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Abstract

Due to differential treatment responses of patients to pharmacotherapy, drug development

and practice in medicine are concerned with personalized medicine, which includes identify-

ing subgroups of population that exhibit differential treatment effect. For time–to–event data,

available methods only focus on detecting and testing treatment–by–covariate interactions

and may not consider multiplicity. In this work, we introduce the Bayesian credible sub-

groups approach for time–to–event endpoints. It provides two bounding subgroups for the

true benefiting subgroup: one which is likely to be contained by the benefiting subgroup and

one which is likely to contain the benefiting subgroup. A personalized treatment effect is esti-

mated by two common measures of survival time: the hazard ratio and restricted mean sur-

vival time. We apply the method to identify benefiting subgroups in a case study of prostate

carcinoma patients and a simulated large clinical dataset.

1 Introduction

A goal of clinical trials is to evaluate primary endpoints that describe comprehensive character-

istics of the disease under study and allow for comparisons of treatments in an entire popula-

tion. However, trial populations are often heterogeneous due to different demographics,

medical history or genetic makeup among patients. In some cases, the efficacy of marketed

treatments could not be replicated in follow–up clinical trials [1]. The inability to replicate

study results in follow-up trials may be caused by different proportions of benefiting and non–

benefiting subgroups of patients from experimental treatment compared to control. Recently,

regulators and health technology assessment agencies worldwide have had a growing interest

in identifying subgroups of patients who benefit from a treatment. Several methods to find

such subgroups in clinical trials have been proposed in the literature [2–4].

Our study is motivated by a practical need for identifying subgroups of patients with

improved time-to-event or survival outcomes. Many tree–based and model–based methods

have been developed for time–to–event subgroup analysis [5–8]. Ballarini et al. [9] recently

introduced a multiple regression model with a Lasso–type penalty to estimate benefiting
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subgroups based on estimates of the personalized treatment effect (PTE) and its post–selection

confidence intervals. Traditionally, log–rank tests and Cox proportional hazard models have

been used to compare treatment effects on an entire population. For example, researchers can

identify subgroups with an overall positive treatment effect such as hazard ratio (HR) <1.

However, this approach does not identify a benefiting subgroup in which all members defined

by a set of observed baseline characteristics have a positive treatment effect. Likewise, the aver-

age treatment effect (ATE) is the average over the entire population of individual treatment

effects, and it does not accurately represent each patient’s treatment effect.

Recently, the personalized treatment effects (PTEs) have been considered as a suitable alter-

native to the ATE for determining subpopulations of interest that benefit from a given treat-

ment. Researchers have been focusing on estimating PTE at each predictive covariate point,

that is, a set of baseline characteristics that predicts the patient’s response to a particular treat-

ment. In a regression model, predictive covariates are incorporated in treatment–covariate

interaction terms, and a hypothesis test of a null PTE is considered for each predictive covari-

ate point. Two main issues with this approach are high multiplicity and low power to detect a

treatment–covariate interaction [10–13]. In addition to these issues, Pocock et al. [3] points

out that biological plausibility should be assessed along with consideration of the strength of

evidence for heterogeneity in the treatment effect.

In this paper, we develop a Bayesian approach for subgroup analysis with time–to–event

data based on recent advances in subgroup identification methodology proposed by Schnell

et al. [14–16]. In a Bayesian framework, Schnell et al. [14] provide a two-step procedure to esti-

mate a benefiting subgroup: (1) fit a regression model, and (2) construct bounding subgroups

based on the posterior distribution of PTEs. Compared to previous methods, Schnell et al.’s

method has several advantages, such as controlling for multiplicity and easily making statistical

inferences from the full posterior distribution of the PTEs. This construction furnishes a pair

of credible subgroups: one that is likely to be contained by the benefiting subgroup and one

that is likely to contain the benefiting subgroup. The corresponding inferential statement is

that every type of patient in one bounding subgroup benefits, and no type of patient outside

the other subgroup benefits. These inferences are simultaneous [14] in contrast to non-simul-

taneous inferences available from tree-based methods. Here the simultaneous inferences mean

that all covariate points corresponding to a specific subpopulation simultaneously have a treat-

ment effect exceeding a specified threshold.

Inspired by the two–step procedure, our approach to identify benefiting subgroups for

time–to–event endpoints is to define a Cox proportional hazard model and make statistical

inferences from the full posterior distribution of the HR between two arms. In a randomized

clinical trial with a time-to-event endpoint, HR is the common efficacy measure which repre-

sents the relative difference between two survival curves based on the proportional hazard

(PH) assumption. When the PH assumption is violated, the HR does not appropriately repre-

sent the PTEs. An alternative approach is the restricted mean survival time (RMST) which is

the area under the survival curve up to a particular time point. As shown in previous studies

[17, 18], RMST is a robust and clinically interpretable measure of the survival time distribution

without PH assumption. Moreover, Uno et al. [19, 20] advocate for using RMST to estimate

treatment effects as an alternative to the HR. In our approach, we consider the difference in

RMST (RMSTd) between two randomized arms at a certain follow–up time point as the PTEs.

Our methods are also tested on two time–to–event datasets: One from a trial in patients

with prostate cancer, and another from a simulated Merck Sharp & Dohme, London, UK

(MSD) clinical trial in patients with myocardial infarctions. The first dataset is publicly avail-

able [21] and has been analyzed in Ballarini et al.’s study [9]. Our findings are similar to those

found by Ballarini et al. [9], but, in addition, our methods also identify the non–benefiting
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subgroups to the treatment. The second dataset is a simulated data based on a randomized and

placebo-controlled study on the effect of vorapaxar in addition with aspirin for secondary pre-

vention of thrombotic events. Scirica et al. [22] applied a Cox proportional hazards model for

testing heterogeneous HRs across prespecified subgroups of interest. Our primary interest is

searching for benefiting subgroups from vorapaxar treatment, without prespecification of sub-

groups for testing but only based on covariates which may have predictive value.

Our proposed method is an extension of Schnell et al. [14] to time–to–event endpoints. It is

important for practical applications and widens significantly application area of this work. The

most important property of our method is handling multiplicity, because it enables control the

familywise Type I error rate and thus explicitly controls the probability of making any spurious

claims of subgroup benefits. Our method is amenable to the confirmatory setting, rather than

the methods that are focused on potential benefiting group discovery. For the discovery, the

multiplicity issues are not critical as it would be addressed in subsequent confirmatory analy-

ses. Therefore, these two approaches are complementary to each other.

The organization of the rest of the paper is as follows: In Section 2 we present the Bayesian

credible subgroup method for time–to–event endpoint with Section 2.1 introducing the nota-

tion and PTEs, defining the log HR and the difference in RMST as PTEs in Section 2.2 and 2.3

respectively. A simulation study is provided in Section 3 which implements our Bayesian cred-

ible subgroup with these two difference PTEs. Finally, a detailed analysis of two clinical data-

sets are presented in Section 4 and 5, while our conclusions are discussed in Section 6. This

paper also has accompanying supplementary material containing details simulation study on

the performance of HR and difference in RMST.

2 Methods

For the purpose of identifying a benefiting subgroup, traditional approaches begin with a test

for treatment–covariate interactions [3, 23]. These approaches have well–known limitations

including low power due to the smaller sample size within subgroups and multiplicity adjust-

ment for a larger number of subgroups under investigation. More importantly, results of inter-

action tests do not directly answer the question of which types of patients (covariates profiles)

benefit from treatment. Rejecting the no interaction hypothesis detects treatment heterogene-

ity, but it does not provide you with the information of which covariate points correspond to

positive conditional average treatment effect. To overcome these difficulties, in a Bayesian

framework, we introduce the method of credible subgroups to simultaneously identify which

types of patients benefit from treatment.

2.1 Notation and personalized treatment effect (PTE)

For an event time T, let x be a p × 1 vector of prognostic covariates, and z be a q × 1 vector of

predictive covariates. Some covariates may appear in both x and z, and intercept terms may be

included. Suppose that T is only partially observed during an experiment due to censoring,

such as right censoring denoted by a random variable C. We assume that T is independent of

C given x. Let Y = min(T, C) and κ be a failure indicator, i.e. κ = 1 for T� C and 0 otherwise

(See S1 File Moreover, we consider the time–to–event data to consist of n subjects who were

randomly assigned to one of two treatments, i.e. θ = {0, 1}, and only predictive covariates z
interact with treatment indicator θ in our model fit. In this scenario, the observed data consist

of n independent realizations of {(Yi, xi, zi, κi, θi)} for i = 1, . . ., n.

For a two–arm study with censoring, a common non–parametric approach to compare the

survival distributions between two treatment groups is the log rank test. This test is based on a

series of 2 × 2 contingency tables constructed at each observed failure time. A semi–parametric
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approach using the Cox regression model is commonly applied to investigate the effect of

covariates on the HR. These two approaches measure the average treatment effect on the entire

study population, which cannot be used to identify which patient benefits from a treatment.

Personalized treatment effects (PTEs) are becoming widely used to determine subgroups of

patients who most benefit from a treatment. We denote Δ as a PTE for a subject with covariate

vectors xi and zi, and precisely define Δ for the log HR and RMST differences as measures for

PTE in the following sections.

2.2 The log HR as a PTE

The Cox model, which is commonly used for the analysis of time–to–event data, has the fol-

lowing form:

lðtjxi; zi; yiÞ ¼ l0ðtÞ exp ðx0ibþ yiz0igÞ; ð1Þ

where λ(t|xi, zi, θi) is the hazard function at time t for the ith subject with covariates xi and zi,

λ0(t) is the unspecified baseline hazard function, and β and γ are p × 1 and q × 1 vectors of

regression coefficients, respectively. Here x0 denotes the transpose of vector x. We include the

interaction terms between z and θ in the model, and the PTE for a patient with covariate z is

DHðziÞ ¼
lðtjxi; zi; yi ¼ 1Þ

lðtjxi; zi; yi ¼ 0Þ
¼ exp ðz0igÞ; ð2Þ

which is a ratio between the hazards of a patient with treatment θ = 1 and θ = 0.

If a given element of γ is positive, then higher values of the corresponding element of z
would indicate that the subject has a higher hazard for treatment θi = 1 or shorter survival than

the subject with treatment θi = 0. Therefore, to determine the characteristics of subjects who

benefit from treatment θi = 1, we set a predetermined threshold of clinical significance 0< δH

� 1, and search for the points zi such that

DHðziÞ ¼ exp ðz0igÞ < dH: ð3Þ

Alternatively,

logDHðziÞ ¼ z0ig < logdH; ð4Þ

where logΔH(zi) is the log HR evaluated at points zi. In subgroup analysis for time-to-event

data, we want to find a subgroup in which every covariate point for a subject has a conditional

log HR less than log δH. This approach is distinguished from finding a subgroup whose overall

log HR is less than log δH in the sense that such subgroup can contain members with higher

log HR than log δH.

From Eq (2), the HR from the Cox regression model between two subjects is constant over

time. This assumption often fails in time-to-event data. For example, non-proportional hazard

is present in immuno-oncology trials due to delayed treatment effect and/or functional cure.

When the proportional hazard assumption does not hold, the ΔH(zi) may no longer provide

suitable PTE for a subject. An alternative approach is to use the RMST which is a robust mea-

sure of the survival time distribution without relying on the proportional hazard (PH) assump-

tion. We present the RMST in the next section and describe how it may be used to define the

PTE for a subject.
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2.3 Difference in restricted mean survival times (RMSTd) as a measure of

PTE

The RMST ψ of a random variable failure time T is the mean of the time–to–event z = min(T,

ν) limited to some cutoff time point ν> 0. In other words, the RMST is the area under the sur-

vival curve S(t) between t = 0 to t = ν and can be expressed as

c ¼ EðzÞ ¼
Z n

0

SðtÞ dt; ð5Þ

In a randomized two–arm clinical trial, let S(t|θ = 1) and S(t|θ = 0) be the survival functions

for the treatment θ = 1 and θ = 0 respectively. The RMSTd between two arms from t = 0 to

t = ν is defined as

DRd ¼ cy¼1 � cy¼0 ¼

Z n

0

½Sðtjy ¼ 1Þ � Sðtjy ¼ 0Þ� dt; ð6Þ

which is the difference in area between the two survival curves. Alternatively, one can also

define the ratio of RMST between two arms such as DRr ¼

R n

0
Sðtjy¼1Þ dt

R n

0
Sðtjy¼0Þ dt

.

In this paper, we use the ΔRd as the PTE for a subject, and estimate the two survival func-

tions S(t|θ = 0) and S(t|θ = 1) in Eq 6 on the grid of subgroup–defining covariates in order to

compute the ΔRd. A common approach is to obtain a Kaplan–Meier estimator, but that would

not take the covariates into account. Thus we employ the conventional Cox proportional haz-

ard model to estimate these two survival functions. Note that we could still employ fixes to PH

violations (e.g., time-dependent covariates or effects) without having to worry about reporting

time-dependent hazard ratios.

Moreover, if T is years to death and S(t|θ = 1)>S(t|θ = 0) for t 2 [0, ν], the interpretation of

ΔRd is that a subject has the ν-year life expectancy higher in treatment θ = 1 than θ = 0, so this

subject could be benefiting from treatment θ = 1. Similar to the HR, to identify benefiting sub-

jects from treatment θ = 1, we set ΔRd to be greater than some predetermined threshold of clin-

ical significance δR> 0. Compared to ΔH, the advantage of ΔRd would not rely on the PH

assumption. However, if it were to hold, possible questions of interest would be “is there rela-

tionship between the two PTE measurements?” and “if the investigators knows δH, what is the

corresponding δR (or vice versa)?” To address these questions, we show in S1 File that in

parametric settings and when δH = 1 and δR = 0, ΔH and ΔRd are the same for determining

whether a patient benefits from the treatment. Thus we use these predetermined significance

values in our simulation study (Section 3). In the following section, we show how these PTE

measurements are related to subgroup identification problem in the Bayesian framework.

2.4 Bayesian credible subgroups for time-to-event data

There are numerous non-parametric and parametric methods for PTEs to identify who bene-

fits from a treatment given their baseline characteristics. Among them, Berger et al. [23]

proposed a Bayesian model selection using tree–based priors that provide the posterior distri-

bution for use in statistical inference. Recently, Ballarini et al. [9] developed the predicted indi-

vidual treatment effect (PITE) using a multiple regression framework with a Lasso–type

penalty for model selection, and provided confidence intervals for the PTEs. Subgroup identi-

fication will be evaluated based on these confidence intervals. While the inferences from tree–

based methods are not simultaneous, the PITE methods does not address the multiplicity

issue. To overcome these limitations, Schnell et al. [14] proposed a Bayesian credible
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subgroups methods for continuous endpoints which addressed both simultaneous inference

and multiplicity. In this paper, we extend their approach to survival endpoints by using two

summaries commonly used in clinical trials: the log HR and RMSTd. In the following sections,

we first present the Bayesian credible subgroups methods, and introduce a Bayesian approach

to obtain the inference for the time–to–event PTEs. Then we construct simultaneous credible

bands from those inferences.

2.4.1 Bayesian credible subgroups. A goal of the Bayesian credible subgroups method

[14] is to estimate a set of subject baseline covariate points for which a subject would benefit

from the treatment according to a PTE. More precisely, let Z be a covariate space, this

approach searches for the set of covariate points BH ¼ fz 2 Z : DHðzÞ < log ðdHÞg when the

PTE is measured as the log HR, or BRd ¼ fz 2 Z : DRdðzÞ > dRg for the RMSTd. In a Bayesian

framework, a common estimator for B includes the points z 2 Z whose posterior probability

of having the log HR less than log(δH) (or greater than δR for ΔRd) given observed data is

greater than (1 − α), where 1 − α is a credible level, and can be expressed as

B̂H;a ¼ fz 2 Z : PðDHðzÞ < dH j DataÞ > 1 � ag ð7Þ

for the PTE of log HR or

B̂Rd;a ¼ fz 2 Z : PðDRdðzÞ > dR j DataÞ > 1 � ag ð8Þ

for the PTE of RMSTd. To control for multiplicity, the credible subgroup pair (D, S)

consists of an exclusive credible subgroup D and inclusive credible subgroup S such that

P(D� B� S|Data)>1 − α. This means that with posterior probability (1 − α), D contains only

covariate points z for which the types of subjects benefit from the treatment, while S includes

all types of subjects who benefit.

Fig 1 illustrates the covariate space Z divided into three regions. The region B enclosed by

dashed circle represents the true benefiting subgroup which we wish to estimate by a pair (D,

S). Here the green region D includes the types of patients who have evidence of benefit whereas

patients in the red region SC have no benefit. Finally, the blue region is a region of uncertainty

that needs more information.

The Bayesian credible subgroups method described above is a two-step procedure: (1)

define a model, fit a regression and obtain the marginal posterior of the PTE onto the given

covariates; and (2) compute the bounds and obtain a pair (D, S). In the first step, we fit a Cox

regression model in a Bayesian framework to get the marginal posterior of coefficients of pre-

dictive covariates that interact with treatment choice (in Section 2.4.2). In the second step, we

describe the method to compute the credible subgroups (in Section 2.4.3).

2.4.2 Bayesian estimation in time–to–event analysis. Several methods have been

proposed for Bayesian analysis of the Cox proportional hazards model with right censored

data [24–26]. In this section, we review the commonly used gamma process prior for the

Cox regression model. In Eq 1, we need to specify priors on β = (β0, γ0)0 and the baseline haz-

ard function λ0(t). A typical prior for β is a Np+q(μ0, S0) which is a p + q-variate normal

distribution with mean vector μ0 and covariate S0. We choose a nonparametric gamma pro-

cess prior on the cumulative baseline hazard. This prior partitions the observed survival time

into intervals, such as 0< s1 < s2 < . . .< sJ where sJ> yi for i = 1, . . ., n. Thus, we have J dis-

joint intervals. The observed data D ¼ fx; z;Rj;Mj for j ¼ 1; . . . ; Jg will be grouped within

these intervals where Rj and Mj are the risk set and failure set of the jth interval (sj−1, sj],
respectively. Let hj = H0(sj) − H0(sj−1) be the increment in the cumulative baseline hazard

Credible subgroups for benefiting subgroups identification with time-to-event data
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H0ðtÞ ¼
R t

0
l0ðkÞ dk in the jth interval. Thus, the hj’s are independent increments in disjoint

intervals and

hj � Gðaj � aj� 1; bÞ; ð9Þ

where Gða; bÞ denote the gamma distribution with shape parameter α> 0 and scale parameter

b> 0, such that αj = bH(sj) with an increasing function H(sj). H and b are hyperparameter for

hj, and Hb is a specified parametric cumulative hazard function evaluable at the endpoints of

the time intervals, and the scalar b is a weight about the mean. Therefore, the observed likeli-

hood function is

Lðβ;h j DÞ /
YJ

j¼1

lj; ð10Þ

where lj ¼ exp ½� hj

P
k2RjMj

exp ðx0kβÞ�
Q

m2Mj
½1 � exp ð� hj exp ðx0mβÞÞ�, and x is a combined

vector of ðx0i; yz
0
iÞ
0
.

Fig 1. Illustration of credible subgroups. B contains true type of patients who benefit (enclosed by dashed line) while

D includes only type of patients who benefit (green). Moreover, type of patients in S\D require more information

(blue), and those in SC have no benefit (red).

https://doi.org/10.1371/journal.pone.0229336.g001
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From the prior distribution for β and h = (h1, . . ., hJ)
0 described above, the joint posterior of

β and h is

P β; h j Dð Þ /
YJ

j¼1

ljh
aj � aj� 1 � 1

j exp ð� bhjÞ
h i

exp
� 1

2
ðβ � m0ÞS

� 1

0
ðβ � m0Þ

� �

: ð11Þ

From Eq 11, the conditional distribution of βi given h, and β(−i) denoted the β vector with-

out the ith component is

P bi j β
ð� iÞ; h;D

� �
/
YJ

j¼1

lj exp
� 1

2
ðβ � m0ÞS

� 1

0
ðβ � m0Þ

� �

: ð12Þ

where i = 1, . . ., p + q. Similarly, the conditional distribution of hj is

Pðhj j h
ð� jÞ
; β;DÞ / haj � aj� 1 � 1

j exp � hj

X

k2Rj Mj

exp ðx0kβÞ þ b

0

@

1

A

2

4

3

5: ð13Þ

The posterior distribution of the parameter of interest can be obtained from these full con-

ditional distributions in Eqs 12 and 13 by Gibbs sampling in a straightforward way. Based on

the posterior of coefficients of predictive covariates, we can obtain the posterior of ΔH(z). For

ΔRd(x, z), we first compute the posterior distribution for survival function S(t) = exp(−H0(t)
exp(x0 β)) for each treatment and then obtain the difference between two treatments (See S1

File for more details of constructing the posterior of ΔH(Z) and ΔRd(x, Z)). We implement our

proposed method from an R package spBayesSurv provided by Zhou et.al. [27]. For ease of

notation, we denote Δ(z) for a general PTE and proceed to construct credible subgroups in the

next section. Remark: We presented Bayesian estimation of the Cox regression model by

using the gamma process prior. However, there are several advanced Markov chain Monte

Carlo sampling techniques that were proposed that could be used in this context. They include

slice sampling [28] and Hamiltonian Monte Carlo [29]. There are also associated software

packages available, e.g. Stan [30], or the R packages such as MfUSampler [31], and sns [32]

which provide a wider range of model specifications and which can be used for Bayesian sur-

vival analysis. A notable example represents the R package BSGW [33].

2.4.3 Credible subgroups estimation. A goal of constructing credible subgroups based

on the posterior of Δ(z) is to control the multiplicity in testing Δ(z) at every covariate point

and to provide two credible subgroups (D, S) which bound the benefiting subgroup B. These

simultaneous credible bands over the covariate space Z can be constructed as

DðzÞ 2 D̂ðzÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WaVarðDðzÞÞ

p
; ð14Þ

where Wα is the 1 − α quantile of the distribution of W ¼ sup
z2Z

ðDðzÞ� D̂ðzÞÞ2

VarðDðzÞÞ and D̂ðzÞ is the poste-

rior mean of Δ(z). Therefore, in a case of Δ(z)� ΔH(z), the exclusive credible subgroup D is

given by

D ¼ fz 2 Z : D̂HðzÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WaVarðDðzÞÞ

p
< dHg ð15Þ

and inclusive credible subgroup S is

S ¼ fz 2 Z : D̂HðzÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WaVarðDðzÞÞ

p
� dHg: ð16Þ

Note that Δ(z) was sampled from the exact posterior as described in previous section,

and then we used Gaussian approximation to obtain the simultaneous credible bands in
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Eqs 15 and 16. In this paper, we construct the asymptotic credible bands since the posterior

distributions for representative covariate points in our applications were approximately Gauss-

ian (See S1 File). Moreover, Schnell et al. [15] proposed a quantile–based simultaneous credi-

ble band when Δ(z) is non–Gaussian.

3 Simulation study

In this section, we conduct extensive simulation studies to evaluate the performance of Bayes-

ian credible subgroups in simulated time–to–event data under the PH and non PH

assumptions.

3.1 Simulation study under proportional hazard assumption

For the Cox proportional hazard model, we assume that the hazard function for the ith individ-

ual (i = 1, . . ., n) is

liðtÞ ¼ l0ðtÞ exp ðx0ibþ yiz0igÞ; ð17Þ

where xi = (xi1, xi2)0 and zi = (1, zi1, zi2)0 are the vectors of prognostic and predictive covariates

respectively. Then β = (β1, β2)0 and γ = (γ1, γ2, γ3)0 are vector of coefficients of xi and zi, respec-

tively. Moreover, we assume a Weibull baseline hazard, i.e. λ0(t) = λν(λt)ν−1 where λ and ν are

the scale and shape parameters respectively. Then the inverse of the cumulative hazard func-

tion is H� 1
0
ðtÞ ¼ ðl� 1tÞ1=n. If U is uniformly distributed on [0, 1], the survival time Ti can be

generated as

Ti ¼ H� 1
0
�

log ðUÞ
exp ðx0ibþ yiz0igÞ

� �

¼ �
log ðUÞ

l exp ðx0ibþ yiz0igÞ

� �1=n

: ð18Þ

Suppose that Ci are the censoring times, drawn from an exponential distribution Exp(a).

Due to censoring, we observe Yi = min(Ti, Ci) and censoring indicators κi. For parameters of

the simulation time–to–event data, we set λ = 0.05 and ν = 1.1 for a Weibull baseline hazard

and a rate a = 0.02 for the censoring time. Furthermore, we let xi1 = zi1 = {0, 1} with equal

probability, and xi2 = zi2 be uniformly distributed on the interval (−3, 3), and we only consider

two arms, i.e. θi = {0, 1}.

Then we perform diagnostic test for credible subgroups with different sample sizes (n = 50,

100, 500, 1000) and at different credible levels (0.4, 0.6, 0.8, 0.95). Finally, we consider three

cases of β with different values of γ:

1. The prognostic features have no effect β = (0, 0), and we set γ = (0, 0, 0), (0.1, 0.1, 0.1), (1, 1,

1), (1, −1, 3),

2. The prognostic features have moderate effect β = (0.2, 0.2), and we set γ = (1, 1, 1),

3. The prognostic features have higher effect β = (1, −2), and we set γ = (1, 0.1, 1).

Following the same criteria in Schnell et al.’s simulation study [14], we report five metrics:

(1) total coverage measures the frequency with which D� B� S for some fixed value z; (2) the

pair size measures the proportion of covariate points in the uncertainty region S\D; (3) speci-

ficity and sensitivity of D measures how well the credible subgroup D aligns with benefiting

subgroup B; and (4) mean squared error (MSE) of the treatment effects compares the esti-

mated treatment effects to the true values.

As shown in S1 File, the PTEs measured by the log HR and RMSTd yield the same result

when δH = 1 and δR = 0. We provide three simulation studies as follows:
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• Simulation 1: run using the same simulation time–to–event data for log HR and RMSTd

when δH = 1 and δR = 0.

• Simulation 2: run only for log HR at different thresholds δH = {0.2, 0.5, 1, 2}.

• Simulation 3: only for the RMSTd at δR = {−1, 0, 1}.

For each simulation study, we simulate 1000 data sets, and for each data set, we use 1000

posterior draws kept after 500 burn-in iterations. Table 1 reports the average summary statis-

tics for Simulation 1 at an 80% credible level. When the effect sizes are relatively small, the

benefiting subgroup is empty, and sensitivity of D, which is the proportion of the benefiting

subgroup B included in the exclusive credible subgroup D, is not calculable. This is represented

with ‘NaN’ in the table. Overall, we find that the total coverage is always greater than 80% for

both PTE approaches. When the sample size and/or effective size are increasing, the credible

size is decreasing except when β’s are zero. The RMSTd approach has larger credible size than

log HR for n = 50 and 100 but smaller or similar credible size for larger n. Moreover, both PTE

approaches have similar specificity of D, which is the proportion of the non–benefiting sub-

group B not included in the exclusive credible subgroup D. Compared to the RMSTd

approach, the log HR tends to have higher sensitivity of D for a small sample size (n = 50) but

low sensitivity for a large sample size (n = 1000). Finally, the RMSTd approach has small MSE

in most scenarios. In general, both approaches show similar trends. Simulation results for

other simulation settings, and comparison between the proposed Bayesian credible subgroup

Table 1. Simulation 1 results: Average summary statistics for 80% credible level.

Sample size Truth Total Coverage Credible Pair Size Sensitivity of D Specificity of D MSE

log HR RMSTd log HR RMSTd log HR RMSTd log HR RMSTd log HR RMSTd

50 (0,0,0,0,0) 0.88 0.88 0.94 0.93 NaN NaN 0.97 0.97 0.44 0.48

(0,0,0.1,0.1,0.1) 0.9 0.86 0.94 0.93 0.04 0.04 0.99 0.98 0.46 0.51

(0,0,1,1,1) 0.92 0.94 0.32 0.38 0.45 0.47 0.99 0.99 0.46 0.38

(0,0,1,-1,3) 0.92 0.94 0.12 0.19 0.97 0.97 0.99 0.99 0.96 0.28

(0.2,0.2,1,1,1) 0.9 0.92 0.31 0.45 0.45 0.44 0.99 0.99 0.43 0.36

(1,-2,1,0.1,1) 0.96 0.97 0.35 0.55 0.52 0.12 1 1 0.59 0.26

100 (0,0,0,0,0) 0.9 0.89 0.95 0.95 NaN NaN 0.98 0.98 0.18 0.25

(0,0,0.1,0.1,0.1) 0.89 0.91 0.9 0.91 0.08 0.08 0.99 0.99 0.2 0.26

(0,0,1,1,1) 0.92 0.92 0.21 0.21 0.72 0.73 0.99 0.99 0.22 0.22

(0,0,1,-1,3) 0.91 0.92 0.08 0.08 1 1 0.99 0.99 0.49 0.21

(0.2,0.2,1,1,1) 0.89 0.9 0.21 0.22 0.72 0.71 0.99 0.99 0.23 0.21

(1,-2,1,0.1,1) 0.96 0.96 0.21 0.3 0.79 0.57 1 1 0.28 0.2

500 (0,0,0,0,0) 0.88 0.9 0.95 0.95 NaN NaN 0.97 0.98 0.03 0.05

(0,0,0.1,0.1,0.1) 0.94 0.92 0.77 0.77 0.08 0.08 1 1 0.03 0.05

(0,0,1,1,1) 0.9 0.92 0.13 0.13 1 1 0.99 0.99 0.08 0.06

(0,0,1,-1,3) 0.88 0.86 0.06 0.05 1 1 0.98 0.98 0.31 0.05

(0.2,0.2,1,1,1) 0.94 0.92 0.13 0.13 1 1 0.99 0.99 0.08 0.06

(1,-2,1,0.1,1) 0.92 0.92 0.12 0.12 1 1 0.99 0.99 0.07 0.07

1000 (0,0,0,0,0) 0.9 0.89 0.97 0.96 NaN NaN 0.98 0.98 0.01 0.03

(0,0,0.1,0.1,0.1) 0.94 0.94 0.59 0.58 0.15 0.18 1 0.99 0.02 0.03

(0,0,1,1,1) 0.88 0.88 0.13 0.13 1 1 0.99 0.99 0.06 0.03

(0,0,1,-1,3) 0.87 0.88 0.06 0.06 1 1 0.98 0.98 0.28 0.03

(0.2,0.2,1,1,1) 0.86 0.89 0.12 0.13 1 1 0.98 0.99 0.07 0.04

(1,-2,1,0.1,1) 0.93 0.93 0.11 0.11 1 1 0.99 0.99 0.05 0.04

https://doi.org/10.1371/journal.pone.0229336.t001
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with the pointwise method, i.e. without multiplicity correction [14], are also reported in S1

File. We found that moving from pointwise method to our proposed methods, there is increas-

ing in credible pair size, specificity of D, but smaller sensitivity of D.

Multiplicity is incorporated into the simulation framework as the “total coverage” metric.

Total coverage is the rate at which the true benefiting subgroup is both contained in the inclu-

sive credible subgroup and contains the exclusive credible subgroup. A coverage failure corre-

sponds to a family–wise error. The credible subgroup method should have a total coverage

rate equal to the credible level, whereas a method not accounting for multiplicity would have

lower total coverage due to that multiplicity.

3.2 Simulation study under nonproportional hazard assumption

When the PH assumption is violated, the HR may not accurately represent PTEs, so RMST

summaries are used to estimate PTEs as an alternative approach to the HR. The simulation

study in this section aims to investigate the performance of RMSTd for subgroup identification

in a case of the nonproportional hazard.

From Eq 17, we simulated two groups with different hazard rates. The treatment group, i.e.

θi = 1, had a constant exponential hazard with rate λ0(t) = 0.01. The control group, i.e. θi = 0,

had a piecewise exponential hazard with rate

l0ðtÞ ¼
0:01 0 � t < tc

0:1 tc � t:

(

ð19Þ

Under this nonproportional hazard model, the hazard ratio between two treatments for

subject i is exp ðz0igÞ until time tc and then there is an abrupt change to a rate of exp ðz0igÞ=10.

The first step of determining the two bounded subgroup pairs is to obtain the joint poste-

rior sample of the PTEs at each covariate points. For the RMSTd, we employ a fully nonpara-

metric Bayesian accelerated failure time (AFT) model proposed by Henderson et. al. [34]. It

directly models the log-failure time as a sum of a regression function of covariates and residual.

The conditional mean function is modeled using Bayesian additive regression trees (BART).

The residual is modeled using a location-mixture of Gaussian distributions with a centered

Dirichlet process as prior. We compute the survival functions of the non–parametric AFT

model for each treatment, then take the difference between these survival functions to obtain

the RMSTd at each covariate point.

The settings for the prognostic covariates x, the predictive covariates z, treatment indicator

θ and censoring rate are similar to settings in simulation study under PH assumption. We con-

sidered the true values of coefficients β = (0.7, 0.7) and γ = (0.5, −0.5, −0.5). Then we simulated

1000 data sets, and for each data set, we used 1000 posterior draws kept after 500 burn-in itera-

tion. Finally, we chose δRd = 0 and tc = 30. The RMSTd were computed at the change point tc
up to tc + 50 when the treatment effect shows up during this time interval. The results for 80%

credible subgroup pairs are presented in Table 2, and S1 File provides results for other credible

levels.

Table 2. Average summary statistics for 80% credible subgroup pairs under nonproportional hazard assumption.

Sample Size Total Coverage RMSTd Credible Pair Size RMSTd Sensitivity of D RMSTd Specificity of D RMSTd MSE RMSTd

50 0.76 0.5 0.52 0.76 0.68

100 0.79 0.36 0.68 0.79 0.58

500 0.86 0.17 0.88 0.86 0.43

1, 000 0.92 0.15 0.91 0.92 0.38

https://doi.org/10.1371/journal.pone.0229336.t002
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When the sample size increases, the credible pair size is smaller, and there is greater total

coverage and improved sensitivity and specificity of D. Moreover, total coverage is above 80%

for large sample size (n = 500, 1000) and close to 80% for small and moderate sample size

(n = 50, 100). Table 2 also shows that a RMSTd approach tends to well estimate PTEs with

respect to effect MSE. The results of this simulation suggest the RMSTd approach is appropri-

ate to identify benefiting subgroups in a case of nonproportional hazards.

4 Analysis of the prostate cancer dataset

A prostate cancer dataset is publicly available [21] and has been analyzed in Rosenkranz et al.

[35] for exploratory subgroup analysis by model selection. Ballarini et al. [9] have proposed the

predicted individual treatment effect (PITE) to identify subgroups of patients who benefit

from treatment. In this section, we illustrate the Bayesian credible subgroups method using the

prostate cancer dataset, and compare our results with published results using PITE [9].

We include the 475 patients with complete data in our analysis as in the previously pub-

lished studies. Each subject was randomly assigned either to a combination of placebo and the

lowest dose level of diethyl stilbestrol (control group) or higher doses (treatment group).

Moreover, we included the same covariates and interaction terms as used in Ballarini et al. [9]:

existence of bone metastasis (bm), disease stage either 3 or 4 (stage), performance (pf), history

of cardiovascular events (hx), age and weight (wt). We denote rx as treatment indicator, and

include the two important interactions in the model, i.e. bm:rx and age:rx as in [9]. Table 3

provides the posterior mean and posterior standard deviation of the coefficients. We found

that stage and age are not significant at a nominal 95% credible level, but we have a strong

interaction with treatment of bone metastasis, and age.

The left panel in Fig 2 shows credible subgroups, for prostate cancer patients, using a log

HR and a credible level of 95%. We used the same value δH = 1 to define subgroups ([9]). Each

bar in each panel represents a particular type of patient with their age and existence of bone

metastasis. Members in the green region (D) are benefiting from the treatment. The blue

uncertainty region (S\D) contains characteristics of patients who are or are not be benefiting

from the treatment. The red region (SC) indicates that these types of patients may not be

benefiting from the treatment.

Similarly, the right panel in Fig 2 shows credible subgroups using the RMSTd with a credi-

ble level of 95% and δR = 0. Notice that the uncertainty region of ΔRd is smaller than the uncer-

tainty region of ΔH in patients with existence of bone metastasis. For both summaries, we

found that when patients were younger than 67 years old and did not have any bone metasta-

ses, are benefiting to the treatment. Compared with the analysis reported by Ballarini et al. [9],

Table 3. Posterior summaries of coefficients of covariates in prostate cancer dataset. The � indicates that the esti-

mates are greater than 1.96 standard errors from 0. This is equivalent to 95% level.

Effect Posterior Mean Posterior SD Significance

bm 0.575 1.170 �

stage -0.012 0.470

pf 0.178 0.773 �

hx 0.191 0.608 �

age -0.021 0.018

weight -0.017 -0.001 �

rx -6.085 -1.838 �

bm:rx -1.125 -0.291 �

age:rx 0.026 0.082 �

https://doi.org/10.1371/journal.pone.0229336.t003
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the estimated benefiting and uncertainty regions are similar to our regions. However, our

method, for both PTE approaches (ΔH and ΔRd), identified that patients who were older than

89 years and did not have existence of any bone metastases, may not be benefiting from the

treatment. The PITE method did not identify these non–benefiting patients.

5 Analysis of a large simulated clinical trial dataset

We now illustrate our proposed methods on a simulated dateset based on a study published by

Scirica et al. [22]. It is the Thrombin Receptor Antagonist in Secondary Prevention of Athero-

thrombotic Ischemic Events-Thrombolysis in Myocardial Infarction 50 trial. The primary effi-

cacy endpoint is the time of first myocardial infarction, stroke or cardiovascular death. Even

though patients with a history of myocardial infarction are treated for secondary prevention,

they are still at risk of a recurrent thrombotic events. To reduce recurrent thrombotic events,

patients are often treated with platelet inhibitors in addition to aspirin for up to a year, but this

treatment also increases bleeding.

Scirica et al. [22] analyzed the vorapaxar dataset using a HR from a Cox proportional haz-

ards model for testing heterogeneous effect across the prespecified subgroups of interest. In

contrast to their approach, our aim is to search for benefiting subgroups without prespecifying

subgroups of interest. To illustrate our proposed approach, we derived a simulated dataset

from the proprietary dataset used by Scirica et al [22] in the following section.

5.1 Simulated dataset based on a large clinical trial dataset

The simulated data mimics the dataset presented at Scirica et al. [22] that pertains to 17,779

patients of whom 8898 were assigned to treatment and 8881 were assigned to placebo. We

Fig 2. The Bayesian credible subgroups for prostate cancer by using ΔH (left panel) and ΔRd (right panel) with

credible level 95%.

https://doi.org/10.1371/journal.pone.0229336.g002
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considered a 5-dimensional prognostic covariate vector which represented patients’ charac-

teristics at baseline: age at entry (years), baseline weight (kilograms), history of hyperlipid-

emia, smoking status and prior coronary revascularization. For each treatment group, we

randomly selected 20% of subjects and added a Gaussian noise with zero mean and standard

deviation of 1 and 5 for continuous covariates age and baseline weight, respectively. Previous

studies [36, 37] found that patients who are younger than 75 years old, with no history of

stroke and bodyweight at least 60 kg are likely benefiting from the antiplatelet therapy.

Hence we include age, baseline weight and history of prior coronary revascularization as

predictive covariates.

The baseline characteristics of 17,779 subjects are summarized in Table 4. The median fol-

low–up was 2.5 years (IQR 2–2.9 years), and the Kaplan–Meier curve [38] of estimated occur-

rence of the cardiovascular death, myocardial infarction or stroke is showed in Fig 3. The

chance of cardiovascular death, myocardial infarction, or stroke was lower in patients in

treatment group than those in placebo group over the follow–up time. Moreover, the global

test of proportional hazards [39] fails to reject the assumption of proportional hazards

(p–value = 0.51).

5.2 Results

We applied Bayesian credible subgroup analysis to the simulated dataset using log HR and

RMSTd as described in Section 2. Moreover, we applied cubic B-splines with three degrees of

freedom due to their numerical stability [40] for continuous covariates: age at entry and base-

line weight, and we chose one knot at medians of these covariates. Fig 4 presents the credible

subgroups using ΔH with credible level at 95% and δH = 1, and Fig 5 illustrates the credible sub-

groups using ΔRd with the same credible level at 95% and δR = 0. For subjects without history

of prior coronary revascularization, the results of ΔH and ΔRd are similar. Both approaches

determine that types of patients younger than 82 years old and with bodyweight at least 80 kg

benefit from the treatment versus the control. Moreover, we also have enough evidence to

identify non–benefiting subgroup including types of patients who are older than 90 years and

have bodyweight less than 78 kg.

For subjects with history of prior coronary revascularization, we found that the two

approaches ΔH and ΔRd yield similar credible subgroups except that the uncertainty region is

slightly larger when using RMSTd. Both approaches find that types of patients aged older than

70 years, with history of prior coronary revascularization, and bodyweight at most 150 kg are

not benefiting from a treatment. Note that there is relatively small uncertainty region around

age of 22 for log HR approach and not for RMSTd approach. For both dataset, a comparison

between the proposed Bayesian credible subgroup with the pointwise method are also reported

in S1 File.

Table 4. Summary of baseline characteristics for simulated clinical trial dataset. We report the median with the first

and third quartiles for continuous variables, and total count with its percent of the total trial population for categorical

variables.

Treatment (n = 8898) Placebo (n = 8881)

Age (in years) 59 (52-66) 59 (52-66)

Weight (in kg) 85 (73.5-96) 85 (73-95.5)

Hyperlipidaemia 7568 (85%) 7545 (85%)

Smoking 1729 (19.4%) 1755 (%19.8)

Previous coronary revascularisation 7629 (85.7%) 7645 (86%)

https://doi.org/10.1371/journal.pone.0229336.t004
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Fig 3. The Kaplan–Meier curve for the time of first myocardial infarction, stroke, or cardiovascular death for the simulated

dataset.

https://doi.org/10.1371/journal.pone.0229336.g003

Fig 4. The Bayesian credible subgroups for the simulated dataset by using ΔH with credible level 95%.

https://doi.org/10.1371/journal.pone.0229336.g004

Fig 5. The Bayesian credible subgroups for the simulated dataset by using ΔRd with credible level 95%.

https://doi.org/10.1371/journal.pone.0229336.g005
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6 Discussion

We have presented a Bayesian credible subgroup method for survival endpoints by using two

common summaries: log HR and RMSTd. Our proposed methods perform well in simulation

studies with respect to frequentist properties for finding credible subgroup pairs D and S, such

as a total coverage, and sensitivity and specificity of D. As shown in previous studies [17–20],

compared to HR, RMST is a robust and clinically interpretable measure of the survival time

distribution without PH assumption. We also demonstrated that an RMSTd approach is

appropriate to identify benefiting subgroups for studies with nonproportional hazards. From

our applications in the prostate cancer dataset and the simulated large clinical trial data, a

Bayesian credible subgroup method, using two common summaries, can identify all member

of exclusive subgroup D who benefit from a treatment, and non–benefiting subjects who are

not members of inclusive subgroup S. Moreover, our proposed methods control multiplicity

issues in contrast to previous studies.

The major advantage of the Bayesian framework is that it allows us to compute the joint

posterior sample of the PTEs and assess the treatment effect across the covariate space. Due to

the two–stage approach, our semi–parametric model (Cox proportional hazard regression) in

the regression stage can be extended to parametric (accelerated failure time AFT regression)

or non–parametric (Dirichlet process priors [41] or Bayesian additive regression trees (BART)

[34]). The model choice depends on the flexibility and applicability necessary for the problem

as long as the joint posterior sample of the PTEs can be obtained from the model. When using

the parametric and semi-parametric model, it would be worth to further investigate the perfor-

mance of credible subgroups in a case of model misspecification where neither AFT or PH

assumption holds.

The first stage of our procedure requires only the list of possible covariates. However, a

large number of predictive, especially continuous, covariates makes interpretation of the shape

of credible subgroups difficult and reduces power. A possible approach and a topic for future

research is to employ variable selection methods in the regression stage such as Bayesian lasso.

Another approach is to compute the maximum credible level at which the test of no effect for a

given subject’s covariate profile is rejected [15].

The methods we proposed in this article focus on a single efficacy endpoint in a clinical

trial, but it can be generalized to include more than one endpoint [16]. Multiple efficacy and

safety endpoints may be considered simultaneously to establish the actual estimated benefit-

risk balance patients may experience depending on their individual characteristics. However,

there may be some complexity around the choice of benefit-risk metrics used in combination

with the credible subgroup method due to their level of discriminatory abilities [42–44]. Addi-

tionally, the endpoints that matter in a decision may also be in different units of measurement,

and although the methods of utilities have been proposed as a potential solution, there may be

other methodological issues. For example, the uncertainties relating to utilities are more com-

plex to derive. Utilities are also a very specific concept that is context–specific, and may not be

intuitive to the general public and decision–makers. Furthermore, there has been some shift

in the pharmaceutical industry and regulatory focus on better use of patient preferences data

in benefit–risk assessment, as evident by various global initiatives (IMI-PREFER [45, 46],

PDUFA VI [47], FDA MDIC [48], PFDD [49]). Patient preferences and perspectives on cer-

tain outcomes or treatment options add a unique complexity to the problem because of the

heterogeneous nature of patients. It is possible that patients with different characteristics, not

only may respond differently to treatments but, may also have different preference values. It is

not entirely clear at this time how preferences should be taken into account in relation to

patient subgroups. Nevertheless, decisions about a benefit-risk balance of a treatment option
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must be made in the context of its benefits and risks, as well as patient preferences; and this

presents a wealth of research opportunity to improve decision-making in healthcare.

Finally, our proposed methods in this article only address the scenario when there is no

missing value in patients’ covariate. Although such case has not been investigated here, regres-

sion tree, e.g. BART, can be a potential approach for handling missing data without selection

of imputation method [50]. As a closing remark, our Bayesian credible subgroup method for

survival endpoint has a broad application in clinical trials as we demonstrated the method in

two time–to–event dataset where identifying benefiting subgroups are important in discover-

ing personalized treatment.
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