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We have developed a two-dimensional (2D) non-uniform model to study the space charge limited (SCL)
current injection into a trap-filled solid of nano-contact, such as organic materials and dielectrics. Assuming
a solid of length D with a contact of width W, the enhancement over the well-known 1D uniform model is
calculated as a function of W/D for different material properties, such as the dielectric constant (&) and the
trap distribution. The non-uniform current density profile due to edge effect is predicted. The findings
reported here are different from the prior uniform 2D models, which are significant for small W/D when the
size of the contact reaching nanometer scale, i.e. W= 50 nm for D = 1 pm. This model will be useful for the
characterization of carrier mobility and properties of traps, which are critical to many novel devices (with
small nano-contact) operating in the space charge limited condition reporting in novel device and its
applications. Empirical formulas are given for future comparison with experimental results.

important, and it is known as the space charge limited (SCL) current injection. For a one-dimensional (1D)

planar diode composed of a trap-free solid of length D, assuming the injection area is much larger than the
material length, it is known as the 1D Mott-Gurney (MG) law":
V2

Jmc = g Q0B g s

F or high current transport in solids and organic materials, the space charge effect of the injected current is

(1)

where ¢, is the relative permittivity of the solid, ¢, is the permittivity of free space, i is the electron mobility, and V'
is the applied voltage across the diode. For a trap-filled solid with exponentially distributed traps in energy, it is
known as the trap-limited (TL) SCL current injection given by**:

el 12041\ VD
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Here, N_ is the effective density of states corresponding to the energy at the bottom of the conduction band, N; is
the total trapped electron density, and I = 1 is the ratio of distribution of traps to the free carriers. At/ = 1, both
equations give the well-known scaling of V?*/D’. Note Egs. (1) and (2) have been used widely to characterize the
properties of solids such as mobility and trap distribution.

Recently, there are renew interests in SCL current transport in many novel devices involving either inorganic or
organic materials, such as graphene oxide sheets®, light emitting diode®, organic device®, polymer transistor’,
nanowire®™'%, magneto-resistance'’, photocurrent'?, and nano-crystallites embedded silicon Schottky junction®.
The effects on traps have also been extensively studied'*™" as the transport of SCL current as a function of voltage
is very useful to characterize the properties of the traps and to indirectly measure the mobility of charge carrier.
Other studies include temperature dependence transport behavior'®-', single electron model**, thermoelectric
efficiency of nanowire in the SCL regime® and the breaking of SCL in organic solar cells*.

In 2007, the 1D MG law has been extended to a 2D uniform model* for an infinitely long emitting strip with
width Wby assuming a constant current density over the injection plane and drive the electric field on the middle
point of that plane to zero, which indicates a geometrical enhancement of

Iel2D] . 4/3
Jug[1D] t n(W/D)’

3)

for W/D = 1, and it agrees well with a device simulator (with error less than 5%). It was found that the
enhancement factor decreases at higher / > 2 as compared to the trap-free case of | = 1*. Such geometrical
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enhancement effects had also been observed in nanowire but with a
much smaller emitting area®'® and much higher enhanced value. The
crossover from the 1D to the 2D SCL current conduction behavior
was also observed in single crystals®.

However, the 2D models®**® have assumed uniform SCL current
injection into the solid, which may be not valid due to the edge effect,
especially when the typical size of the injecting area is smaller than
the diode spacing. Note the condition to reach the space charge
limited (SCL) current injection from a surface is to have sufficient
high injected current density so that all electric fields on the surface
can be driven to zero, which defines the maximum amount of steady-
state current injection. From solving the Poisson equation, it is clear
that it is impossible mathematically to have uniform profile of the
injecting current density J, which is a constant along the emitting
surface. Thus non-uniform profile of J(x) along the surface must be
solved consistently especially for small emitting width W less than
diode spacing D. At W >> D, our model will recover to the 1D SCL
model shown in Egs.(1) and (2). Physically, we can also see that to
drive the higher electric field at the edge to be zero, higher current is
required to be emitted near to the edge, so we have high localized
space charge fields near to the edge.

Thus there is a need to construct a non-uniform model for SCL
current injection into solid as prior uniform injection model may be
no longer valid in many experiments in using nanoscale materials
with small emitting size (in nm scale) with a diode (in micrometer
scale). For simplicity, we will focus on a 2D non-uniform model
having a finite emitting width of W (see Fig. 1 below).

Note the classical MG law [Eq. 1] is based on a 1D model by
assuming the size of the injection width is infinitely large (W >
D). Thus the calculated space charge limited (SCL) density J is only
a function of V and D, independent of W. In this paper, we consider
finite emitting size, and develop a 2D non-uniform model to include
the dependence of W or ratio of W/D. This indicates that such a 2D
model will be required to solve two-dimensional Poisson equation
consistently with appropriate boundary conditions as shown in Egs.
4 and 5. It is important to note that non-uniformity is important for
W < D, and the prior 2D uniform models®>*” are only approximately
correctly for finite W > D.

For charge injection into a solid, the property of contact is import-
ant - it can be either an Ohmic contact or Schottky contact. However
when the charge injection is at high current regime as studied here,
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Figure 1 | Schematic diagram of SCL electron injection into a solid inside
a planar diode with a spacing D. The solid has a finite width of W and is
infinitely long in x direction.

the type of contact is less critical when the SCL condition (high
current) is reached. For example, the 2D uniform MG law* for an
Ohmic contact has been verified with Schottky contact®” and it is
confirmed that both models gives the same enhancement factor. For
simplicity, we have assumed Ohmic contact in this paper.

The approach presented in this paper can be extended to compli-
cated 3D geometries such as nanowires and nanorods, which will
serve for future works and comparison with prior model such as Ref.
8. Note we have not yet developed a 3D (or protrusive) and non-
uniform model to account for the emission from nanorods like Ref. 8.
If we ignore the sharpness, and simply assume a “flat” cylindrical
emitting shape of a finite radius r, our calculated results from this 2D
“flat” non-uniform model provide lower values as compared to Ref.
8. We believe that it is due to the sharpness of the nanorod which has
been ignored completely. For completeness, the high electric field
enhancement near to the tip of the nanorod should be included. Since
the space charge effect is trying to drive the higher electric field to
become zero, thus we speculate higher SCL current density will be
obtained if the sharpness is included in the model.

Results

Non-uniform injection. As shown in Fig. 1, we first consider a trap-
free solid of length D and width W, which is sandwiched between two
metallic electrodes with a biased voltage of V. The solid is assumed to
be infinite long in the z-direction. The size of both electrodes is L,
which is assumed to be much larger than W. The electrons are
injected from the lower electrode (y = 0 and —W/2 = x = W/2)
into the solid. The interface is assumed to be an Ohmic contact and
the effect of Shottky barrier on the SCL current injection® is ignored
completely. The drift component of the current density is given by
J(x) = p(x,y) E,(x.y), where p(x.y) is the charge density and E,(x,y) is
the electric field in the y-direction. On substituting from the charge
density p(x,y) into the Poisson equation, we obtain the following
normalized differential equations:

V2$(x,y) =0, forlx|>W/2, (4)
_J®

Vele)Vh(xy) = 0 forix<W/2,  (5)
oy

which can be solved numerically with the following boundary
conditions:

¢ (x,y)=0, for y=0,]x|<L/2, (6)
¢(gy,y) =0, for y=0,]x] <W/2, 7)
d(x,y)=V, for y=D,|x|<L/2, (8)
¢(x,y)=V(%), for|x|=L/2. 9)

In our model, the non-uniform injection of current density is
characterized by J(x) in Eq. (5). Its dependence on x is required to
be determined numerically subjected to the boundary conditions.
Here, the SCL injection is defined by having the electric field
equals to zero at all the injecting points at the lower electrode as
shown in Eq. (7). Note it is not trivial to solve Egs. (4)-(9) due to
this unknown J(x) parameter. From the analysis, we find that only
two of the boundary conditions in Eqs. (6), (7) and (8) can be satisfied
if a constant J has been assumed in solving Egs. (4) and (5), which
explains mathematically why a non-uniform model is required.
Thus, one can image that the current density would have a non-
uniform profile like having a higher value near to the edge in order
to fulfill the boundary conditions.
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In Fig. 2, we show the numerical evolution (indicated by the
dashed arrow) of the normalized electric field, and its corresponding
current density at W/D = 1 for D = 1 pm. As the injection current
density increase, the electric field on cathode surface approach zero
(see Methods). From the figure, we clearly see a wing-like profile,
which shows a larger current enhancement of ] near to the edge. We
repeat the calculation at different W/D = 0.5 and 1, which are plotted
in Fig. 3(a). For each W/D case, we calculate the effects due to the
dielectric constant ¢, at the interface, which are ¢, = 3 (dashed lines)
for PPV films?, ¢, = 9 (dashed-dotted lines) for GaN® and without
the interface effect (solid lines). Here the cases without the interface
effect show that the enhancement is ¢, independent. It is clear that the
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Figure 2 | The numerical evolution (indicated by the arrows) of (a) the
normalized electric field at the injecting surface, (b) the normalized
current density, and (c) the equal potential curve distribution under non-
uniform SCL injection at W/D = 1and D =1 pm. Here we have fixed L/D
= 4.

enhancement near to the edge reduces at high ¢, due the reduction of
the effective electric field at the interface given by V/(De,).

By using J(x), the total SCL current () is calculated by integrating
J(x) over the width of the injecting surface. The results normalized to
the 1D MG law [see Eq. (1)], I/Isc are plotted in Fig. 3(b) in the range
0f 0.05 = W/D = 2.5. Here we have W = 50 nm to 2.5 um for D =
1 pum. The results may be fitted into an empirical scaling of

0 o3

(W/D) " (w/D?"

(10)

— =0+
Iug

Here, the three constants (o, o, o3) are, respectively, (1.0384,
0.3647, —0.0025), (1.016, 0.1651, —0.0013) and (1.0102, 0.0524,
0.0001) for no interface effect (circle), €, = 3 (square), and &, = 9
(diamond).

In our simulation (see Fig. 3b and 4b), we fixed D = 1 pm, and W
is varied from 50 nm to 2.5 pm (W/D = 0.05 to 2.5), so the contact
size is less than 100 nm, and it is at nanometer scale. There is no
problem to even smaller value of W, but it will take intense com-
putation time. We have done a case down to W = 5 nm (W/D =
0.005) at &, = 3 [it requires long simulation time for convergence],
the calculated value is I/, = 144.

Effects of Traps in solid. To include the effects of traps in a solid, we
consider the energy state of the traps solid is described by an
exponential function N(E) = (N/kT.Jexp[(E — E.)/kT.]. Based on
Eq. (2), Eq. (5) becomes
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Figure 3| (a) The non-uniform profile of the normalized SCL current
density Jfor a trap-free solid at W/D = 0.5 and 1 (fixed D=1 pum) for PPV
films (&, = 3) and GaN (¢, = 9). (b) The geometrical enhancement of the
2D non-uniform MG law over the 1D MG law as a function of W/D and D
= 1 pum. The cases of no interface effect mean we do not consider the
change of the dielectric constant change at vacuum-solid interface and
simply use the dielectric constant of the material.
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Figure 4| (a) The non-uniform profile of the normalized SCL current
density J for a trap-filled solid like Si (¢, = 11.8) with different [ = 2, 3,4 at
W/D = 0.5 and 1 for D = 1 um, (b) The geometrical enhancement of
the 2D non-uniform trap-limited current over the 1D model as a function
of W/Dand D=1 um.

Vele(y)Ve (x.y)] =Nee! =D/t <M> . {M] 71/1’ (11)

Nou Oy
for|x| <W/2.

Using the same numerical approach [see Methods], we then calculate
the 2D non-uniform trap-limited current density as a function W/D
for different [ and &,.

In Fig. 4(a), take Si as an example (¢, = 11.8), we show the profile
of J(x) over Jr; atl = 2,3, 4 for various W/D = 0.5and 1 at D = 1 pum.
One can see that the current density also increases at the edge, and
the enhancement increases with higher . Compared to [ = 1 case
(similar to the trap-free case as shown in Fig. 3a), enhancement for [
= 2 and / = 3 is more significant.

Similarly the total trapped limited current [in terms of Eq. (2)] is
shown in Fig. 4(b). Using the same scaling of Eq. (10), we also obtain
the fitting constants, which are respectively, (1.0817, 0.0335, 0.0076),
(1.0537,0.1319, 0.0082), (1.0218,0.2478,0.0137) for | = 2,3 and 4. It
is interesting to note that, the geometrical enhancement is more
important for trap-limited current for non-uniform model (as pre-
sent here) as compare the 2D uniform model presented before Ref.
25. For the uniform model, it was found that the geometrical
enhancement decreases from [ = 1 to ] = 2 and 3 (see Fig. 3 in
Ref. 25). We can confirm this finding by having uniform ejection
in our model, which recover the prior findings as reported in Ref. 25.

Discussion

In this work, we have presented a 2D non-uniform SCL current
injection into a solid (of width W) with and without traps.
Empirical scaling has been provided for the geometrical enhancement

factor as function of W/D for different dielectric constants and trap
distribution. For a fixed W/D, it is found that the enhancement (over
the 1D model) is higher for a solid with smaller dielectric constant
and with larger energy spread in the trap distribution. Compared to
prior uniform model, we observed higher local current density near to
the edge. The model will be useful for the characterization of materi-
al’s properties like mobility and trap distribution, especially for a solid
(with a nano-contact size) operating at the SCL regime.

From recent experimental results®, it was suggested that the
threshold voltage to reach the SCL limited current will be lower for
nanowires. Thus the non-uniform model presented in this paper
should be useful to characterize the high current SCL transport in
nanowires at the regime when SCL conditions are reached at all
surfaces. The non-uniformity of the SCL current injection presented
here will be relevant to any injecting surface, especially for nano-
contact areas for organic materials and others®. The different
dependence on the trap distribution may be useful to determine if
uniform or non-uniform injection is favourable in a particular solid.
As an example, this model would be useful for studying the SCL
electron injection into quantum dot LED which has very large value
of I and small contact size®.

Using our non-uniform model presented here, there are 2 meth-
ods to check if non-uniformity is important from the experimental
results (like thin-film like contact). Our model (see Fig. 3b) has
indicated the enhancement decreases with higher dielectric constant,
such dependence (due to the discontinuity of dielectric constant at
the edge between the solid and free space) is absent from the prior
uniform model, which has overestimated the enhancement (see the
red line in Fig. 3b). To compare with uniform model [like Ref. 25]
assuming W/D = 1, which gives an enhancement of 1.43 (independ-
ent of €,) and it is higher than our results namely 1.4 (no discontinu-
ity), 1.18 (¢, = 3) and 1.06 (¢, = 9).

The second method is to measure the enhancement for a solid with
different trap distribution at I = 2, 3 and 4. Our model [see Fig. 4b]
shows the enhancement decreases with smaller [, while the uniform
model [see Fig. 3 in Ref. 25] showing the different trends. If this
finding can be verified experimentally, the model would be useful
to characterize trap-dominated organic based materials for which
non-uniformity issue may be relatively more important.

Methods

In our calculation, we first assume a specified ] in an inner iteration step, and solve
Egs. (4) and (5) numerically for ¢(x,y). Here, Eq. (5) is rewritten as

¢:f]f1:¢¢+

0 2 g_1+¢&41
AR SRR T,

+1
2 45?71,)'

g—1+ 841

+ ¢:‘+1>j+£j*1¢?jtll+£j+1¢;‘,j+l (12)

_45j—1+3j+1
2

¢;y—f>‘,»h2pz,-],

where ¢ is the dielectric constant, & is the grid size, n + 1 and # is, respectively, the (n
+ I)-th and n-th iterative step. Here, 0 (a value between 1 and 2), is a relaxation
parameter used to accelerate the iteration, d; is 0, 1 and 0.5, respectively for the grid
point in vacuum, dielectric and vacuum dielectric interface. The charge distribution is
n n+1\ —1
given by p! = ) <7¢i+l’j_¢i71‘j
U 2h
poison solver, which gives the potential and charge distribution self consistently.
From the numerically solved potential distribution ¢(x,y), one can only calculate
the electric field half a numerical grid from the injecting electrode. In the SCL regime,
the electric field varies rapidly near to the electrode, which makes the calculation of
the electrode surface electric field difficult. The first numerical grid plays an
important role in determine the current density. In order to obtain the cathode
surface electric field, we use the following extrapolating function,

. Note Eq. (12) is solved by using a nonlinear

fy)=A+By'?+Cy, (13)

where A is defined as the normal component of the electric field. By using Eq. (13) and
$(x,), at the 3 nearest half-grid points (to the injecting electrode), we can numerically
solve for A, B and C, and thus obtain the surface electric field through the value of A.
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For the trap-limited case, due to the different scaling for electric field at different /, the
extrapolating function to obtain the electric filed on cathode surface becomes

f(y):A—t—Byl/(Hl)+Cy21/(l+1). (14)

In order to push the electric field to zero, we have another outer iteration process

using the scant method to update the spatial profile of J(x) consistently®. Firstly, we
start with two uniform current densities which is a fraction of the 1D MG law. For
example, we normally use J; = 0.2]y6 and J, = 0.4/56. We then solve the restricted
nonlinear Poisson equation by considering only the Dirichlet boundary condition to
obtain ¢(x,y) for a given current density J(x) (in the inner loop). The corresponding
electrical fields on the surface are then numerically calculated as E; and E,, respect-
ively. By using a secant method, we obtain an intermediate current density J« given by

(E +Ep) (]2—]1 ) . (L+1)

J==" E,—E, 2

(15)

and the new current density is updated by J,.,, = 0.1J+ + 0.9],4. This numerical
process will continue until the convergence in the calculated electric field is better
than 0.01%.
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