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Abstract
At around 7 months of age, human infants begin to reliably produce well-formed syllables

containing both consonants and vowels, a behavior called canonical babbling. Over subse-

quent months, the frequency of canonical babbling continues to increase. How the infant’s

nervous system supports the acquisition of this ability is unknown. Here we present a

computational model that combines a spiking neural network, reinforcement-modulated

spike-timing-dependent plasticity, and a human-like vocal tract to simulate the acquisition of

canonical babbling. Like human infants, the model’s frequency of canonical babbling gradu-

ally increases. The model is rewarded when it produces a sound that is more auditorily

salient than sounds it has previously produced. This is consistent with data from human

infants indicating that contingent adult responses shape infant behavior and with data from

deaf and tracheostomized infants indicating that hearing, including hearing one’s own

vocalizations, is critical for canonical babbling development. Reward receipt increases the

level of dopamine in the neural network. The neural network contains a reservoir with recur-

rent connections and two motor neuron groups, one agonist and one antagonist, which con-

trol the masseter and orbicularis oris muscles, promoting or inhibiting mouth closure. The

model learns to increase the number of salient, syllabic sounds it produces by adjusting the

base level of muscle activation and increasing their range of activity. Our results support the

possibility that through dopamine-modulated spike-timing-dependent plasticity, the motor

cortex learns to harness its natural oscillations in activity in order to produce syllabic

sounds. It thus suggests that learning to produce rhythmic mouth movements for speech

production may be supported by general cortical learning mechanisms. The model makes

several testable predictions and has implications for our understanding not only of how syl-

labic vocalizations develop in infancy but also for our understanding of how they may have

evolved.
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Introduction

Emergence of syllabic babbling in humans
In the first year of life, infants undergo a transition from non-syllabic babbling to syllabic bab-
bling. Syllables that have both a well-formed consonant and a well-formed vowel, with adult-
like timing of the transition between the consonant and vowel, are called canonical syllables.
The precursors to canonical babbling, in the form of primitive tongue or lip movements often
referred to as “gooing” and then “marginal babbling”, are present from around 2–3 months of
age. Over the next few months, the consonants and vowels the infants produce come to be
more clearly articulated. True canonical syllables typically appear consistently in a child’s rep-
ertoire at about 7 months of age and continue to increase in frequency relative to non-canoni-
cal vocalizations over the next several months [1–4]. Canonical babbling development forms a
critical foundation for human speech. The specific consonant and vowel sounds present in an
infant’s prelinguistic canonical babbling tend to be the same sounds that are present in the
infant’s first words [5]. The milestone of consistent production of canonical syllables has been
shown to be a salient event for parents [6].

From behavioral studies, it appears that learning plays a critical role in the development of
canonical babbling in human infancy. The fact that canonical babbling emerges gradually over
the course of several months, rather than being present at birth, suggests the possibility that it
is a learned behavior, although a protracted course of development does not in and of itself
strongly indicate a learned basis (it is possible that protracted development could arise from
physical maturation not involving learning). More convincing evidence for the role of learning
in canonical babbling comes from the fact that infants with severe or profound hearing
impairment but who are otherwise typically developing exhibit significant delays in canonical
babbling onset [7–9] and produce fewer consonants per utterance [10]. Furthermore, the age
of onset of canonical babbling correlates positively with the age of cochlear implantation [11].
These findings suggest that audition plays a major role in the development of canonical bab-
bling and are consistent with the idea that auditory stimulation reinforces infants vocal motor
learning in favor of syllabic sounds.

Additionally, a case study of an infant who was tracheostomized from 5–20 months of age
found that when decannulated at 20 months, the child’s pattern of babbling resembled that of
an infant 6 months of age or younger, in that very few utterances contained canonical syllables
and the child had a rather small consonant repertoire within those canonical utterances [12,
13]. In many ways, the infant’s vocalization pattern resembled that of profoundly deaf infants.
Tracheostomy does not prohibit the infant from moving the upper vocal tract in ways that
would lead to syllable production (e.g., the lips and tongue can move freely), but it does make
these vocalizations soundless (except when the individual blocks the flow of air from the can-
nula), so that the auditory consequences of moving the lips and jaw while phonating are not
experienced by the infant. A reasonable conclusion is thus that experience producing vocaliza-
tions, and in particular learning about the auditory consequences of vocal tract movements, is
necessary for the development of canonical, i.e. syllabic, babbling [12, 14].

Possible neural mechanisms underlying the development of syllabic
speech
Humans are the only primate species that produces canonical babbling. While nonhuman pri-
mates do not produce syllabic vocalizations containing canonical consonants and vowels, they
do produce rhythmic orofacial movements during chewing and sucking for feeding purposes.
It has been proposed that these feeding movements, especially chewing, were an evolutionary
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precursor to human syllabic speech, and that in humans speech and chewing have a common
neural basis. Specifically, MacNeilage [15] has proposed that the evolutionary trajectory may
have been one of transition from mandibular oscillation for ingestion to mandibular oscillation
in lipsmacking, and then to mandibular oscillation in human speech.

Lipsmacks are a type of communicative signal used by a number of different species of pri-
mates, such as a macaques, baboons, and chimpanzees, usually during face-to-face social inter-
actions. They typically occur in the absence of phonation (i.e. sound production at the larynx)
and so are sometimes referred to as facial expressions rather than vocalizations, although in
some species lipsmacks have been reported to occur superimposed upon phonation. They
show some very striking similarities to human syllable production. The rate of mandibular
oscillation in lipsmacking in rhesus macaques is roughly 5 Hz, which is very similar to the rate
of syllable production in adult speech. Furthermore, infant monkeys have slower rhythms in
their lipsmacking, with the rate gradually ramping up to the 5 Hz rate seen in adult lipsmacks
[16]. Similarly, when human infants first begin babbling, the rate of syllable production is typi-
cally considerably slower than the rate of syllable production in adult speech. Lipsmacking may
therefore be an evolutionary precursor to the upper vocal tract movement component of syl-
labic human speech production [16].

If it is true that syllabic speech originates from primate lipsmacking, and perhaps that both
originated from ingestive behaviors, then human speech may recruit existing central pattern
generators for rhythmic oral movement located in the brainstem [15, 17]. It has been argued
that at the age when canonical babbling is emerging, human infants utilize “phyologenetially
old neuromuscular coordinations” [18], since they do not yet have mature voluntary cortical
control of movement. If this is the case, the details of how these circuits get recruited are largely
unknown.

Another possibility is that the ontogenetic development of syllabic vocal babbling is largely
due to learning in motor regions of the neocortex. It has been found that direct stimulation of
the supplementary motor area in adult humans can, at least in some cases, elicit reduplicated
babbling sequences such as repetitions of the syllable “da” or “te” [15, 19, 20]. Patients with
paroxysmal lesions to the same region have also been reported to exhibit these types of syllable
repetitions [21]. Others have found in macaques that stimulation of the precentral motor cor-
tex and related regions can generate rhythmic jaw movement [22]. There is therefore ample
evidence that there are regions of the posterior frontal lobe that, when stimulated, lead to
rhythmic speech and/or jaw movement. It seems likely then that reduplicated babbling relies in
some way on cortical mechanisms.

Involvement of motor regions of the cortex in production of syllabic vocalizations does not
in and of itself necessarily imply that the cortex is doing fine-grained programming of vocal
tract movements for speech. It is possible that the role played by these regions of motor cortex
is to recruit brainstem circuits, and that the brainstem circuits perform the fine-grained pro-
gramming of the movements. However, recent findings indicate that the temporal dynamics of
cortical activity can indeed be mapped quite closely to temporal dynamics of articulator move-
ments [23]. Furthermore, direct stimulation of specific regions of the precentral motor cortex
elicits vocal fairly specific movements of parts of the vocal tract, such as movements of the
vocal folds, movements of the lips, and movements of the jaw, in primates [22, 24, 25], allowing
for the possibility that the motor cortex is at least capable programming of vocal tract move-
ments for speech quite directly and in a detailed manner.

Given the strong evidence that canonical babbling requires some learning and is not merely
the result of purely maturational processes sans learning, and given the large degree to which
learning is known to be involved in the development of cortical circuits, it is worth exploring
the possibility that cortical learning plays a role in the development of speech sound
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production. During the first year of life, regions of the motor cortex may acquire the ability to
directly generate movements of the vocal tract articulators that result in syllabic vocalizations.

That the development of syllabic babbling relies on cortical learning is consistent with the
idea that domain-general learning mechanisms underlie early speech sound acquisition [26]. It
is also consistent with the idea that more elaborate cortical circuitry for coordinated control of
phonatory movements in humans compared to other primates is related to humans’ vocal
learning abilities, and subsequently their capacity for speech [15, 24, 25].

The present paper describes a computational model that supports the idea that cortical
learning within the motor cortex could indeed lead to generation of syllabic vocalizations.

Our modeling approach
The model presented here combines a spiking neural network with a realistic model of the
human vocal tract. Oscillations of cortical neurons in our model are shown to be capable of
driving muscles that lead to sounds some of which are more auditorily salient than others.
Reinforcement is correlated with the production of canonical syllables and triggers dopamine-
modulated spike-timing-dependent plasticity (DA-modulated STDP), yielding learning. The
model relies on neurophysiologically realistic mechanisms. Canonical babbling development is
exhibited. For simplicity, we focus on lip and jaw movement (treated together as a single motor
degree of freedom). Oscillatory movements of these structures are associated with infants’ bila-
bial reduplicated babbling sounds, such as the sequence /bababa/ [27].

It is reasonable to assume that caregivers prefer, or at least are more attentive to, more
salient sounds as opposed to less salient sounds. Indeed, observation of naturalistic mother-
infant interactions has shown that infant utterances containing both consonants and vowels
are more likely to receive interactive vocal responses from mothers than infant utterances that
contain only vowel elements [28]. Other work has shown that adults prefer infant vocalizations
that are longer, less nasal, and contain intonational contours [29–31], all features that might be
expected to correlate with auditory salience [32, 33]. These social responses are presumably
rewarding to the infant in and of themselves, and they are likely correlated with provision of
food and other resources that have rewarding value to infants [26]. It is also reasonable to
assume that infants are more stimulated by their own vocalizations when those self-generated
stimuli are more salient, although no behavioral studies have yet tested this idea (we will return
to it in the Discussion when we discuss the testable predictions made by our model). It has
been shown that infants prefer caregiverese to adult-directed speech [34], and that this prefer-
ence appears to be driven by the salient frequency modulations in caregiverese [35]. Auditory
salience can be estimated automatically [36, 37], and tends to be higher when vocalizations
contain both consonants and vowels than when vocalizations contain only vowels [38, 39]. In
the model presented here, reinforcement is based on auditory salience (see also [40, 41]).

The present modeling approach contrasts with that of most other computational models of
infant vocal learning in that it focuses on the neural basis of the emergence of syllabically struc-
tured vocalizations in the infant’s vocal repertoire [42]. Many models of vocal learning focus
solely on vowel production [43–50]. Focusing only on vowel learning allows the modeler to
avoid addressing the temporal dynamics of movement, since vowels can be reasonably charac-
terized by and synthesized given a single, static configuration of the vocal tract articulators. For
testing general principles of sensorimotor mapping, exploratory strategies, the role of imita-
tion, etc. applied to an aspect of speech learning, this simplification has been helpful. However,
it is clear that to fully account for the emergence of speech sounds in human infancy, conso-
nant production must be addressed. Therefore, a number of models have now attempted to
explain how combinations of vowels and consonants are acquired during early childhood [40,
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41, 51–58]. The vast majority of these models assume from the very beginning of learning that
speech production is already organized syllabically, and that the problem infants face is to fill
in what vocal tract postures should occupy the consonant and vowel slots within that frame. It
may be the case that once an infant has already reached the point of regularly producing
canonical babbling this does reasonably approximate the type of learning they are performing.
However, even if this is the case, such models do not address the question of how syllabic
frames are themselves learned.

A noteworthy exception is a model by Moulin-Frier et al. [56]. This model does explicitly
aim at an explanation of how syllabic babbling might emerge, positing that intrinsically moti-
vated goal-setting could lead to a progression where infants first learn to phonate, then learn to
produce vowels of different types, then learn to produce specific sequences containing both
vowels and consonants. The model does move in the direction of more flexibility than a fixed
consonant-vowel-consonant frame by programming movements using a set of five multidi-
mensional Gaussian functions. However, Moulin-Frier et al.’s model operates at a higher level
of abstraction than the model we present here. Moulin-Frier et al. do not attempt to relate the
control of vocalization to neural dynamics.

Our model thus complements previous work on early vocal learning by addressing the ques-
tion of how infants come to structure their vocalizations syllabically and by focusing on relating
this to some key properties of human motor cortex; to do this we simplify the problem in a
number of ways, leaving integration with processes explored in previous modeling work, such
as imitation, intrinsically motivated goal-setting, perceptual-motor mapping, and multi-articu-
lator control as a future direction [57].

Some initial studies using a spiking neural network and a setup very similar to that reported
here showed a spiking neural network to be capable of learning to generate sounds that
increased in syllabicity over the course of learning when reinforced by a human [59], and
showed that reinforcement could be based on auditory salience [60]. The present study
improves upon those initial studies in several ways, by modifying the neural architecture and
making the reinforcement threshold increase as the model improves, both of which make the
model’s learning more robust and better matched to what is observed in human development;
increasing the number of simulations; exploring the influence of different parameter values;
evaluating the model’s performance using an independent, automated metric of syllabicity; and
exploring what types of activity patterns the model learns in order to increase its rate of canoni-
cal babbling production.

Methods
Our model contains several components, illustrated schematically in Fig 1. The first compo-
nent is a network of spiking neurons, itself divided into two subgroups. The neural network
dynamically controls the muscle activities within a simulated vocal tract. The vocal tract simu-
lation computes air pressures within the vocal tract, allowing sounds to be synthesized. The
auditory salience of these sounds is then estimated, and auditory salience is used as the basis
for whether or not the model receives a reward for producing a given sound. Reward engages
Hebbian learning (via STDP) within the neural network. Each simulation was run for a total of
2 hours of simulation time, or 7200 trials each taking 1 s of simulated time. A number of simu-
lations were run in order to choose appropriate model parameters and to assess the range of
natural variation in performance across simulations. Each of these components is discussed in
more detail below.

The simulation code is provided at https://github.com/AnneSWarlaumont/BabbleNN.
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Fig 1. Overview of the model. A: Schematic depiction of the groups of neurons in the spiking neural network and how they are connected. There is a
reservoir of 1000 recurrently connected neurons, with 200 of those being inhibitory (red) and the rest excitatory (blue and black). 200 of the reservoir’s
excitatory neurons are designated as output neurons (black). These output neurons connect to two groups of motor neurons, agonist motor neurons (blue)
and antagonist motor neurons (red). The connection weights within the reservoir are set at the start of the simulation to random values and do not change
over the course of the simulation. The connection weights from the reservoir output neurons to the motor neurons are initially set to random values and are
modified throughout the simulation by dopamine (DA)-modulated STDP. All reservoir and motor neurons receive random input current at each time step (not
shown). B: Raster plot of spikes in the reservoir over a 1 s time period. C: Raster plot of spikes in the motor neuron groups over the same 1 s time period. The
agonist and antagonist motor neuron spikes are summed at each time step then are smoothed using a 100 ms moving average. The smoothed antagonist
activity is subtracted from the smoothed agonist activity, creating a net smoothed muscle activity that is sent to the orbicularis and masseter muscles. D: The
smoothed agonist, antagonist, and net activity for the same 1 s as in the raster plots. E: Effects of the orbicularis oris and masseter on the vocal tract’s shape
(reprinted with permission from [61]). Orbicularis oris activity tends to round and close the lips and masseter activity tends to raise the jaw. F: Schematic
illustration that the vocal tract is modeled as an air-filled tube bounded by walls made up of coupled mass-spring systems (reprinted with permission from
[61]). The orbicularis oris and masseter affect the equilibrium positions at the front parts of the tube. The air pressure over time and space in the tube is
calculated, and the air pressure at the lip end of the tube forms the sound waveform. The vocal tract shape is modeled more realistically than depicted here
and also contains a nasal cavity that is not depicted. G: The sound synthesized by the vocal tract model is input to an algorithm that estimates auditory
salience. The plot shows, for the same 1 s as in B–D, the synthesized vocalization waveform (in cyan) and the salience of that waveform over time (in black).
Apart from a peak in salience at the sound’s onset, the most salient portion of the sound is around the place where the sound’s one consonant can be heard.
The overall salience of this particular sound is 10.77. If the salience of the sound is above the model’s current threshold, a reward is given, which causes an
increase in dopamine concentration in the neural network.

doi:10.1371/journal.pone.0145096.g001
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Spiking neural network architecture
The neural network contained two main subgroups of neurons. The first subgroup was a reser-
voir of 1000 Izhikevich spiking neurons [62]. 80% of the neurons were excitatory and 20%
were inhibitory. Each neuron was randomly assigned outgoing connections to 100 other neu-
rons, with the constraint that inhibitory neurons could connect only to excitatory neurons. The
reservoir neuron properties and synaptic connectivities were set almost identically to the net-
work described in [63], and our simulation code incorporated MATLAB code from that work.
See [64] for another example of an adaptation of such models to a reservoir architecture.

A subset of the excitatory neurons in the reservoir were selected to also connect to an
equally sized subset of excitatory motor neurons, all having the same parameter values as the
excitatory reservoir neurons. The motor neuron population had the same total number of neu-
rons as the subset of the reservoir that projected to them. Half of the motor neurons were ago-
nists, positively activating the masseter and orbicularis oris muscles and serving to promote
closure of the jaw and mouth. The other half of the motor neurons were antagonists, inhibiting
activity in the masseter and orbicularis oris muscles, thereby promoting jaw and mouth open-
ing. Our assumption is that the reservoir and motor neurons can be considered as models of
subgroups of neurons within motor regions of the neocortex. The motor neurons’ effects on
the vocal tract muscles are intended to roughly model the influence of upper motor neurons on
the muscles (via lower motor neurons).

The neural network simulation ran in millisecond simulated time increments. At each milli-
second time increment, a random quantity of input current was given to each reservoir and
motor neuron. Each neuron’s random input was drawn from a uniform distribution between
-6.5 and 6.5 pA. This random input was the same as that given to the model in [63]; future
work could test the implications of using other random input functions, such as exponential or
power law input, and could aim to match this function to observations from real cortical
neurons.

The random input current was added to the current that was given to each neuron due to
the firings of the neuron’s presynaptic neurons that fired during the previous time step. The
input current due to presynaptic neuron firing was proportional to a variable representing the
synaptic strength from the presynaptic to the postsynaptic neuron. Some of these synaptic
strengths (a.k.a. connection weights), the ones connecting the reservoir to the motor neurons,
changed over the course of the simulation as a result of learning.

Note that there are no external inputs to the model other than the random inputs at each time
step, which ensure spontaneous activity of the neurons in each group. This is by design, as the
goal of the present work was to focus on how infants’ spontaneous vocalizations become more
speech-like over the course of the first year of life (see [49] and [65] for further discussion).

Vocalization synthesis
After every second of simulated time, a smoothed muscle activity time series was calculated. A
100 ms moving average of the previous 1000 ms time series of agonist motor neuron spikes
was computed. The result was a 900 ms smoothed time series of agonist motor neuron activity.
The same computation was done for the antagonist motor neuron spikes. The smoothed antag-
onist motor neuron activity time series was then subtracted from the smoothed agonist motor
activity time series. The result was multiplied by a constant parameter,m, to create the net
muscle activity time series. The scaling brought the muscle activity into a range that was appro-
priate for the synthesizer. The 900 ms net muscle activity time series was given directly to the
articulatory vocalization synthesizer and specified both the Masseter and Orbicularis Oris mus-
cle activities.
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The vocalization synthesis relied on the articulatory synthesizer developed by Boersma and
available in Praat [61, 66]. Praat version 5.3.32 for PC was used for all the simulations. The syn-
thesizer models the walls of the vocal tract as a set of coupled, damped mass-spring systems
whose equilibrium positions and spring constants are affected by the activation of the various
vocal tract muscles. The air within the vocal tract is treated as a fluid whose aerodynamics are
modeled by obtaining approximate numerical solutions to a set of equations representing con-
straints such as conservation of mass, response to pressure gradients, and friction. The air
within the vocal tract affects the movements of the walls and vice versa.

Besides the Masseter and Orbicularis Oris activity, a number of other parameters needed to
be set in order to generate the synthesized vocalizations. The speaker type needed to be specified;
we chose the adult female vocal tract model for all simulations. Although Praat does have a child
vocal tract model, it does not have a built-in infant model. Additionally, for the child model to
generate sound, the acoustic simulation sampling rate must be increased. This would increase
the computational demands of the vocalization synthesis, which is already the main processing
bottleneck within our model. Since the focus of this study was on neuromotor learning rather
than on infant vs. adult anatomy, we reasoned that the adult female vocal tract provided a rea-
sonable enough approximation of the main bioacoustic constraints on the infant vocal tract, par-
ticularly the nonlinear relationships of jaw and mouth movement to vocalization acoustics, for
our purposes. The default sampling rate, 22050 Hz, was used. For each sound, the Lungs param-
eter, which specifies the target lung volume, was set to 0.1 at 0 ms, to 0.1 at 20 ms, to 0 at 50 ms,
and to 0 at 900 ms. This created a scenario where the target lung volume went quickly from a
high value at the beginning of the vocalization to a low value a few tens of ms later. In a human,
such a change would be due to coordinated activity of the muscles of the diaphragm and rib
cage. One laryngeal muscle, the Interarytenoid, was set to a value of 0.5 for the duration of the
900 ms vocalization. This muscle has the effect of adducting the vocal folds, causing a pressure
differential between the lungs and the upper vocal tract that sets the vocal folds into vibratory
motion. Finally, the Hyoglossus muscle, which lowers the tongue, was set to a value of 0.4
throughout the 900 ms vocalization. This made the vocal tract such that when the jaw and lips
were open, the vocalization would sound like the vowel [A]. (See [49] for an example of a model
that learns the settings of the laryngeal muscles for static, vowel-only vocalizations.)

This combination of 900 ms of muscle activations and other settings was sent to the vocal
tract model, which simulates the air pressure throughout the vocal tract at a series of time
points and uses the time series of pressures at the mouth of the vocal tract to synthesize the
vocalization. The vocalization was saved as a WAV file and subsequently analyzed to estimate
its auditory salience.

Auditory salience and reward
The estimated auditory salience of each sound was used as the basis for determining when to
reward the model. This was based on the idea that human infants will tend to prefer more
salient stimuli as well as on the idea that human caregivers are more likely to notice and
respond to more salient infant sounds.

Salience was estimated using a program developed by Coath, Denham, and colleagues [36,
37]. The program takes a sound as input and analyzes that sound in a variety of ways. It first
converts the sound to a spectrogram format, with the frequency and time bins based on a
model of cochlear processing. Within that cortical response spectrogram, it then identifies
points in time and frequency where there are transitions in the cochlear activity level. This is
essentially a form of temporal edge detection. After that, it convolves the spectrotemporal tran-
sients with models of cortical filters. The cortical filter models were developed by unsupervised

Learning to Produce Syllabic Speech Sounds via Reward-Modulated Neural Plasticity

PLOS ONE | DOI:10.1371/journal.pone.0145096 January 25, 2016 8 / 30



training on a corpus of speech data. The cortical filters are designed to well represent the input
data with minimal redundancy. The final step in the salience estimation was to detect tran-
sients in the activation of these cortical filter models. Both onset transients and offset transients
are detected. The transients can be thought of as auditory edge detectors [37]. The overall
amount of change in the cortical filter activations at a series of evenly spaced time points deter-
mined the salience function for the particular input sound.

The salience, s(v, t), over time, t, for a given second’s vocalization, v, was then converted to a
single overall salience score for the sound, S(v), by taking the sum of the absolute value of the
salience function the sound (so as to include both onset and offset transients), excluding the
first 150 ms:

SðvÞ ¼
X900ms

t¼151ms

jsðv; tÞj ð1Þ

The first 150 ms were excluded because they typically included a spike in salience related to the
abrupt onset of the sound, and this spike was not related to the questions of interest in the pres-
ent study.

The model received a reward if the salience for the sound it had just produced, S(v), was
greater than a threshold value, θ(v). The threshold was initialized to a value of 4.5 and increased
as the model increased the salience of its productions. If on the last 10 trials at least 30% of the
model’s vocalizations were rewarded, the threshold value was increased by 0.1. (See Algorithm
1.) The starting threshold, threshold increment, and 30% criteria were decided based on infor-
mal explorations during development of pilot versions of the model.

Neural connections and learning
At the beginning of the simulation all neural connection weights within the reservoir were
assigned random values. The outgoing connection weights from the excitatory neurons were
drawn from a uniform random distribution between 0 and 1. The outgoing connection weights
from the inhibitory neurons were drawn from a uniform random distribution between -1 and
0. These connection weights remained the same throughout the simulation. All initial connec-
tion weights between the reservoir and the motor neurons were drawn from a uniform random
distribution between 0 and 1.

The connections from the reservoir neurons to the motor neurons were updated via
reward-modulated spike-timing-dependent plasticity. Spike-timing-dependent plasticity

Algorithm 1. Adapting the reward threshold.

1: θ 4.5 ▷ Initialize the reward threshold.

2: h[1: 10] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ▷ Initialize the recent reward history.

3: for each second’s vocalization do

4: if S > θ then ▷ If salience is high, reward.

5: r 1

6: else

7: r 0

8: h[11] r ▷ Update the recent reward history.

9: h h[2: 11]

10: if
P10

n¼1 h½n� � 3 then ▷ If the recent reward rate is 30% or higher

11: θ θ + .1 ▷ increase the reward threshold

12: h[1: 10] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ▷ and reset the recent reward history.

doi:10.1371/journal.pone.0145096.t001
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(STDP) is a form of Hebbian learning derived from a large number of both in vitro and in vivo
studies on long term potentiation and depression, in both hippocampal and neocortical neu-
rons [67, 68]. In STDP, the change in strength of a synapse connecting a presynaptic neuron to
a postsynaptic neuron is related to the relative timing of spikes of those two neurons. Long
term potentiation occurs when the presynaptic neuron fires before the postsynaptic neuron
and long term depression occurs when the presynaptic neuron fires after the postsynaptic neu-
ron. The degree of potentiation or depression is greater the closer together the two spikes are.
There is evidence that the presence of dopamine increases learning rates in the neocortex and
that such dopamine-modulated long term potentiation in the motor cortex facilitates skill
acquisition [69–71]. It is believed that this provides a means by which animals learn to recreate
movement patterns that lead to rewarding outcomes.

Izhikevich’s DA-modulated STDP algorithm [63] was used, with the modification that in
our model only the long term potentiation aspect of STDP is implemented. Rather than imple-
ment spike-timing dependent long term depression, the reservoir to motor neuron connection
weights are periodically normalized. The algorithm is presented in Algorithm 2 and its essential
features are described in the following paragraph.

Each time an output neuron within the reservoir spikes, a small amount, 0.1, is assigned to a
trace memory of the firing of that neuron. These reservoir output neuron traces decrease expo-
nentially with time. Whenever a motor neuron fires, the eligibility trace for each of its incoming
synapses to be strengthened is increased by adding the memory traces of the firings of the

Algorithm 2. Reward-modulated spike-timing-dependent plasticity.

1: d = 0 ▷ Dopamine concentration

2: for all reservoir output neurons, r, do

3: cr = 0 ▷ Trace of r’s previous firings

4: for all motor neurons, m, do

5: erm = 0 ▷ Eligibility trace

6: draw srm from U(0, 1) ▷ Strength of synapse of r onto m

7: for all milliseconds of simulation time, t, do

8: d = .995 * d ▷ Dopamine concentration decays
exponentially

9: for all r do

10: for all m do

11: if m spikes then

12: erm = erm + cr ▷ Eligibility trace increases

13: if the remainder of t/10 is zero then ▷ Every 10 ms

14: srm = min(srm + erm * d, 4) ▷ Synapse strength increases

15: if r spikes then

16: cr = .1 ▷ Set memory of r spiking to its max value

17: cr = .95 * cr ▷ Memory of r spiking decreases
exponentially

18: if the remainder of t/10 is zero then

19: S = ∑r∑m srm
20: for all r do

21: for all m do

22: srm = srm/S ▷ Normalize the synaptic strengths

23: erm = .99 * erm ▷ Eligibility trace decays exponentially

24: if reinforced for producing a high-salience sound
then

25: d = d + 1 ▷ Dopamine increases

doi:10.1371/journal.pone.0145096.t002

Learning to Produce Syllabic Speech Sounds via Reward-Modulated Neural Plasticity

PLOS ONE | DOI:10.1371/journal.pone.0145096 January 25, 2016 10 / 30



reservoir output neurons. This eligibility trace is then multiplied by the dopamine level in
order to determine how much the synapse strength is increased. The dopamine level is
increased by adding 1 whenever a reward is received. The dopamine level, eligibility traces, and
presynaptic firing memories decay exponentially over time. At each synaptic weight update, if
the update would make the strength of the synapse greater than 4, the synaptic strength is
capped at 4. This prevents any individual synapse from becoming overly, and unrealistically,
strong. Due to the nature of the learning algorithm, no synapse strength could ever have a neg-
ative value. Finally, after each synaptic weight update, the synaptic weights are normalized by
dividing all weights by the mean synapse strength. This prevents the overall network connectiv-
ity from increasing over time, which would severely disrupt the network’s dynamics [72].
Based on pilot explorations, this method of normalization seemed to be less sensitive to small
parameter variations than relying solely on long term depression to keep synapse strengths
within a desirable range; further exploration of this issue is warranted but outside the scope of
the present study. Note that the reward function and the DA-modulated STDP were both
deterministic. All random variation in the model stemmed from the random synaptic weight
initialization and the random input currents given to the neurons.

Simulation sets
Pilot explorations indicated that the types of sounds that are generated by the model are partic-
ularly sensitive to two parameters, the number of motor neurons and the muscle activity scal-
ing parameter,m. With larger numbers of motor neurons in both the agonist and antagonist
groups, the net motor neuron activity level tends to exhibit higher amplitude variation within a
second, i.e. within a vocalization. This leads to a greater likelihood of syllabic vocalizations,
since the jaw and lip muscle activities tend to vary within a greater range. For the same reasons,
when the muscle scaling parameter,m, which is multiplied by the net motor neuron activity to
generate muscle activity, is higher, the range of jaw and lip muscle activities tends to vary more
greatly within a vocalization, leading to more syllabic vocalizations.

To demonstrate this, and to determine appropriate values of these two parameters for focus-
ing more detailed analyses, we ran 13 sets of simulations, varying the number of motor neurons
and the value of the muscle scaling parameter,m. Each set of simulations consisted of 5 simula-
tions with different random synaptic weight initializations and different random inputs given
at each time step to the reservoir and motor neurons. We explored three values of the number
of motor neurons: 50, 100, and 200. The number of reservoir output neurons was matched to
the number of motor neurons, so that as the number of motor neurons increased, the output
neurons in the reservoir also increased. The number of agonist motor neurons and the number
of antagonist motor neurons were always equal, so if the total number of motor neurons was
50, this meant there were 25 agonist motor neurons promoting jaw and lip closure and 25
antagonist motor neurons promoting jaw and lip opening. We initially explored three values of
m: 4, 5, and 6. Recall thatm is the value that the difference between the smoothed agonist
motor neuron spike counts and the smoothed antagonist motor neuron spike counts is multi-
plied by in order to obtain the time series of masseter and orbicularis oris muscle activities. We
tested every pairwise combination of these number of motor neurons and values ofm, making
for 9 different parameter combinations in total. Based on the results of these 9 simulation sets,
we then decided to test four additional parameter combinations, to cover 50 neurons with
m = 7 and 8 and 200 motor neurons withm = 2 and 3. This made for a total of 13 parameter
combinations tested. We then took the combination that appeared to provide the best combi-
nation of learning capability and realism in the initial behavioral starting point (200 neurons
andm = 2), and focused further analyses on the simulations with that parameter combination.
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Yoked controls
Even with the synaptic weight normalization in place, changes in the neural network’s connec-
tion weights due to STDP can potentially lead to changes in network dynamics that could affect
the oscillatory dynamics of the motor neuron population and in turn the types of vocalizations
the model produces. In addition, even with no synaptic weight changes, over time there can be
subtle changes in the neural dynamics.

To ensure that salience-based rewards are driving any increases in vocalization salience and
canonical syllable production over time, we ran yoked control simulations. These were simula-
tions with their own unique random synaptic weight initializations and random inputs at each
timestep, but with reward times taken from a previous simulation in which rewards were
salience-driven. This matched the timings of synaptic modification to those of the real simula-
tions, while making yoked control model rewards uncorrelated with the salience of vocaliza-
tion. This control method is standard procedure in work on animal behavior, including
experimental work on human vocal learning during the first year of life (e.g., see [73]).

Syllable estimation
In previous work [59, 60], the syllabicity of the sounds produced by a similar model had been
evaluated using two metrics. The first was the salience of the sounds. Based on previous work
showing human ratings of the syllabic quality of a sound to be correlated with our auditory
salience metric, as well as theoretical considerations of the concept of auditory salience and the
specific auditory salience estimation algorithm used here, we expected this to be a fairly useful
metric. We also listened ourselves to the sounds produced by the model, to verify with our own
ears what the vocalizations sounded like and how they compared to infants’ syllabic and non-
syllabic vocalizations (links to sound examples that the reader can download are given in the
Results section, and examples of human infant vocalizations classified as canonical, i.e. syllabic,
vs. non-canonical are available at www.babyvoc.org through the IVICT tool).

To provide an additional metric of the syllabicity of the sounds, as well as a metric that was
independent of the development of the computational model, we utilized a Praat script for
automatically identifying syllable nuclei in adult speech, developed by de Jong andWempe [74,
75]. This syllable detection algorithm uses a combination of amplitude difference and voicing
information to estimate where syllable nuclei, i.e the loudest parts of a syllable, usually the part
containing the vowel, occur. It first searches the sound for segments where there is a high
amplitude portion surrounded by lower amplitude sound. It then checks that there is an identi-
fiable pitch, i.e. the perceptual correlate of fundamental frequency, during the high amplitude
portion. If so, it labels this a likely syllable nucleus. We ran this program using the model’s indi-
vidual 900 ms vocalizations as input, and, for each input vocalization, obtained the total num-
ber of syllable nuclei that the sound was estimated to contain. We used all the default
parameters, i.e. a silence threshold of -25 dB, a minimum dip between peaks of 2 dB, and a
minimum pause duration of 0.3 s.

Results

Examples of model vocalizations
Fig 2 and S1 Sound, S2 Sound and S3 Sound provide three examples of vocalizations produced
by the model, one non-syllabic (the most primitive), one syllabic with a single consonant, and
one syllabic with multiple consonants (the most advanced). The consonants are apparent as
amplitude fluctuations in the sound waveforms and as amplitude and formant shifts in the
spectrograms. The plots of the salience of the sounds over time show how consonant
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productions are often associated with peaks in the estimated salience. The more salience peaks
there are, and the more dramatic they are, the larger the overall salience of the sound tends to
be. The net motor activity that serves as input to the muscles tends to show peaks around the
time of the consonant productions, reflecting the increased activity of the orbicularis oris and
masseter muscles that bring the mouth to a more closed position to create a consonant sound.

Dependence of results on number of motor neurons and muscle scaling
Table 1 shows the average salience of sounds produced at the start and end of the simulation
for each combination of motor neuron number and muscle scaling,m. The start of learning
was defined as the first 60 vocalizations produced by the model, which corresponded to the
first minute of simulation time. End of the simulation was defined as the last 60 vocalizations

Fig 2. Vocalization examples. Three examples of vocalizations produced by the model. The left column shows a vocalization that contains no consonants
and would not be considered canonical or syllabic babbling. The associated WAV file is available for listening in S1 Sound. The middle column shows a
vocalization that contains one consonant and the right column shows a vocalization that contains three consonants. The middle and right vocalizations would
qualify as canonical babbling (the associatedWAV files are available for listening in S2 Sound and S3 Sound, respectively). The vocalizations were all
produced by fully trained versions of the primary version of the model. A: Raster plots of the 1 s of reservoir neuron activity associated with the vocalization.
B: motor neuron raster plots. C: Smoothed motor neuron activity for the agonist and antagonist groups as well as the difference between the smoothed
agonist and antagonist activities. This difference was what was input as muscle activity to the vocalizations synthesizer. D: Waveforms (cyan), salience
traces (black) and overall salience estimates (titles) for each example vocalization. Note that positive values of the salience trace represent detection of
onsets of patterns in the auditory stimulus and negative values represent offsets of patterns. E: Spectrograms of the vocalizations; these provide visual
evidence of the vocalization’s harmonic frequencies and of formant transitions associated with the production of consonants.

doi:10.1371/journal.pone.0145096.g002
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produced by the model, which corresponded to the last minute (minute 120) of simulation
time.

The two parameters we manipulated were related to variations in both starting and ending
salience as well as being related to how much learning, i.e. increase in salience, the model
exhibited. For the 50 motor neuron simulations, the model only exhibited learning when the
muscle scaling parameter,m, had higher values, 6, 7, or 8, and even then the increase in salience
was small. When 100 motor neurons were used, the model exhibited learning with moderate
salience increases for all three values ofm. For the 200 motor neuron simulations, the model
exhibited large salience increases whenm was small (2, 3, and 4), demonstrated learning with
moderate salience increases whenm had a value of 5, and did not show any learning whenm
had its highest value, 6.

The value ofm appears to primarily affect whether the starting and ending salience tended
to be on the lower or higher side, with lower values ofm associated with lower salience and
higher values ofm associated with higher salience. The number of output and motor neurons
also affects whether salience tends to be overall lower or higher. These effects on starting
salience could be quite extreme. For example, in the case of scaling by 6 with 200 output and
motor neurons, the starting salience was 12.7, which is higher than or as high as the ending
salience for any of the other parameter combinations. As will be made clearer below, when the
relationship between motor variability and salience is explored, the high starting salience for
the highm and high neuron number simulations can be expected given that both parameters
will increase the amplitude of muscle activity oscillation. Very high amplitude oscillations will
lead to frequent oscillations between mouth opening and closure, yielding highly syllabic
sounds. The question of why infants do not simply begin life generating high degrees of lip and
jaw oscillation is addressed in the Theoretical Implications section of the Discussion.

Table 1. Results using different parameter combinations.

50 neurons 100 neurons 200 neurons

scale by 2 start: 5.0 (0.24)
end: 9.7 (0.53)***

scale by 3 start: 7.0 (0.48)
end: 11.3 (0.32)***

scale by 4 start: 4.5 (0.07)
end: 4.5 (0.04)

start: 5.9 (0.40)
end: 8.2 (0.47)***

start: 9.5 (0.60)
end: 12.5 (0.55)**

scale by 5 start: 4.8 (0.12)
end: 5.1 (0.16)

start: 7.0 (0.56)
end: 10.0 (0.58)***

start: 11.5 (0.27)
end: 12.8 (0.28)***

scale by 6 start: 5.4 (0.19)
end: 6.3 (0.29)**

start: 8.6 (0.54)
end: 10.9 (0.26)**

start: 12.7 (0.48)
end: 12.5 (0.75)

scale by 7 start: 6.4 (0.56)
end: 7.2 (0.22)*

scale by 8 start: 7.4 (0.33)
end: 8.3 (0.62)*

Beginning and ending salience as a function of number of output and motor neurons and scaling from

motor activity to muscle activity. The start values are the average salience over the first 60 sounds (i.e. the

first simulated minute’s worth of vocalization) for the five simulations using that cell’s parameter

combination. The end values are the average salience over the last 60 sounds (i.e. the 120th simulated

minute’s). Standard deviations of the mean values across simulations are in parentheses. Asterisks

indicate where a paired t-test found a significant difference between the average Minute 1 salience and the

average Minute 120 salience across the five simulations, * p < .05, ** p < .01, *** p < .001. Blank cells

indicate parameter combinations that were not tested.

doi:10.1371/journal.pone.0145096.t003
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Both variables also appear to affect the general amount of learning, defined here as quantity
of change in salience. It appears to be the case that whenm is too low or too high for a given
neuron number, the model’s performance is at floor or ceiling, respectively. The number of
neurons appears to have a more graded effect on the degree of learning that takes place. Pro-
videdm is within an acceptable range, larger neuron numbers tend to increase the degree of
leaning.

The parameter exploration revealed a number of potential candidate parameter combina-
tions for use in further exploration and analysis, in that several of the parameter combinations
did exhibit substantial learning, in particular the 200 motor neuron simulations withm = 2, 3,
or 4. However, exhibiting some learning and substantial increase in salience over time is not
the only relevant factor. It is also important that the model start from a realistic starting point,
i.e., one in which the model does not exhibit much if any canonical babbling. This matches the
fact that prior to about 6 months, most infants almost never produce canonical syllables, except
rarely and apparently accidentally. In other words, like human infants, a model of canonical
babbling development should start from a state of not regularly producing canonical syllables,
and from there should acquire the ability to produce canonical syllables progressively more
frequently.

To aid in choosing a parameter combination to explore further, the vocalizations produced
by each simulation from each parameter combination were sampled at 5 minute intervals. For
each simulation, these samples were concatenated into a single sound file that provides an
auditory sense of how the simulation’s vocalizations changed over time. Based on listening to
the sounds produced by the different parameter combinations at the beginning and the end of
the simulation period, in terms of meeting both criteria, i.e., having a realistic starting point
and showing increased canonical babbling over time, the best parameter combination was 200
motor neurons andm = 2. The other combinations that showed high increase in salience (200
motor neurons andm = 3 or 4) started from a point of already producing canonical syllables
fairly frequently. Thus, in the rest of the Results section, we will focus on the 200 output/motor
neuron andm = 2 simulations.

The five sound files that give snapshots of this best parameter combination’s vocalizations
over the course of learning are available in S4 Sound, S5 Sound, S6 Sound, S7 Sound and S8
Sound. Snapshots for the corresponding yoked control simulations are available in S9 Sound,
S10 Sound, S11 Sound, S12 Sound and S13 Sound. The full set of sound files for all parameter
combinations is available at http://dx.doi.org/10.6084/m9.figshare.1486454.

Evidence for the model’s learning
This section describes the results of statistical tests of whether the model learned over time
compared to the yoked control simulations. We operationalized learning as an increase in
salience of the sounds and as an increase in average number of syllables. Recall that salience
was also the basis for model reinforcement whereas the automatic syllable detector was not
applied to the model vocalizations until completion of the simulations. Thus, the salience met-
ric shows how the model performed relative to its training criterion and number of syllables
provides a more independent measure of whether the model actually increases the number of
syllables it produces.

Fig 3A shows the salience of the vocalizations produced by the model as a function of simu-
lation time and in comparison to yoked control simulations. A linear mixed effects model pre-
dicting a vocalization’s salience with simulation number as a random effect and simulation
time, yoked control status, and the interaction between simulation time and yoked control sta-
tus as fixed effects indicated that there was an increase in vocalization salience over simulation
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time, β = 0.42, p< .001 and that salience was greater for vocalizations produced by salience-
reinforced model simulations compared to those produced by their yoked control simulations,
β = 1.2, p< .001. There was also a statistically significant interaction between whether the sim-
ulation was a yoked control simulation and simulation time, β = 0.43, p< .001, reflecting the
fact that the salience-reinforced version of the model increased its vocalization salience over
time whereas the yoked control version of the model did not.

As can be seen in Fig 3B, the number of syllables produced by the salience-reinforced model
increased with simulation time whereas the syllabicity of the yoked control simulations’ pro-
ductions remained fairly constant over time. A linear mixed effects model predicting number
of syllables with simulation number as a random effect and time, yoked control status, and the
interaction between time and yoked control status as fixed effects indicated several statistically
significant patterns. There was an increase in number of syllables over time, β = 0.31, p< .001,
a higher number of syllables for salience-reinforced simulations compared to yoked controls,
β = 0.66, p< .001, and an interaction such that salience-reinforced simulations exhibited more
increase in syllabicity over time than yoked control simulations, β = .31, p< .001. Compared to
the yoked control simulations, the salience-reinforced simulations produced about two sylla-
bles per vocalization after the two hours of simulation time, compared to a baseline of less than
one syllable per vocalization.

Fig 3. Increase in salience and syllabicity over time. A: Average auditory salience of the sounds produced by the model as a function of simulation time in
seconds and whether the simulation was reinforced based on auditory salience or was a yoked control. B: Number of vowel nuclei, i.e. number of syllables,
estimated to be contained within the sounds produced by the model as a function of simulation time in seconds and whether the simulation was reinforced
based on auditory salience or was a yoked control. Lines are generalized additive model fits and dark gray shading gives 95% confidence intervals around
those fits. When reinforced for auditory salience, the model increases both the salience of its vocalizations and the number of syllables contained within those
vocalizations, while the yoked controls do not show such increases.

doi:10.1371/journal.pone.0145096.g003
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How does the neural network increase vocalization salience?
Having established that the model’s learning increases both the salience and the average num-
ber of syllables of its vocalizations, the next question is how the model learns to do this. We
analyzed the changes that took place in the model’s muscle activity time series to see what fea-
tures of its motor neuron dynamics changed during learning. We also visualized the changes in
synaptic connection weights at the beginning compared to the end of simulation.

We characterized the 900 ms muscle activity time series associated with each vocalization in
terms of two features. The first was the standard deviation of the 900 values in the time series.
The standard deviation of the muscle activity would be expected to correlate with the quantity
of movement of the jaw and lips. Amount of movement is expected to relate positively with the
salience of a sound, as more movement should generate greater sound change.

The second feature was the mean activity level over the 900 ms. This will tend to correlate
with the base position of the jaw and lips around which any movement takes place and will
also have an effect on the sounds the vocal tract model produces. When the mouth is slightly
open, increase in masseter and orbicularis oris activity can easily cause the mouth to close,
stopping the air flow and creating a consonant sound, and decrease in masseter and orbicularis
oris activity will tend to cause the mouth to move toward facilitating production of a more
open vowel sound. Thus, mean masseter and orbicularis oris activity that places the mouth in a
slightly open position is likely the ideal scenario for generating canonical babbling sounds. If
the mean activity of these muscles is too great, the mouth will be constantly in a closed position
and changes in muscle activation around this mean level will not change the fact that the
mouth is closed; this will tend to lead to sounds with low salience scores that do not contain
consonant-vowel alternations. At the other extreme, if the baseline masseter and orbicularis
oris activity are very low, this will tend to position the mouth rather wide open, and it will take
much greater movement for the mouth to close enough to generate a clear consonant sound;
the typical range of movement may tend to lead to slight changes in vowel type instead.

To test these ideas for how standard deviation and mean of the activity time series should
relate to the sounds the vocal tract model produces, we ran a multiple regression with standard
deviation and mean as predictors and salience as the dependent variable to be predicted, with
all sounds from all five simulations and their yoked controls as data points. As expected, stan-
dard deviation was positively associated with salience, β = 0.367, p< .001. Mean activity level
was also positively associated with salience, β = 0.671, p< .001. The relationship of salience to
muscle activity standard deviation and mean is depicted graphically in Fig 4A. This suggests
that most of the vocalizations were on the side of having lower than desirable baseline and
range orbicularis oris and masseter activity, so that increasing the baseline activity level of
these muscles, which would have to be accomplished through greater agonist motor neuron
activity, would lead to increasing vocalization salience and increasing likelihood of generating
consonant sounds.

Given these associations between standard deviation of activity and salience and mean
activity level and salience, did the neural network model effectively learn to increase either or
both of these features in order to increase the salience of its vocalizations? A mixed effects
model predicting standard deviation of muscle activity with simulation number as a random
effect and simulation type (real vs. yoked control), simulation time, and interaction between
simulation type and simulation time as fixed effects revealed that the real simulation had
greater standard deviations than the yoked control, β = 0.371, p< .001, that as simulation time
increased, the standard deviation increased, β = 0.129, p< .001, and that there was an interac-
tion between the two factors, β = 0.138, p< .001. Based on a regression with the same predictor
variables but mean activity level as the dependent variable to be predicted, the real simulations
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had significantly higher mean activity levels than the yoked control simulations, β = .161,
p< .001, there was a significant positive effect of simulation time, β = 0.378, p< .001, and
there was a significant interaction between the two factors, β = 0.419, p< .001. These results
can be visualized in Fig 4B and 4C. These results indicate that the model did increase both the
amount of muscle activity variation and the baseline level of muscle activity over the course of
learning. The change in baseline activity is consistent with the phonetic research demonstrating
that there are greater changes in vocal tract resonances when a change in vocal tract aperture
occurs while the vocal tract is nearly closed than when the same change in aperture occurs
while the vocal tract is relatively open [76].

Fig 5A shows an example, from the first simulation run compared to its yoked control, of
the learned synaptic weights from the reservoir output to the motor neurons. The figure illus-
trates how the salience-based reinforcement resulted in the connection weights to the agonist
motor neurons being stronger than the connection weights to the antagonist motor neurons.
Indeed, a paired sample t-test comparing the ratio of the mean of the connection weights to
agonist motor neurons divided by the mean of the connection weights to the antagonist motor
neurons showed this to be significantly higher for the salience-reinforced simulations (mean
ratio of 1.35) than for their yoked control simulations (mean ratio of 1.00), T(4) = 18.11,
p< .001 (Fig 5B). It seems likely that the greater connection weights to agonist motor neurons
are responsible for the greater average activity of the masseter and orbicularis oris after
salience-reinforced learning, in turn leading to more salient and more syllabic vocalizations.

As shown in Fig 5C, the standard deviations of the synaptic weights from the reservoir to
the motor neurons is also greater for the salience-reinforced simulations (mean standard devia-
tion of 0.61) compared to their yoked control simulations (mean standard deviation of 0.58),

Fig 4. The relationship of muscle activity mean and standard deviation to salience and learning. A: Each point represents one vocalization produced
by five simulations of the salience-reinforced model. Data are sampled so that every fifth vocalization produced by the model is plotted here. Note that the
most salient sounds tend to have both high median activity levels and high standard deviation of muscle activity, as our statistical analyses indicate. The
legend shows the colors of the maximum and minimum salience points portrayed in the plot; red indicates high salience, yellow indicates moderate salience,
and cyan indicates low salience. B: The mean level of muscle activity produced by the model as a function of simulation time in seconds and whether the
simulation was reinforced based on auditory salience or was a yoked control. Lines are generalized additive model fits and dark gray shading gives 95%
confidence intervals around those fits. When reinforced for auditory salience, the model increases the baseline level of activity of the masseter and orbicularis
oris muscles, leading to greater mouth closure on average after learning. The yoked controls do not show such an increase. C: The average, across
vocalizations, of the standard deviation of muscle activity within each vocalization, as a function of simulation time in seconds and whether the simulation was
reinforced based on auditory salience or was a yoked control. The salience-reinforced model increases its within-vocalization change in activity of the
masseter and orbicularis oris muscles, leading to greater jaw and lip movement on average after learning.

doi:10.1371/journal.pone.0145096.g004
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Fig 5. Synaptic weights after learning. A: Example of the synapse strengths from each reservoir output neuron to each motor neuron after learning. The left
plot shows the synapses for the first simulation of the 200 motor neuronm = 2 model reinforced for high-salience vocalizations. The right plot shows the
synapses for the corresponding yoked control simulation. Yellow indicates greater connection strengths; blue indicates weaker synapses. The stronger
synapses on the left half of the left plot as compared to the right half of that same plot reflect the greater connection of reservoir neurons to agonist motor
neurons promoting mouth closure than to antagonist motor neurons promoting mouth opening. Note that this bias is not present in the connection weights of
the yoked control simulation shown on the right. B: Across all simulations of the 200 motor neuronm = 2 model, the total strength of the connections from the
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T(4) = 5.06, p = .007. Future work is needed to determine if difference increase in variability of
weights is related to the simulations’ vocalization behaviors and if so, how.

Discussion

Summary
It is very difficult to measure infants’ neural activity in situ while they learn to babble. Compu-
tational modeling can help to identify plausible mechanisms underlying vocal development
and evolution.

We presented a computational account of canonical babbling as a consequence of general
purpose learning in the motor cortex. The model combines a spiking neural network model of
motor cortex subpopulations with a simulation of the human vocal tract. The neurons in the
neural network control the jaw (masseter) and lip (orbicularis oris) muscles in the vocal tract
simulation, allowing for control of degree of mouth opening. The vocal tract simulation per-
mits the synthesis of sounds. The model is reinforced for producing high salience sounds (rela-
tive to the sounds it has previously produced), assuming infants have greater interest in the
more salient sounds that they produce and/or that more salient sounds are more likely to elicit
adult attention and response. Both intrinsic interest and social response are assumed to activate
reward centers in the infant nervous system. Reward is assumed to modulate spike timing
dependent plasticity in the spiking neural network, allowing the model to learn to recreate
some of the activity patterns that lead to vocalizations that received a reward.

Over time, the model learned to increase the salience of its vocalizations, which coincided
with increase in the number of syllables it produced. As a result of this learning, at the end of
the simulation the model showed increases in both the range of oscillation of jaw and lip mus-
cle activity and in the baseline level of jaw and lip muscle activity, both of which were more
conducive to producing movements that led to alternation between the jaw being open and the
jaw being closed, which was associated with the production of consonants.

Theoretical implications
The present study has implications for our understanding of how the nervous system supports
the development of syllabic babbling in infancy as well as for how syllabic speech may have
evolved. It demonstrates that the dynamics of activity of small groups of cortical neurons,
when converted to muscle activity, are sufficient to generate oscillatory movement of vocal
tract structures in such a way as to generate canonical syllables, as in human infants’ redupli-
cated canonical babbling. Not all simulated cortical activity will lead to consonant-vowel alter-
nation; the degree of oscillation must be sufficiently great and the baseline level of activity must
be at an appropriate level so that oscillation around that baseline will lead to alternation
between mouth closure and mouth opening. These modifications to the cortical oscillation are
what the model learns, and may be the primary things the human infant brain learns to accom-
plish over the course of the first year of life, as it gradually acquires the tendency to produce syl-
labic sounds and, once it can produce them, to produce them with increasing frequency.

Our preliminary simulations exploring the muscle scaling and number of output and motor
neurons parameters indicated that it is possible to obtain high rates of syllable production

reservoir to the agonist motor neurons divided by the total strength of the connections from the reservoir to the antagonist motor neurons. Bar height indicates
the mean across the five simulations and the error bars represent 95% confidence intervals. C: Across all simulations of the 200 motor neuronm = 2 model,
the standard deviation of the connection strengths from the reservoir to the motor neurons. Bar height indicates the mean standard deviation across the five
simulations.

doi:10.1371/journal.pone.0145096.g005
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without any learning, simply by setting both these parameters to high values. This raises the
question of why, if it is so easy to generate syllabic sounds even without learning but simply by
having a large degree of connectivity between cortex and vocal tract muscles, human infants do
not babble from birth but instead appear to learn the behavior. Perhaps having high amounts
of general body movement, including vocal tract structures, from birth would disadvantage the
infant. In the absence of a good reason to move a body part, it may be best to keep it relatively
inactive, both to save metabolic resources and for safety reasons (for example, high degrees of
vocal tract movement in early infancy might interfere with swallowing and breathing). Starting
from a default state of relative inactivity and then learning to gradually increase activity of spe-
cific muscles toward an adaptive aims (i.e. in ways that increase social or other rewards) may
be a better evolutionary strategy.

The point of view supported by our model is consistent with Andrew’s [77] argument that
cyclic patterns are characteristic of systems that have feedback control elements. Feedback con-
trol elements are certainly present in the cerebral cortex as well as in the spiking neural network
used in our model. The individual neuron dynamics are subject to feedback control mecha-
nisms and the reservoir model also has a balance of excitatory and inhibitory activity, along
with recurrent connectivity, that lead to oscillatory behavior. An advantage of recurrent spiking
neural network models is that they incorporate these different levels of feedback control, gener-
ating dynamics that have rich oscillatory activity as has been observed in measurements of elec-
trical activity of cortical populations.

MacNeilage [15] proposed that the rhythmic jaw movements that appear at around 7
months of age are derived from central pattern generators (CPGs) responsible for evolution-
arily older vocal tract functions, in particular chewing and lipsmacking. MacNeilage thought it
implausible that “speech would develop an entirely new rhythm generator, with its own totally
new superordinate control structures, which could respond to coordinative demands similar to
those made on the older system, if evolution is correctly characterized as a tinkering operation,
making conservative use of existing CPGs” (p. 503). It is certainly quite possible that subcorti-
cal circuitry is also involved in the generation and adaptation of rhythmic vocal tract move-
ments associated with canonical babbling development [17, 25, 78–82]. Nevertheless, our
model shows that it might not be so unreasonable an idea after all that new structures are
recruited when an infant learns to produce canonical babbling. Since cortical networks readily
generate oscillatory activity, perhaps once more direct cortical control over vocalization
evolved, it became more straightforward for the cortex to generate rhythmic facial movements
that are timed together with phonation at the larynx. Whether it is easier to evolve to repurpose
existing ingestion and lipsmacking CPGs for speech-related babble sounds than to learn to har-
ness cortical dynamics for directly controlling the vocal tract in a speech-like way is an empiri-
cal question. Computational models combined with neurophysiological measurements from
cortical and subcortical structures alongside longitudinal and comparative behavioral measure-
ments will help to identify which of these, or whether a combination of the two, is the most
likely basis for emergence of syllabic speech.

While our model suggests that an evolutionary root in brainstem CPGs for chewing or lips-
macking may not be strictly necessary, it is quite possible that both brainstem and cortical pro-
gramming of vocal tract movements may both contribute to speech movement. The most
likely possibility may indeed be that the development of canonical babbling is so critical to
modern human function that it has become canalized, supported by a robust combination of
multiple neural and environmental processes [14, 26].

As discussed in the Introduction, the majority of the existing computational models to date
have focused either on how infants acquire vowel categories or on how they acquire the conso-
nant-vowel combinations that make up their language. The work on acquisition of consonant-
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vowel combinations has tended to assume that the agent already has a concept that speech is
organized into syllables, and that the model’s task is to figure out how to combine articulator
movements within this syllabic base, to produce combinations like [bab] or [mi] that have vari-
ous combinations of consonants and vowels, forming syllables that could constitute words in
the language. This is consistent with some work on human infant babbling, which has argued
on the basis of phonetic transcription of infants’ canonical babble and first words that the most
significant achievement in infant vocalization is the increased control over the movement of
various vocal tract articulators, including the tongue and lips, superimposed on a frame of jaw
movement [83]. In contrast to those previous computational modeling efforts, the present
work provides an account for how the precursor to this learning of phonetic content of sylla-
bles, i.e. the syllabic jaw oscillation frame, might itself be learned. This may help account for
the fact that canonical babbling does not appear consistently in infants’ repertoires until the
second half of the first year as well as for why it appears to increase rather gradually in fre-
quency over a period of several months. The present model is the first to attempt to provide a
neurophysiological account for this earlier precursor phenomenon.

Predictions
The model and general theoretical perspective we have presented here makes several predic-
tions that can potentially be tested through future studies with human participants. Neuro-
physiologically, it predicts a correlation between the activity in motor cortex regions
controlling the masseter and orbicularis oris and the production of bilabial canonical syllables
in infants, both at immediate (millisecond/second) timescales and at longer (days/weeks/
months) timescales, as infants acquire the ability to produce syllabic utterances. This could per-
haps be tested using a methodology similar to that in [23]. It also predicts that higher concen-
trations of dopamine in motor cortex will be observed when infants listen to more salient
sounds, such as syllabic speech, and/or when one of their vocalizations receives a positive
response from an adult.

The work presented here also makes a number of predictions that could be tested using
behavioral methods. One such prediction is that infants will prefer to listen to canonical bab-
bling as opposed to non-canonical babbling (although if this is not the case, it is still possible
that the mechanisms presented here could be operating with adult responses being the main
source of reward). Whichever the source of reward, whether it be infants’ own sound prefer-
ences or adults’ contingent responses, our model predicts that as infant production abilities
increase, i.e. as their vocalizations become more syllabic, the threshold for receiving a reward
and for release of dopamine (or some other plasticity-modulating neurotransmitter) will
increase. If it turns out that infants do prefer to listen to more salient, syllabic sounds, indicat-
ing that it is likely that self-stimulation is serving as a reinforcer, then we would expect that as
infants’ produce syllabic sounds more frequently, stimuli with more consonants per unit time
will be needed to elicit and maintain their interest. On the social reinforcement side, we expect
parents’ responses to infant vocalizations to become more contingent on higher syllabicity of
the infant vocalization as their infants’ vocalizations become more advanced. Finally, the
model predicts that if positively reinforced through contingent responses in a laboratory setting
specifically for producing syllabic sounds, infants’ subsequent vocalizations should become
more syllabic, even when the acoustic content of the contingent response remains the same.
This prediction could be tested through a straightforward modification to previous protocols
for contingently reinforcing infant vocalizations in the lab [73], though it would require a reli-
able method for assessing syllabicity of infant vocalizations in real time.
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Limitations and future directions
As argued above, in its current form, the model demonstrates a number of features that already
can help inform our understanding of how speech develops and how it may have evolved.
However, a number of simplifications were made in order to make the model building and the
analysis of its performance tractable. Additionally, there were a number of features of the
model that were chosen or designed rather arbitrarily. The implications of these decisions, and
the effect of making different choices, should also be addressed in future work. In this section,
we highlight some limitations of the current model and discuss how addressing them could
lead to interesting future directions.

One obvious simplification, mentioned in the previous section, was that the model had only
one motor degree of freedom. Only jaw and lip muscles were controlled by the neural network,
and they were controlled together, so that they were always activated in perfect synchrony with
each other. In reality, these two structures can be controlled independently, and even have mul-
tiple independently controllable muscles affecting them. Furthermore, there are many other
vocal tract structures whose muscular control was not learned by the model. These include the
tongue, the velum, the pharynx, the larynx, and the lungs. Future work should have the model
manipulate more or even all of these structures. Besides being a good test of whether the model
can still learn under such conditions, this will potentially allow many more aspects of early
vocal learning to be addressed. For example, if the larynx were manipulated, this would permit
the modeling of cortical learning of laryngeal control, which also takes place over a protracted
period of time during the first year and which is an important component of canonical bab-
bling development, as without phonation, no canonical syllables can be heard no matter how
the jaw, lips, or tongue are moving. Infants have been observed to produce silent jaw oscilla-
tions without phonation [84], perhaps reflecting that they are still in the process of exploring
and learning about the relationship between the larynx and the jaw in sound production.
Another worthwhile future direction would be to incorporate control of the various muscles of
the tongue, in which case a good modeling target would be to simulate existing data on how
tongue movements relate to activity in various cortical regions during speech [23] or to see if
the neural model can account for the relative frequencies of different consonant-vowel combi-
nations in infant babbling (e.g., along the lines of [85]).

Another simplification was that the the model did not contain a perceptual system. Acoustic
analysis of vocal sounds in order to determine when rewards occur was done separately,
through a statistical model that aims to mimic some features of humans’ neural processing of
speech stimuli. Incorporating neurons into the model that perform perceptual processing of
the sounds the model makes as well as of the sounds others in the environment produce would
enable the model to address other phenomena related to infant vocalization. For example, it is
known that the content of adults’ responses to infant vocalizations plays a role in shaping
future infant vocalizations. Multiple labs have found that infants’ future vocalizations tend to
take on phonetic characteristics that resemble those in the responses they previously received.
In particular, when adult responses are verbal or syllabic, this tends to promote future infant
vocalizations having syllabic properties as well, more than when adult responses are nonverbal
or nonsyllabic [73, 86]. Future work should address this more complex issue of possible mecha-
nisms whereby the perceptual content of adult vocalizations combines with the rewarding
value of contingent responses to shape infant vocalization qualities (see [87] for a proposal on
how some of this might be accomplished). It would also be helpful to be able to simultaneously
model perceptual and motor speech learning, as there is evidence that learning in each of these
modalities affects learning in the other [26, 88, 89].
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Of course, there are many more additional extensions that could also prove useful in testing
different hypotheses about how syllabic babbling develops. For example, human infants exhibit
many other types of rhythmic motor activities during the first year [18]. In fact, the develop-
ment of canonical babbling appears to be predicted by the co-occurrence of rhythmic limb
movements with vocalization, suggesting the possibility that rhythmic movement of other
effectors influences babbling development or at least that the two are related by a common
underlying mechanism [90–92]. The influence of rhythmically oscillating neural circuits from
another modality on the neural circuits controlling the vocal tract could potentially be explored
with a model based on the one presented here.

Eventually it would be good to make comparisons to human data in a more detailed way
than has been done here so far. If the model could be made, perhaps through some of the future
directions suggested above, to vocalize not every second but at a rate that better matches
infants’ actual volubility, and if social reinforcement patterns could be made, by reference to
human data, to more accurately match the rates and temporal patterns of actual social rein-
forcement (see [93, 94] for some ideas on how this might be done), and if more detailed infor-
mation on the frequency and temporal patterning of bouts of canonical babbling production
were available, it would be possible to compare the model’s canonical babble production to the
rates and temporal patterning of canonical babble production produced by human infants. It is
likely that the model would need further modifications to provide a good fit, so the exercise
would help to build a more realistic model.

There are also a number of variations on the neural network architecture and learning rules
that would be worth exploring. Indeed, a number of modifications might be necessary in order
to perform some of the future directions just discussed. The number of subgroups of neurons,
the degree of connectivity between neurons, the ways in which synaptic connectivity is scaled,
and so on are all parameters that can be explored to see how they affect neural and motor
dynamics as well as learning patterns [95, 96]. Using such a simple reservoir architecture also
has limitations in terms of neural plausibility. The neural subgroups, connectivity, etc. could be
modified to provide a fit with what is known about neural circuitry in the human (ideally the
human infant) nervous system, and updated as new information becomes available. Guenther
and colleagues [52] have provided a particularly compelling example of how subregions of the
central nervous system can be incorporated into a (non-spiking) neural model of speech pro-
duction, with model features and findings mapping directly to neuroimaging data. In particu-
lar, as more articulators are added, it will likely be important to increase the neural network
size, and partitioning it into subgroups or modifying the connectivity to have less uniform and
more realistic connectivity statistics may be important both for biological realism and for per-
formance. Some other features worth exploring are rewards that vary in degree (i.e. rewards
that are not binary on or off) [97] and the manner in which neural activity is smoothed or fil-
tered prior to using it to control muscle activity. Additionally, learning not only in the connec-
tions between the reservoir and motor neurons but also within the reservoir itself should also
be explored.

Finally, in the present study, we used an adult female vocal tract model, simulated on a com-
puter and unchanging over time. It would be worth exploring other vocal tract modeling
approaches, in particular using simulated vocal tracts with shapes and other features (mass,
elasticity, etc.) matched more closely to infant physiology [98–101]. This would allow the phys-
iology of the infant to be more accurately taken into account and would make it possible to ask
how changes in vocal tract physiology during the first year might facilitate or interfere with
learning to produce syllabic sounds. Additionally, headway is being made into creating a
robotic model of an infant vocal tract [102]. Such an approach has the advantage of not relying
on simulation assumptions to generate acoustics. A robotics approach also may speed up the
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simulation time and make real-time interaction with the model more feasible (the first-
principles simulation of vocal tract mechanics and acoustics is currently the most computa-
tionally intensive portion of our model). Current challenges include material cost and high
time to development compared to using an off-the-shelf vocal tract simulator.

Despite the simplifications made in the model presented here, our results provide good rea-
son to believe that cortical dynamics and learning may underlie the development of syllabic
vocal behavior. The work demonstrates how an approach combining spiking neural network
modeling and vocal tract simulation can be used to model potential scenarios for how syllabic
vocal abilities are learned, providing impetus for pursuing these various future directions.

Supporting Information
S1 Sound. Example of a vocalization containing no consonants.
(WAV)

S2 Sound. Example of a vocalization containing one consonant.
(WAV)

S3 Sound. Example of a vocalization containing multiple consonants.
(WAV)

S4 Sound. Samples of the vocalizations produced by the first run of the salience-reinforced
model over the course of learning.
(WAV)

S5 Sound. Samples of the vocalizations produced by the second run of the salience-reinforced
model over the course of learning.
(WAV)

S6 Sound. Samples of the vocalizations produced by the third run of the salience-reinforced
model over the course of learning.
(WAV)

S7 Sound. Samples of the vocalizations produced by the fourth run of the salience-reinforced
model over the course of learning.
(WAV)

S8 Sound. Samples of the vocalizations produced by the fifth run of the salience-reinforced
model over the course of learning.
(WAV)

S9 Sound. Samples of the vocalizations produced by the first yoked control run over the
course of learning.
(WAV)

S10 Sound. Samples of the vocalizations produced by the second yoked control run over
the course of learning.
(WAV)

S11 Sound. Samples of the vocalizations produced by the third yoked control run over the
course of learning.
(WAV)
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S12 Sound. Samples of the vocalizations produced by the fourth yoked control run over the
course of learning.
(WAV)

S13 Sound. Samples of the vocalizations produced by the fifth yoked control run over the
course of learning.
(WAV)
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