantities Ky
the following.

are called toxicity coefficients in

Assumption 4 (first cycle effect)

The term “first cycle effect” refers to increased toxicity
of chemotherapeutic drugs when applied for the first
time. Accordingly, we assumed a ‘first cycle effect’ by
multiplying the toxicity of the first chemotherapy cycle
by a factor f, > 1. Hence,

drug 1 ~drug
Ky
KE(0) = {f

Ke

if t< tdrug

else

Assumption 5 (no interactions between drugs)

Most chemotherapy regimens consist of multiple drugs
administered simultaneously. If toxicity functions of
single drugs are available, the resulting total toxicity is
obtained by adding these functions. Thus, in general, no
interactions between single drugs are assumed:

total E : \Pdrug

drug

where “drug” summarizes all drugs applied in combin-
ation. The overall process of defining toxicity functions
is sketched in Figure 2.

Assumption 6 (cell loss)

Cytotoxic drugs cause a depletion of bone marrow cells.
The loss rate is proportional to the number of cells in
each compartment (first order kinetics). The overall tox-
icity function WX _ () defined above serves as propor-
tionality factor, i.e.:

dCx(t)
dt

Cx(t)
T(¢)

where Cy ist the content of compartment X.

- i

total( )CX(t)

Assumption 7 (risk groups)

Risk groups of patients with differing toxic response can
be described by different sets of corresponding toxicity
parameters. Motivated by the observation that G-CSF
response does not differ between elderly and younger
patients [28], we assumed the same cell kinetic parame-
ters among risk groups.
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Figure 2 Construction of toxicity functions exemplified by the high-CHOEP regimen and its toxic effect on stem cells. The Heavyside
functions for a single application of the combination of Cyclophosphamide, Doxorubicin and Vincristin (at time point 0) and for single Etoposide
(applications at time points 0, 1 and 2) are determined (first column), delayed (second column) and multiplied with the corresponding stem cell
toxicity factors (third column). Finally, the functions were added resulting in the overall toxicity function.

Assumption 8 (lymphopoiesis)
Depletion of lymphocytes is modelled by the following
simple equation:

ijgc(t) = CANC(t) + Cpry * ei\y”(t)

Cwac, Canc and Cpy are the concentrations of white
blood cells, neutrophils and lymphocytes in peripheral
blood. The factor e ¥»*() quantifies the overall cytore-
ductive effect of chemotherapy on lymphocytes. ¥,y (£)
is analogously defined as toxicities regarding granulopoi-
esis. Note that lymphocyte dynamics are not explicitly
modelled except for this chemotherapy effect. Thus,
Cry=3000/pl is constant, i.e. the normal concentration
of lymphocytes.

Assumption 9 (Prednisone)

Prednisone is a chemotherapeutic drug without cyto-
toxic effect. It is often applied for the treatment of
malignant lymphoma (e.g., CHOP, CHOEP, highCHOEP
and BEACOPP, see Table 1, “Summary of modelled che-
motherapies”). It is well known that prednisone tempor-
arily increases granulocyte counts caused by temporarily
prolonged half-life [29-31].

Assumption 10 (Cell kinetic parameters are un-affected

by chemotherapy)

Besides the above mentioned (toxic) effects of chemo-
therapy, it is assumed that all cell-kinetic parameters
of our granulopoiesis model remain unchanged. Specif-
ically, we do not assume irreversible deterioration of
granulopoiesis or reduced G-CSF response of cell stages
during or after chemotherapy.

Clinical data

Since the toxic effects of chemotherapies on bone mar-
row cannot directly be observed, at least one clinical
dataset of patients under therapy is required to estimate
it. Different schedules of the chemotherapy and different
schedules of supportive G-CSF treatment provide add-
itional information which can be used to improve tox-
icity estimates or to validate model predictions. Data of
G-CSF application into healthy volunteers were already
used to validate our pharmacokinetic and —dynamic
model of G-CSF [25].

Data of 10 different chemotherapies used to treat
Hodgkin’s lymphoma (HD), non-Hodgkin’s disease (NHL),
breast cancer (BC) and non-small cell lung cancer
(NSCLC) are available (Table 1), either from literature
or from cooperating clinical study groups (German
Hodgkin’s Lymphoma Study Group (Professor Engert),
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Table 1 Summary of modelled chemotherapies: we present names of therapies and corresponding dosage of drugs

Drug CHOP CHOEP High-CHOEP BEACOPP BEACOPP esc. TA ETC EC-T ESHAP Carboplatin + Paclitaxel
Bleomycin (mg/m?) 10 10

Carboplatin variable
Cisplatin (mg/m?) 25
Cyclophosphamid (mg/mz) 750 750 1400 650 1250 2500 600

Cytarabin (mg/mz) 2000

Docetaxel (mg/m?) 75

Doxorubicin (mg/mz) 50 50 325 25 35 60

Etoposide (mg/m?) 100 175 100 200 40

Epirubicin (mg/m?) 150 90

Methyl-prednisolon (mg) 500

Paclitaxel (mg/m?) 225 175 225
Prednison (mg) 100 100 100 100 100

Procarbacine (mg/m?) 100 100

Vincristine (mg) 2 2 2 2 2

German High-Grade Non-Hodgkin’s Lymphoma Study
Group (Professor Pfreundschuh), German Breast Group
(Professor von Minckwitz)). Considering different cyto-
toxic drug and G-CSF schedules, data of 33 different
chemotherapies are available (Table 2).

Data sets comprise time series data of G-CSF serum con-
centrations, ANC or WBC of patients under therapy. For
modelling issues, we used patient’s medians throughout.

Parameter estimation

Pharmakokinetic and pharmakodynamic parameters for
Filgrastim and Pegfilgrastim are described elsewhere and
remained unchanged in the present work [25]. In our
model, the toxicity of a chemotherapy regimen is charac-
terised by a set of cell-stage and drug specific toxicity
parameters (for S, CG, PGB, MGB, LY) and a drug spe-
cific delay parameter. Parameter estimation was realised
using an algorithm based on evolutionary strategies.
Evolutionary strategies are stochastic algorithms used for
numerical optimization [48]. The cost function to calcu-
late model fitness was defined as:

/ " 108 o (£, ) 10gf g (£)|dt— min,

to

where £, is the time of the first data point, ¢; is the last
data point, fodel (£ k) is the solution of the model equa-
tion system for the granulocyte compartment at the
time of t (o <t<t;) based on the parameter set k = {ky,
.o Ky} and fyaea (2) is the linearly interpolated data curve.
Agreement of logarithms was pursued since cell counts
are usually log-normally distributed.

We split the data of the NHL trial (CHOP-like chemo-
therapies of high-grade non-Hodgkin’s disease) into young

and elderly patients to account for risk specific toxicities
(chemotherapy assumption 7, see above). The toxicity
parameters were estimated in a stepwise manner starting
with simple chemotherapies which require only a few
parameters estimates. More complex chemotherapies
were modelled by estimating toxicity parameter sets for
yet unconsidered drugs or drug combinations. Toxicity
parameters estimated in earlier fitting steps were kept
constant throughout the fitting process. The parameters
for the first cycle effect and the two delay parameters
are kept constant for different dose levels and for young
and elderly patients as well. If drugs are always applied
in combinations, it is impossible to separate the toxic
effects of its components. In these cases, a single set of
toxicity parameters was estimated for the combination.
In more detail:

1. We estimated CHOP parameters separately for
elderly patients (scenarios 13, 15, 21, 30, 31 of
Table 2, chemotherapy dosings can be found in
Table 1), and young patients (scenarios 14, 20, 33).
We assumed higher toxicity for elderly patients [49].

2. Using CHOEP data sets and the parameters found in
step 1, we determined parameter settings for Etoposide
100 mg/m? for young (scenarios 16, 23) and elderly
patients (scenarios 17, 24).

3. Using BEACOPP basis data sets 18 and 26 and
the parameters for Etoposide 100 for young
patients estimated in step 2 we determined
parameter settings for the combination of
Cyclophosphamide 650 mg/m?, Doxorubicin
25 mg/m? and Vincristine 2 mg, with the
constraint that the parameter values of this
combination must be smaller than those for CHOP
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Table 2 Clinical data sets used for modelling: we present disease, chemotherapy protocol and corresponding G-CSF

schedules
G-CSF derivative Administration Disease Chemotherapy Reference

01 Filgrastim 5 ug/kg, days 2-13 Breast cancer TA [32]
02 Filgrastim 5 pg/kg, days 2-6 NSCLC cp [33]
03 Filgrastim 480 ug/kg, days 6-13 NHL high-CHOEP-14* [34]
04 Pedfilgrastim 30 pg/kg, day 2 Breast cancer TA [32]
05 Pedfilgrastim 60 pg/kg, day 2 Breast cancer TA [32]
06 Pedfilgrastim 100 ug/kg, day 2 Breast cancer TA [32]
07 Pedfilgrastim 6000 pgr/kg, day 2 Breast cancer TA [35]
08 Pedfilgrastim 6000 pg/kg, day 2 Breast cancer TA [36]
09 Pedfilgrastim 30 pg/kg, day 2 NSCLC (@3 [33]
10 Pedfilgrastim 100 pg/kg, day 2 NSCLC CcP [33]
11 Pedfilgrastim 300 pg/kg, day 2 NSCLC cp [33]
12 Pedfilgrastim 6000 pg/kg, day 2 NHL CHOP-14 [37]
13 Pedfilgrastim 6000 pg/kg, day 2 DLBCL R CHOP-14 [38]
14 - - NHL CHOP-21* (young) [39]
15 - - NHL CHOP-21% (elderly) [40]
16 - - NHL CHOEP-21* (young) [39]
17 - - NHL CHOEP-21* (elderly) [40]
18 - - HD BEACOPP-21* [41]
19 - - Breast cancer EC-T* [42]
20 Filgrastim 480 pg/kg, days 4-13 NHL CHOP-14* (young) [39]
21 Filgrastim 480 ug/kg, days 4-13 NHL CHOP-14* (elderly) [40]
22 Filgrastim 480 pg/kg, days 6-12 NHL CHOP-14* [43]
23 Filgrastim 480 pg/kg, days 4-13 NHL CHOEP-14* (young) [39]
24 Filgrastim 480 ug/kg, days 4-13 NHL CHOEP-14* (elderly) [40]
25 Filgrastim 480 pg/kg, days 6-13 NHL high-CHOEP-21* [43]
26 Filgrastim 480 pg/kg, days 8-13 HD BEACOPP-14* [44]
27 Filgrastim 480 pg/kg, days 8-15 HD BEACOPP-21 escalated* [41]
28 Filgrastim 480 pg/kg, days 3-10 Breast cancer E-T-C* [42]
29 Filgrastim 5 pg/kg, days 5-16 relapsed or persistent HD or NHL ESHAP [45]
30 Pedfilgrastim 6000 pg/kg, day 2 NHL CHOP-14* [46]
31 Pegfilgrastim 6000 pgr/kg, day 4 NHL CHOP-14* [46]
32 Pedfilgrastim 100 pg/kg, day 6 relapsed or persistent HD or NHL ESHAP [45]
33 Pedfilgrastim 6000 pg/kg, day 2 DLBCL R CHOP-14 [47]

Scenarios with access to raw data are denoted with*.

young (because of lower or equal dosage of
Cyclophosphamide, Doxorubicine and Vincristine
compared to CHOP). Parameters for Bleomycin

200 mg/m? were estimated with the constraint that

the parameter values must be larger than those
estimated for BEACOPP basis.

10 mg/m? and Procarbacine 100 mg/m? were also 5. Taking the high-CHOEP data sets 3 and 25, we

determined.

. With the data set 27 (BEACOPP escalated) the
parameter settings for the combination of
Cyclophosphamide 1250 mg/m?, Doxorubicin

35 mg/m? and Vincristine 2 mg, and for Etoposide

estimated parameters for the combination

Cyclophosphamide 1400 mg/m?, Doxorubicin
32.5 mg/m?* and Vincristine 2 mg, and for Etoposide
175 mg/m? with the constraint that parameter

values must be larger than for CHOEP young.
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6. Independently of the previous settings, parameters
are determined for Doxorubicin 60 mg/m?* and
Docetaxel 75 mg/m? using data sets 1, 4—8.

7. Using data sets 2, 9-11, parameters are determined
for the combination of Carboplatin and Paclitaxel
225 mg/m”,

8. Using simultaneously the data sets of E-T-C
(data set 28) and EC-T (data set 19), the parameter
settings for Epirubicin (dose 90 mg/m? or 150 mg/m?),
Paclitaxel (dose 175 mg/m? or 225 mg/m?) and
Cyclophosphamide (dose 600 mg/m?* or 2500 mg/m?)
were determined with the constraint that lower
doses have lower values of toxicity parameters.

9. With the ESHAP data set 29, parameter settings for
Etoposide 40 mg/m?, Cytarabine 2000 mg/m?* and
Cisplatin 25 mg/m? were determined.

Three scenarios were not used for parameter estima-
tion and served as model validation: WBC data from
non Hodgkin lymphoma patients treated with CHOP-14
and Filgrastim on day 6-12 (data set 22), ANC data of
patients with relapsed or persistent HD or NHL, treated
with ESHAP and Pegfilgrastim 100 pg/kg on day 6 (data
set 32) and WBC and G-CSF serum level data from non
Hodgkin lymphoma patients treatet with CHOP-14 and
Pegfilgrastim 6000 pug on day 2 (data set 12).

Quantification of myelotoxicity

In order to compare toxicity of different chemotherapy
and G-CSF scenarios, it is necessary to quantify the de-
gree of reduction of granulocytes during the course of
the therapy. There is evidence that the risk for infectious
complications in neutropenic patients depends on the
depth as well as on the duration of neutropenia [50,51].
Therefore, we defined the area between a certain threshold
and the model curve below the threshold (AOC) as an ap-
propriate summary measure for neutropenia/leukopenia
or severity of reduction of other bone marrow cell stages.
We used 2.000/pl and 4.000/pl as thresholds for total cell
counts of neutrophils and leukocytes respectively. For nor-
malized cell counts we always use the steady-state value 1
as threshold. The AOC was either used to compare overall
toxicity between schedules or served as a target measure
for optimizing G-CSF schedules.

Technical implementation

The model equations were programmed and solved on a
standard personal computer using the numeric compu-
tation software Matlab 7.5.0.342 (R2007b) and the inte-
grated Simulink toolbox v7.0 (The MathWorks, Natick,
MA). Model simulations were performed by numerical
integration of the ODE system. For our model, evalu-
ation of functions is expensive. Therefore, we used the
variable step solver from Adams and Bashford (odel13).
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Results

Applying our model, we simulated 14 different chemo-
therapy scenarios (TA, CP, CHOP-14, CHOP-21, CHOEP-
14, CHOEP-21, high CHOEP-14, high CHOEP-21,
BEACOPP-14, BEACOPP-21, BEACOPP escalated, EC-T,
E-T-C, and ESHAP) including 14 different drugs. Taking
into account individual risk groups, we estimated a total
of 12 different parameter sets. Considering different
schedules of Pegfilgrastim and Filgrastim, 33 scenarios
were modelled. First, we study the qualitative behaviour
of our resulting chemotherapy model.

Qualitative behaviour of the chemotherapy model

In Figure 3, we studied the behaviour of our chemo-
therapy model on the basis of simplified chemotherapy
actions. The estimated parameter set for CHOP in elderly
patients was considered for this purpose. At first, the
effect of an isolated stem cell kill imposed by the CHOP
chemotherapy is simulated (Figure 3A). As a result, the
stem cells are diminished quickly, while the later cell
stages decrease with some delay. After mild oscillations,
the cell counts approach normal levels.

Next, we simulated an isolated CHOP chemotherapy
effect on the compartment PGB alone (Figure 3B). PGB
decrease immediately, and, after certain delay, other cell
stages are reduced too. After oscillation, the cell counts re-
turn to normal levels similar to the isolated stem cell kill.

In Figure 3C we show the results of CHOP toxicity
affecting all cell stages. This toxic effect is equivalent to
later simulations of clinical scenarios involving CHOP.
The figure shows that due to the combined toxicity on
all cell stages, the compartment CG is most seriously
affected. Recovery of the system takes much more time
than in the above mentioned scenarios.

Simulations of simple chemotherapies

According to step 1 of our estimation procedure, we
fitted parameters of simple chemotherapy scenarios first.
Simple chemotherapies refer to those comprising either a
small number of different cytotoxic drugs or drug combi-
nations applied at the same time. This applies for data sets
1-12, 13-17, 20, 21, 23-25, 30, 31 and 33, where only one
or two toxicity parameters per cell stage are required to
describe the therapy. As example, a comparison of model
and data for the CHOP and CHOEP young scenarios with
and without G-CSF treatment can be found in Figure 4.
Other scenarios can be found in the appendix, Additional
file 1: Figures A3-A8. Estimated parameter sets (Table 3)
resulted in a good agreement of model and data.

Chemotherapy model: more complex chemotherapy
simulations

In the next step, more complex chemotherapies containing
a higher number of cytotoxic drugs or more complex
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[39], see Table 2.
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Table 3 Toxicity parameters: Each drug or drug-combination is characterized by a set of eight parameters

FC Delay S (txS) cG PGB MGB Delay WBC tox WBC
(txFC) (Deltx) (txCG) (txPGB) (txMGB)  (Deltx...wbc)  (txWBC)
Cyclophosphamid 750 mg/m? d1, Doxorubicin 50 mg/m? d1, CHOP, age > 60 T11E+00 635E-02  2.16E-01 3.70E-01 2.34E-01 1.69E-04  1.37E-02 1.27E+01
Vincristine 2 mg d1 (CHOPo)
Etoposide 100 mg/m?/d d1-3 (ETo) CHOEP, age > 60 T.10E+00 6.84E-02 2.69E-04 1.97E-02 1.04E+00 3.00E-06  3.50E-02 749E-01
Cyclophosphamid 750 mg/m? d1, Doxorubicin 50 mg/m? d1, CHOP, age <60 T.1ME+00 635E-02  1.94E-01 3.70E-01 1.06E-01 1.30E-04  1.37E-02 1.08E+01
Vincristine 2 mg d1 (CHOPy)
Etoposide 100 mg/m?/d d1-3 (ETy) BEACOPP, CHOEP, age <60  1.10E+00 6.84E-02 191E-04 546E-03 4.02E-01 2.00E-06  3.50E-02 9.30E-02
Procarbazine 100 mg/mz/d, d1-7 (PROC) BEACOPP (escalated) 1.09E+00 1.30E-02 242E-03 1.03E-02 5.19E-02 7.80E-05  1.00E-05 1.00E-05
Cyclophosphamid 650 d1, Doxorubicin 25 mg/m? d1, BEACOPP T11E+00 635E-02 647E-04 3.70E-01 1.48E-02 4.10E-05  1.37E-02 1.08E + 01
Vincristine 2 mg d1 (CD)
Bleomycin 10 mg/m? (VB) BEACOPP (escalated) 132E+00 333E-03 1.20E-02 3.01E-02 1.57E-02 6.00E-06
Cyclophosphamid 1250 mg/m? d1, Doxorubicin 35 mg/m? d1,  BEACOPP escalated T11E+00 635E-02  2.12E-01 3.70E-01 2.27E-01 1.84E-04  1.37E-02 1.09E+01
Vincristine 2 mg d1 (CDesk)
Etoposide 200 mg/m?/d d1-3 (ETesk) BEACOPP escalated 1.10E+00 6.84E-02 1.91E-04 1.18E-02 4.02E-01 3.00E-06  3.50E-02 267E+01
Cyclophosphamid 1400 mg/m?, iv. day 1, Doxorubicin high CHOEP T11E+00 635E-02  1.94E-01 7.26E-01 3.37E-01 1.778-04  1.37E-02 1.10E+01
325 mg/mz/d d1-2, Vincristine 2 mg d1 (CDh)
Etoposide 175 mg/m?/d d1-3 (ETh) high CHOEP T10E+00 6.84E-02  242E-02 4.87E-02 641E-01 8.00E-06  3.50E-02 7.29E+00
Carboplatin, Paclitaxel 225 mg/m2 (CP) Carboplatin, Paclitaxel 1.00E+00 7.71E-02  5.05E-04 6.00E+01 6.00E+01  2.89E-04
Doxorubicin 60 mg/m?, Docetaxel 75 mg/m? (TA) Doxorubicin, Docetaxel 201E+00 724E-02  1.39E-02 2.28E-01 422E+00  3.20E-05
Paclitaxel 225 mg/m?, 3-h-Infusion (Pacli or P225) ETC T05E+00 1.73E-02 246E-01 821E-01 350E+00 707E-04 1.97E-01 2.65E-01
Paclitaxel 175 mg/m2 3-h-Infusion (Pacli or P175) ECT 1.05E+00 1.73E-02  7.00E-05 8.21E-01 350E+00 701E-04 197E-01 2.65E-01
Cyclophosphamid 600 mg/mz, 24-h-Infusion (Cyclo or C600) ECT 1.01E+00 640E-02  1.99E-01 743E-01 1.15E-01 140E-04  2.50E-02 8.99E + 00
Cyclophosphamid 2500 mg/m2, 24-h-Infusion (Cyclo or C2500)  ETC 101E+00 640E-02  1.99E-01 7.58E-01 1.27E-01 143E-04  2.50E-02 131E+01
Epirubicin 90 mg/m2 3-h-Infusion (Epi or E90) ECT 1.99E+00 448E-02 1.80E-05 551E-02 1.80E-01 518E-04  242E-02 3.96E + 00
Epirubicin 150 mg/m? 3-h-Infusion (Epi or E150) ETC 199E+00 448E-02 2.53E-03 156E+00 6.62E+00 158E-02  242E-02 301E+01
Cytarabine 2000 mg/m? (Cyta) ESHAP T00E+00 131E-01  4.64E-01 8.80E-03 8.84E-03 2.32E-03
Cisplatin 25 mg/mz/d (Cisp) ESHAP 1.00E+00 6.32E-02 3.24E-02 1.93E-01 9.60E-03 4.10E-04
Etoposide 40 mg/m2 (ET40) ESHAP 1.10E4+00 6.84E-02 000E+00 1.62E-02 8.65E-02 2.00E-06

Parameters also depend on drug doses and age (<60 vs. >60 years).
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schedules are modeled (scenarios 18, 26—29). If applic-
able, toxicity estimates of drugs or drug combinations
established in the previous section were kept constant.
Comparisons of model and data for selected scenarios can
be found in Figure 5. All other scenarios can be found in
the appendix (Additional file 1: Figures A9-A10).

Quantification of chemotherapy toxicity

As can be seen from Figures 4 and 5 and those of other
scenarios presented in the appendix, our model assump-
tions regarding chemotherapy action and corresponding
toxicity parameters resulted in a reasonable fit of almost
all scenarios considered.

Our toxicity parameters can be interpreted as the
strength of chemotherapy damage on the respective cell
stage. We now discuss and interprete these parameters in
more detail. An overview for different drugs and drug
doses can be found in Table 3.

Sensitivity analysis (Additional file 1: Figures Al, A2)
revealed that among bone marrow toxicities, those esti-
mated for stem cells showed the highest precision in
most scenarios. The LY toxicity and the delay parameters
are sensitive too.

Figure 6 shows the relation between stem cell toxicity
and resulting WBC toxicity. The correlation (Spearman)
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is 0.88, i.e. the stem cell toxicity is a good predictor
of the overall toxicity. Additional file 1: Figure A1l of
the supplement material shows the correlation of MGB
AOC and WBC AOC. In Additional file 1: Figure A12 the
correlation of ANC AOC and WBC AOC is depicted.
Both are highly correlated too (MGB AOC vs. WBC AOC
r=0.94, ANC AOC vs. WBC AOC r =0.92).

For Cyclophosphamide (with or without Doxorubicin
and Vincristin) we estimated a high stem cell toxicity in
agreement with the literature (e.g. [52]). For Etoposide,
we obtained a rather low stem cell toxicity, even for
increased dose levels, and higher toxicity to later cell
stages. This also complies with the literature (e.g. [2]).
Due to the rather small haematotoxic influence of
Vincristine, we abstained from determining a separate
parameter set for Vincristine [52].

Two anthracyclines were considered, Doxorubicine
and Epirubicine. The first one was always applied in
combination with other drugs, namely with Cycloph-
sphamide for therapies of lymphoma diseases and with
Docetaxel for the TA regimen as adjuvant breast cancer
therapy. Therefore, no separate parameter set of Doxor-
ubicine alone could be derived. In contrast, Epirubicine
was applied as single drug in the ETC therapy of breast
cancer patients. This allows us to derive a separate set
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Figure 5 Simulation results of selected complex chemotherapies. \We present results for the two breast cancer therapies, EC-T and ETC with
Filgrastim on days 3-10 (first row). Note that in these schedules, chemotherapeutic drugs differ between cycles: For EC-T the drugs epirubicine
and cyclophosphamide where applied in combination in the first four cycles. The single drug paclitaxel was applied for the last four cycles. For
ETC, the single drug epirubicine was applied in three cycles followed by three cycles of paclitaxel and three cycles of cyclophosphamide. We also
present two therapies of advanced Hodgkin's lymphoma, BEACOPP-21 and BEACOPP escalated with Filgrastim on days 8-15, in which multiple
drugs are administered at different time points per cycle (second row). Dosages can be found in Table 1. Dots represent patient medians, grey
lines represent interquartile range of patient data, squares represent chemotherapy administrations, “+" denote G-CSF-injections.
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of toxicity parameters for two dose levels of Epirubicine
(90 and 150 mg/m?® showing a considerable, dose-
dependend stem cell toxicity in agreement with the
literature [52].

According to our assumption 5, cytotoxic drugs are
assumed to contribute to overall toxicity independently
of each other. This does not apply for the combination
of Carboplatin and Paclitaxel for which it is known that
the combination is less toxic than the single drugs [53].
Therefore, a new set of toxicity parameters was deter-
mined for this drug combination, which indeed resulted
in lower estimates than for Paclitaxel alone (see Table 3).

We assumed that risk groups of haematotoxicity can
be traced back to differences in toxicity parameters
(assumption 7). This assumption worked fine if compar-
ing the toxicity outcomes of young and elderly patients

treated with CHOP or CHOEP chemotherapies. For
both risk groups the agreement of model and data is fine
while corresponding toxicity parameters are higher in
elderly patients.

Validation

Data sets not used for parameter fitting served as
validation scenarios of our model. This requires that the
corresponding chemotherapy parameters were deter-
mined on the basis of other data sets. Scenarios 12, 22,
32 fulfill these requirements. Figure 7 shows the agree-
ment of model and data for validation scenarios.

Model predictions
A key feature of our model is that it allows simulations
of alternative G-CSF schedules and its effects on overall
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Figure 7 Validation scenarios. We compare model results with clinical data from validation scenarios: A: CHOP with Pegfilgrastim 6000 pg on
day 2 (data: [37]), B: ESHAP with Pedfilgrastim on day 5 (data: [45]), C: CHOP with 480 ug Filgrastim on cycle-days 6-12, for elderly patients, data:
[43]. Dots represent patient medians, squares represent the chemotherapy administrations, + are time points with G-CSF-injections.

1
40
days

50 60 70 80

leukotoxicity. We demonstrate this on the basis of the
CHOP regimen for elderly patients: Using toxicity
parameters estimated for CHOP based on the G-CSF
schedules presented above, we modified the starting
time and the duration of Filgrastim treatment. Compar-
isons of schedules can be performed by calculating the
AOC of the simulation results. Two examples of simu-
lated G-CSF schedules are presented in Figure 8. The
regimen day 2-8 results in clearly inferior AOC than
the current standard (G-CSF at day 3-12). In contrast,
for the schedule day 5-13 we predict a better AOC
than the current standard even though the number of
injections is reduced.

We calculated the WBC AOC for 6 cycles of the
CHOP-14 regimen, administered to elderly patients, in
dependence on different Filgrastim doses and injection
numbers starting on day seven (Figure 9). Best results
are predicted, if Filgrastim injections are applied from
day seven up to the end of the therapy cycle (see also
[54]). Increasing G-CSF dose results only in marginal
improvements.

Discussion

Conventional cytotoxic chemotherapy plays a major role
in cancer therapy. Development of intensified regimen
improved the outcome of several diseases [39-41,55,56]

but is limited by toxic side effects. A major, frequently
dose-limiting side effect is granulotoxicity which is rou-
tinely treated with the growth factor G-CSF. A variety of
pharmaceutical derivatives are available, which differ
greatly in pharmacokinetic and -dynamic properties.
Furthermore, outcome of growth factor treatment
depends on many factors such as chemotherapy drugs
used, drug doses, growth-factor derivatives and indi-
vidual risk factors [57,58]. Due to this variety of variable
therapy parameters, identification of optimal growth-
factor schedules cannot be performed solely on the basis
of clinical trials.

We recently developed a model of the pharmacoki-
netic and —dynamic action of the G-CSF derivatives
Filgrastim and Pegfilgrastim under conventional poly-
chemotherapy [25]. We also showed that the model suc-
cessfully predicts the outcome of alternative G-CSF
schedules [54]. However, so far only a single simple
chemotherapy schedule was considered for which the
data base was most comprehensive, namely the CHOP
regimen used to treat high-grade non-Hodgkin’s lymph-
oma diseases. The major purpose of the present work is
to extend the applicability of our model considering a
broad range of conventional chemotherapy schedules.
This requires the construction of a comprehensive model
of chemotherapy action on the granulopoietic system.
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Figure 8 Analysis of CHOP with Filgrastim (age > 60 years).
Simulated cell counts for CHOP-14, with Filgrastim 480 ug on days
5-13 (black line), days 2-8 (grey line) and days 3-12. Filgrastim at
day 2-8 results in particularly low leukocyte counts. Better results are
obtained by the Filgrastim application on days 3-12 or days 5-13.

Making a number of biologically plausible assumptions
and translating them into differential equations allowed us
to predict granulocyte and leukocyte dynamics of virtu-
ally all chemotherapy scenarios with published time
series data of granulocytes and leukocytes (33 scenarios
comprising 10 different chemotherapies). Modelling of
chemotherapies essentially requires estimation of dose,
drug and cell-stage specific toxicity parameters. In
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consequence, our model can easily be applied to novel
chemotherapy scenarios for which time series data are
available allowing estimation of these parameters. We
showed how the model can be used to systematically
explore the outcomes of alternative G-CSF schedules
for a chemotherapy for which toxicity parameters are
available.

Ongoing efforts to model haematopoiesis under chemo-
therapy and growth-factor applications are considerable
[59-84]. Most newer models consider G-CSF as the major
stimulant of granulopoiesis, and account for corre-
sponding intracellular mechanisms, as well as for recep-
tor binding kinetics and endocytic ligand depletion
[62,64,85,86]. Shochat et al. [63], and Foley et al. [59],
proposed models considering both, stimulating effects of
G-CSF as well as the cell depleting effects of chemother-
apy. However, published models usually consider selected
chemotherapy regimens. So far it has not been shown
that these model concepts are valid for a broad range of
chemotherapies and schedules [59,63]. First attempts to
predict the performance of alternative G-CSF schedules
on the basis of these models were performed [87].

In order to construct a comprehensive model of
chemotherapy action on granulopoiesis, we made the
following assumptions and translated them into differ-
ential equations:

Delayed toxicity
It is assumed that the cell depleting effect of chemo-
therapy starts immediately after drug application. The

dose (1g)

1 2 3 4
injections

CHOP14, age>60, WBCAOQC, Filgrastim

180

Figure 9 Modified Filgrastim schedules for CHOP-14 in elderly patients. Predicted WBC AOC (applying a threshold of 4000/ul, calculated
over 84 days, unit of AOC is 1000/ul*d) under CHOP-14 with Filgrastim: G-CSF injections start at day 7 in each cycle. We modified the number of
Filgrastim injections and its doses. The color scale on the right corresponds to AOC values.
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maximum is reached after some time delay. This
assumption is motivated by available time series data
of murine bone marrow cellularity after a variety of
cytotoxic drug applications often showing a maximum
response to chemotherapy treatment at later time points
even if the underlying drugs are quickly metabolized
in vivo [52]. This phenomenon can be explained for
example by delayed apoptosis of cells after damage, e.g.
at time when cells entering their next cell cycle.

Cell type specific toxicity

It is assumed that chemotherapy acts cell type specific
which is supported by numerous experimental data
[52]. This implies that toxicity parameters are assumed
to be dose, drug and cell-stage specific. Most of our
data sets comprise leukocyte counts instead of neutro-
phil profiles. To account for this fact, we accompanied
our cell-kinetic model of granulopoiesis by a simple
model of lymphotoxicity. This is motivated by differing
dynamics of granulocytes and lymphocytes observed in
chemotherapy-treated mice [88]. Further clinical evi-
dence is provided by a trial with breast cancer patients
undergoing polychemotherapy. In this study, sup-
pressed B- and T-cell populations were still present at
times when the absolute neutrophil count had returned
to normal or even higher than normal values [89].
These findings are in good agreement with the results
of our parameter estimation (prolonged toxicity for
lymphocytes). However, to precisely quantify lympho-
cyte toxicity profiles, more detailed differential blood
counts of patients undergoing chemotherapy would be
required than currently available.

First cycle effect

There is some evidence that the first application of che-
motherapeutic drugs results in higher toxicity [81,90-92].
We modelled this effect in a phenomenologic way by
multiplying toxicity parameters with a factor > 1 at time of
first application of chemotherapy.

Toxicity of drug combinations

To estimate the overall toxicity of a drug combination,
we achieved satisfying results by adding the toxicity
parameters of single substances or groups of substances.
However, there is evidence that some drug combinations
interact in a paradoxical way, resulting in an overall
toxicity that is smaller than the toxicity of either one of
the single agents. For example, thrombocytopenia tends
to be significantly less pronounced in patients treated
with carboplatin when combined with paclitaxel (which
by itself causes thrombocytopenia, too) [53,93,94]. The
reason for the platelet sparing effect of this combination
is still unknown. Therefore, it is possible that the toxicity
of a drug combination cannot be simply derived by adding
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the toxicity parameters of their components determined
in previous studies. In these cases, new parameter fittings
are required.

Action of chemotherapy on granulopoiesis

We modeled chemotherapy to act cytotoxic, rather
than cytostatic. As result, cells in our model were
removed from the compartments directly, whereas cell
kinetic properties (amplification and transit time) are
not affected. However, it is well known that many drugs
act cytostatically, for example by disrupting cellular
metabolism or DNA synthesis. Hence, onset and severity
of chemotherapy associated myelotoxicity depend on
the cell cycle. However, in our modeling framework, it
is neither possible nor necessary to distinguish between
cytostatic and cytotoxic effects since both result in
reduced cell numbers within a relatively small time
frame. Closely meshed time series data of bone marrow
cell stages would be required for a more detailed model-
ling of this issue which however cannot be established
for humans.

Modelling risk groups

Numerous clinical risk factors regarding toxic response
of patients are known such as age, sex and general health
status [49]. We hypothesize that this heterogeneity can be
traced back to different sets of toxicity parameters rather
than cell kinetic parameters of granulopoiesis [28,95]. This
assumption allowed us for example to stratify patients into
risk groups described by risk-specific toxicity parameters
[58]. So far, differences between younger and elderly pa-
tients could be successfully explained by higher toxicity
parameters as can be seen on our toxicity parameters for
etoposide and the combination of cyclophosphamide,
doxorubicine and vincristine applied in CHOP-like
chemotherapy regimens. For both risk groups, corre-
sponding parameter estimates resulted in good explan-
ation of clinical data.

Overall, our model assumptions proved to be feasible
for modelling almost all published time series data after
a large variety of chemotherapies and schedules.

A few scenarios, for which complete sets of toxicity
parameters are available, were used to successfully validate
the model. We qualitatively compared derived toxicity
parameters between schedules and received clinically
plausible results: We estimated for example that Bleomycin
(10 mg/mz), Procarbacine (100 mg/mz) and low dose
Etoposide (100 mg/m?) have low granulotoxicity according
to clinical experiences. In contrast, BEACOPP escalated
and high-CHOEP are among the most toxic therapies
in agreement with high percentages of grade 3 and 4
leucopoenia observed in these patients [43,49].

We observed that stem cell toxicities of drugs or drug
combinations correlate well with resulting leukocyte
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toxicity (r=0.88, Figure 6) indicating that the parameter
of stem cell toxicity is the most sensitive of our parameters
characterizing chemotherapy toxicity. In contrast, the
parameters for CG, PGB and MGB are less well charac-
terized, in general. For these three cell stages, we have
to acknowledge that higher toxicity at later stages can
somewhat be compensated with lower toxicity at earlier
cell stages and vice versa.

Finally, we demonstrated how the model could be used
to make clinically relevant predictions regarding the out-
come of alternative growth-factor schedules after chemo-
therapy. This requires that the toxicity parameters of the
considered therapy are available. Then, the model can be
used to simulate and compare alternative growth-factor
schedules. Since hard clinical endpoints such as febrile
neutropenia, use of antibiotics or length of stay in hospital
cannot be addressed by our modelling, it was necessary
to use surrogate markers in order to compare efficacy of
G-CSF prophylaxis between schedules. We used the area
between model curve and the line of 2.000/ul neutrophils
or 4.000/pl leukocytes for this purpose. Other measures of
relative toxicity are discussed elsewhere [95].

Finally, we have to acknowledge that the present model
only allows median predictions while critical time-courses
are clinically more relevant and therapy-limiting. Although
this aspect is not yet covered, there is a clear perspective
towards modelling individual data either by fitting param-
eter sets for patient risk groups or by assuming distribu-
tions of model parameters. Accordingly, we plan to extend
our model and apply it in order to support improvement
and individualisation of G-CSF therapies. Since we have
the clear intention to apply our model in clinical contexts,
we also plan public release of our model software in the
near future.

Conclusion

We successfully developed a bio-mathematical model of
granulopiesis under chemotherapy and applications of
the G-CSF derivatives Filgrastim and Pegfilgrastim. Our
model is able to simulate neutrophil and leukocyte
profiles in the peripheral blood under various chemo-
therapies, with and without Filgrastim or Pegfilgrastim.
The model consistently explains available clinical data,
and can be used to predict the performance of alterna-
tive G-CSF schedules.

Additional file

Additional file 1: Modelling chemotherapy effects on
granulopoiesis: Supplement Material. The file GraPaper-2-Appendix.pdf
contains sensitivity analysis and further simulation results.
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