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Abstract: Analysis of the cardiac vortex has been used for a deeper understanding of the patho-
physiology in heart diseases. However, physiological changes of the cardiac vortex with normal
aging are incompletely defined. Vector flow mapping (VFM) is a novel echocardiographic technique
based on Doppler and speckle tracking for analysis of the cardiac vortex. Transthoracic echocar-
diography and VFM analysis were performed in 100 healthy adults (33 men; age = 18–67 years).
The intracardiac flow was assessed throughout the cardiac cycle. The size (cross-sectional area) and
circulation (equivalent to the integral of normal component of vorticity) of the largest vortices in
systole (S-vortex), early diastole (E-vortex), and late diastole (A-vortex) were measured. Peak energy
loss (EL) was calculated from information of the velocity vector of intracardiac flow in systole and
diastole. With normal aging, the circulation (p = 0.049) of the E-vortex decreased, while that of the
A-vortex increased (both p < 0.001). E-vortex circulation correlated directly to e’ (p = 0.003), A-vortex
circulation correlated directly to A and a’ (both p < 0.001), and S-vortex circulation correlated directly
to s’ (p = 0.032). Despite changes in vortex patterns, energy loss was not significantly different in older
individuals. Normal aging is associated with altered intracardiac vortex patterns throughout the
cardiac cycle, with the late-diastolic A-vortex becoming physiologically more dominant. Maintained
energy efficiency accompanies changes in vortex patterns in aging hearts.
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1. Introduction

Vortices are rotational whirling bodies of fluid. In recent decades, advances in imaging
techniques including cardiac magnetic resonance, particle image velocimetry [1], and vector
flow mapping (VFM) have enabled in vivo analysis of intracardiac vortices. VFM is an
echocardiographic technique to visualize intracardiac blood flow by combining flow vector
components acquired in color Doppler images and wall motion information obtained
by speckle tracking. Such a combination of information from color flow Doppler and
speckle tracking echocardiography overcomes the angle dependency inherent to traditional
Doppler techniques [2]. It can reproducibly generate parameters that reflect intracardiac
hemodynamics, including energy loss (EL), which is the energy dissipated via the frictional
heat generated due to the viscosity of blood at sites of turbulent flow [3,4]. Data that
are directly descriptive of the intracardiac vortex can also be generated, including the
vortex area and vortex circulation—a summation of all flow velocity components in a
vortex, thereby reflecting both the direction (with negative values indicating clockwise
direction) and intensity of a vortex. Given that intracardiac vortices facilitate left ventricular
(LV) filling and redirect blood flow for LV ejection [5–7], VFM may provide incremental
information on LV function when compared to conventional methods [8].
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Aging is associated with a reduction in LV suction force and an increase in dependence
on atria-driven active LV filling [9]. While early reports have shown that transmitral flow
velocity independently predicts the end-diastolic vortex area [10,11] and that intracardiac
energetics may be altered with aging [12], relationships between aging and intracardiac
flow and energetics remain unclear. We hypothesize that aging-related changes in diastolic
function may alter intracardiac vortex patterns and reduce energy efficiency. The present
study aimed to investigate this hypothesis using VFM.

2. Materials and Methods
2.1. Study Population

Healthy volunteers were prospectively studied between January 2019 and June 2019.
Inclusion criteria were age ≥ 18 years, absence of history of cardiovascular and other
chronic diseases, absence of arrhythmia, and normal transthoracic echocardiography. Ex-
clusion criteria were inadequate echocardiographic images or abnormal echocardiographic
findings. The ethics committee of our institution approved the study protocol. Written
informed consent was obtained from all subjects. This study was registered in the Chinese
Clinical Trial Registry (ChiCTR1900022476).

2.2. Transthoracic Echocardiography

Two-dimensional and Doppler transthoracic echocardiography was performed in all
subjects using the Lisendo 880 ultrasound machine (Hitachi Aloka Medical, Tokyo, Japan).
The LV end-diastolic (LVEDV) and end-systolic volume (LVESV), and ejection fraction
(LVEF) were measured using the biplane Simpson’s method [13]. The early (E) and late
(A) diastolic mitral inflow velocities, the early (e’) and late (a’) diastolic and systolic (s’)
medial mitral annular velocities were measured according to the recommendations by the
American Society of Echocardiography [14].

2.3. Vector Flow Mapping Analysis

Color Doppler acquisitions were performed in the apical long-axis view to allow
VFM analysis, with the Nyquist limit increased to minimize aliasing phenomenon, while
maintaining a sufficient region of interest to include the entire LV and a frame rate of
≥20 per second. The data were transferred to a DAS-RS1 (Hitachi, Japan) workstation
for VFM analysis. The LV endocardium in the end-diastolic frame was traced manually.
The software then automatically traced the endocardium throughout the cardiac cycle for
speckle-tracking detection of LV wall motions, with manual editing if necessary. Automated
anti-aliasing was performed with the same software.

VFM was used to evaluate intracardiac blood flow and viscous EL. Circulation was
calculated by using the following equation, equivalent to the integral of normal component
of vorticity (ω) on an arbitrary plane (S) enclosed by a closed curve:

Circulation =
x

S

ωndS

The areas and circulations of the largest clockwise vortex during systole (S-vortex),
early diastole at the time of E wave (E-vortex), and late diastole at the time of A wave
(A-vortex) were recorded.

By using the continuity equation, the velocity vector of individual pixels was calcu-
lated from information of the adjacent boundaries. A weight function was used to integrate
the calculated vectors [15,16]. EL was calculated by the following equation:

EL = ∑ i, j
∫ 1

2
µ

(
∂ui
∂xj

+
∂uj
∂xi

)2
dv

where µ is the viscosity coefficient of blood, and ui and uj are the velocity components in
the x and y directions [17]. The peak EL during systole (peak ELS), early diastole (peak
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ELE), and late (peak ELA) diastole, as well as the mean EL during systole (mean ELS) and
diastole (mean ELD), were measured.

2.4. Statistical Analysis

Data were reported as mean ± standard deviation or counts (percentage) when
appropriate. The cohort was divided into three groups according to age (18–29 years old,
30–49 years old, and 50 years old or above). Binary variables were compared between age
groups using the Chi-square test. The Shapiro–Wilk test was used to test for normality. The
Kruskal–Wallis test was used to compare non-parametric continuous variables between the
three age groups, while analysis of variance was used to compare parametric continuous
variables. Spearman’s correlations evaluated the relationship between VFM profiles and
age. All p-values were two-sided, with p < 0.05 considered statistically significant. All
statistical analyses were performed using SPSS software version 25.0 (IBM Corp, New York,
NY, USA).

3. Results

A total of 100 healthy subjects (33 men; age, 42.9 ± 14.9 years; range, 18–67 years)
were included. Demographics, as well as conventional 2D, Doppler, and tissue Doppler
echocardiographic findings are summarized in Table 1. There were no differences in
LVEDD/ESD, LVEDV/ESV, LVEF, and s’ between the three age groups. Older patients had
a significantly lower E/A ratio (p < 0.0001) and e’/a’ ratio (p < 0.0001), but a higher E/e’
ratio (p < 0.0001).

Table 1. Demographics and two-dimensional and Doppler echocardiographic parameters stratified by age groups.

Age Groups

18−29 Years (n = 26) 30–49 Years (n = 35) 50 Years or Above (n = 39) p Value

Age, years 22.4 ± 2.5 41.3 ± 5.8 58.0 ± 4.9 <0.0001
BSA, m2 1.68 ± 0.19 1.75 ± 0.25 1.63 ± 0.16 0.097

Female, N (%) 16 (61.5) 23 (65.7) 28 (71.8) 0.782
LVEDD, mm 44.1 ± 4.7 44.1 ± 4.6 43.4 ± 25.1 0.886
LVESD, mm 26.5 ± 4.1 26.9 ± 3.6 25.1 ± 3.7 0.102
LVEDV, mL 78.8 ± 17.1 75.7 ± 19.1 24.5 ± 5.8 0.117
LVESV, mL 26.2 ± 5.3 25.6 ± 6.9 65.4 ± 2.6 0.489

LVEF, % 66.6 ± 2.43 66.3 ± 2.3 71.7 ± 14.7 0.139
E, cm/s 84.0 ± 19.4 75.0 ± 14.5 60.6 ± 14.2 0.011
A, cm/s 34.9 ± 13.6 53.2 ± 12.4 60.6 ± 14.2 <0.0001

E/A 2.70 ± 1.11 1.48 ± 0.40 1.25 ± 0.42 <0.0001
e’, cm/s 12.3 ± 0.80 9.64 ± 2.07 8.68 ± 1.56 <0.0001
a’, cm/s 8.28 ±1.58 9.54 ± 1.84 10.6 ± 1.96 <0.0001
s’, cm/s 7.90 ± 1.06 7.75 ± 1.14 7.77 ± 1.62 0.905

e’/a’ 1.52 ± 0.33 1.05 ± 0.30 0.845 ± 0.216 <0.0001
E/e’ 6.99 ±2.01 8.02 ± 1.91 8.40 ± 1.82 <0.0001

BSA, body surface area. LVEDD, left ventricular end-diastolic diameter; LVEDV, left ventricular end-diastolic volume; LVESD, left
ventricular end-systolic diameter; LVESV, left ventricular end-systolic volume; LVEF, left ventricular ejection fraction; E, early diastolic
mitral inflow velocity; A, late diastolic mitral inflow velocity; e’, early diastolic mitral annulus velocity; a’, late diastolic mitral annulus
velocity; s’, systolic mitral annulus velocity.

3.1. Normal Intracardiac Vortex Flow and EL

In all subjects regardless of age, two intracardiac vortices form during early diastole
at the time of the E wave near the LV base, including a larger clockwise vortex (E-vortex)
in front of the anterior mitral valve leaflet and a smaller anti-clockwise one behind the
posterior mitral valve leaflet. The two vortices grow and migrate towards mid-LV, then
fade at the end of the E wave. At the time of the A wave, two vortices form again near
the LV base, with a larger anterior clockwise vortex (A-vortex) and a smaller posterior
anti-clockwise vortex. The anterior clockwise vortex persists into systole and migrates
to the base of heart near the LV outflow tract, reaching its maximal size in mid-systole
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(S-vortex). A representative example of a normal intracardiac vortex formation is shown in
Figure 1 and Supplementary Materials Video S1.

Figure 1. Representative example of normal vortex formation pattern in the apical three-chamber view during (A) early
diastole, (B) at the completion of passive ventricular filling, (C) during late diastole, and (D) during systole. Vortices are
marked in orange circles. An energy loss heat map is displayed under the velocity vectors (white arrows), with red being
low energy loss and yellow being high.

The normal LV EL is characterized by three distinct peaks in EL in systole, early
diastole, and late diastole, corresponding to the formation of respective intracardiac vortices
(Figure 2).

3.2. Intracardiac Vortex Flow Characteristics and Aging

Table 2 and Figure 3 compare the intracardiac vortex flow characteristics and EL
between younger and older age groups. There were significant age-dependent differences
in intracardiac flow, with older patients showing a significantly larger A-vortex area
(p = 0.0003) with stronger circulation (p < 0.0001). The mean ELS was significantly lower
than the mean ELD (Wilcoxon signed rank test, p < 0.0001) in healthy subjects across all age
groups. Older individuals showed a significantly lower peak ELE (p = 0.005) but a higher
peak ELA (p < 0.0001); however, the mean ELD was not significantly different between age
groups (p = 0.772). There was no intergroup difference in the mean and peak ELS.
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Figure 2. Curve showing intracardiac energy loss by VFM analysis in a young subject.

Table 2. Comparison of vector flow mapping results by age groups.

Age Groups

18−29 Years (n = 26) 30–49 Years (n = 35) 50 Years or Above (n = 39) p Value

E-Vortex area, mm2 405 ± 169 354 ± 124 345 ± 138 0.349
E-Vortex circulation, m2/s −0.0251 ± 0.0149 −0.0213 ± 0.0085 −0.0209 ± 0.0097 0.279

A-Vortex area, mm2 236 ± 160 377 ± 141 344 ± 141 0.0003
A-Vortex circulation, m2/s −0.00632 ± 0.00409 −0.0158 ± 0.0073 −0.0203 ± 0.0090 <0.0001

S-Vortex area, mm2 478 ± 172 453 ± 172 397 ± 174 0.151
S-Vortex circulation, m2/s −0.0150 ± 0.0079 −0.0168 ± 0.0078 −0.0174 ± 0.0078 0.480

Peak ELE, J/m3s 35.5 ± 17.9 24.3 ± 15.8 22.2 ± 13.7 0.005
Peak ELA, J/m3s 3.42 ± 2.83 8.03 ± 5.71 12.3 ± 8.6 <0.0001
Peak ELS, J/m3s 10.6 ± 7.2 8.54 ± 4.48 10.4 ± 6.67 0.714

Mean ELD, J/m3s 9.59 ± 5.52 8.96 ± 5.27 9.93 ± 5.85 0.772
Mean ELS, J/m3s 4.27 ± 2.60 4.30 ± 2.21 4.93 ± 2.68 0.297

E, early diastole; A, late diastole; S, systole; EL, energy loss.

3.3. Interrelations among Intracardiac Flow, Energetics, and Aging

There was a significant correlation between aging and stronger A-vortex circulation
(Spearman’s rho (rs) = −0.623, p < 0.0001). Aging also correlated weakly with weaker
E-vortex circulation (rs = 0.197, p = 0.049) and stronger S-vortex circulation (rs = −0.218,
p = 0.029); the correlation between the S-vortex area and aging was not statistically sig-
nificant (rs = −0.193, p = 0.054). Generally, a larger vortex area correlated to stronger
circulation, as observed for the S-vortex (rs = −0.463, p < 0.0001), E-vortex (rs = −0.386,
p < 0.0001), and A-vortex (rs = −0.577, p < 0.0001).

Peak ELE correlated with a higher mitral inflow E velocity (rs = 0.621, p < 0.0001),
while peak ELA correlated with a higher mitral inflow A velocity (rs = 0.678, p < 0.0001).
E-vortex circulation correlated directly to e’ (rs = −0.297, p = 0.003), A-vortex circulation
correlated directly to A (rs = −0.606, p < 0.0001) and a’ (rs = 503, p < 0.0001), and S-vortex
circulation correlated directly to s’ (rs = −0.214, p = 0.032). Additionally, stronger E-vortex
circulation correlated to a higher peak ELE (rs = −0.324, p = 0.001), while stronger A-vortex
circulation correlated to a higher peak ELA (rs = −0.743, p < 0.0001). However, there was no
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significant correlation between S-vortex circulation and the mean and peak ELS (p = 0.385
and p = 0.374, respectively).
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4. Discussion

In this study, we confirmed previous descriptions of the pattern of vortex formation
and energy loss in healthy individuals [5,18–20]. Our study demonstrated important
age-related changes in vortex formation and energetics.

Muñoz et al. published a detailed account of the behavior, evolution, and transitions
of the intracardiac vortex, which included a detailed analysis of the vortex area and
circulation [19]. Our study, with a larger number of subjects, confirmed their findings. It
was apparent that the clockwise vortex during diastole, located at the anterior mitral valve
leaflet, was larger and persisted longer than the counterclockwise vortex located at the
posterior mitral valve leaflet during both passive and active LV filling. Physiologically, such
dominance by the clockwise vortex is sensible given the vortex’s role in redirecting blood
towards the left ventricular outflow tract. For such reasons, both Muñoz et al. [19] and the
current study focused on the clockwise vortex; whether alterations of the anticlockwise
vortex bear any physiological or pathological significance remains to be investigated.

Age-related decline in myocardial relaxation and, therefore, LV suction cause an
increase in reliance on active atrial filling, with a larger and more intense late diastolic
vortex. This differs from patterns observed in young healthy hearts, where active late
LV filling generates small vortices that persist into systole [10,20–22]. Since the A-vortex
persists into systole, our finding of increased A-vortex area and strength with aging is
consistent with previous reports in which the mitral inflow A wave was shown to be the
only independent predictor of pre-ejection flow velocity in the LV outflow tract [23]. We
also found significant correlations between vortex circulations and tissue doppler indices,
which reflect that stronger mitral annular motions during LV filling and the ensuing
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stronger transmitral flow likely result in a stronger vortical flow in the LV. Overall, our
results added further mechanistic details for the altered LV filling patterns in aging hearts.

We observed that EL is significantly higher in diastole than in systole, consistent
with previous reports [21,24]. This was possibly related to the fact that LV inflow needs
to make a “U-turn” at the mid-ventricle and apex. A higher LV filling velocity causes
more turbulence colliding with the blood in the LV, causing more EL [25,26]. In contrast,
blood flow in the normal LV outflow tract is unidirectionally forward and laminar. Here,
intracardiac EL arises from friction between blood flow and the LVOT wall, and the lack of
flow collision limits intracardiac EL. Given the preserved systolic function and laminarity
of LVOT flow in older individuals, it is unsurprising that intracardiac ELS is preserved.
On the other hand, ELD not being elevated in older individuals, despite the changes in
diastolic vortex patterns, suggests that the increase in A-vortex area and circulation may be
seen as a compensatory response to the decline in E-vortex area and circulation.

Most previous studies of intracardiac flow have used other techniques, such as cardiac
magnetic resonance and particle image velocimetry. Though extensively studied, these tech-
niques each have significant limitations: cardiac magnetic resonance is expensive, requires
significant time for processing, which prohibits flow visualization at the time of imaging,
and is limited in availability at many centers; meanwhile, particle image velocimetry,
though allowing for rapid flow visualization at the time of imaging, requires contrast agent
injection, often turning an otherwise non-invasive transthoracic echocardiography into an
invasive procedure [1]. These may pose difficulties for researchers in recruiting research
subjects, and more importantly, they create major barriers for incorporating intracardiac
flow imaging into clinical practice in the future. In contrast, VFM is inexpensive, completely
non-invasive, and allows for rapid flow visualization at the time of imaging. Future studies
may therefore utilize VFM to investigate intracardiac flow in larger cohorts with wider
age ranges and possibly follow-up studies, potentially better delineating the intracardiac
flow alterations in aging and other conditions, as well as any prognostic significance of
these alterations.

4.1. Clinical Significance

The close links between diastolic markers, vortex area, and vortex circulation suggest
that vortex patterns and intracardiac EL may be deranged in patients with diastolic dys-
function. Data of vortex patterns and intracardiac energetics are scarce for this group of
patients [27] and further studies may be worthwhile.

4.2. Limitations

Intracardiac vortex is a three-dimensional structure that moves in multiple planes.
Visualizing a vortex with a two-dimensional imaging technique such as VFM inherently
runs the risk of missing smaller vortices due to the plane of imaging, such as the small
vortices that result from the disintegration of the PMVL vortex in late diastole [20]. This
problem is inherent to all existing echocardiographic methods of intracardiac flow imaging;
three-dimensional VFM is currently being developed, which may be able to overcome this
limitation in the near future [28]. Additionally, the analyzed cine loops had minimal frame
rates of only at least 20 Hz, which may lead to the underestimation of the largest vortex
area and the corresponding circulation, as well as missing any short-lived vortices. The
low frame rates may also lead to misinterpretation of aliasing phenomena as EL, which
we attempted to minimize by both increasing the Nyquist limit and using the software’s
automated anti-aliasing function; such an approach to minimize aliasing has been deployed
by previous studies as well [26,29]. Future studies of intracardiac flow imaging should
try to achieve higher frame rates, which would allow for a more detailed and accurate
delineation of vortex behavior and dimensions throughout the cardiac cycle, as well as
preventing inaccuracies in EL measurements due to aliasing. Furthermore, it is unclear if
there are significant cycle-to-cycle variations in VFM parameters. Future studies should
look to investigate and address this potential issue. Lastly, with the oldest subject being
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67 years old, our results’ generalizability to older subjects is uncertain. Nonetheless, finding
healthy volunteers at even older ages is difficult and our results remain a solid basis for the
understanding of aging-related changes in intracardiac flow.

5. Conclusions

In aging hearts where there is an increased dependence on atria-driven LV filling,
the early diastolic E-vortex declines in strength, while the late diastolic A-vortex becomes
physiologically dominant with increased size and strength. These inverse changes in the
E-vortex and A-vortex were accompanied by maintained energetic efficiency. Further
investigations of vortex imaging may yield clinically significant findings in a variety
of conditions.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
.3390/jcm10163619/s1, Video S1: Representative example of normal vortex formation pattern in the
apical three-chamber view. Vortices form at the anterior and posterior mitral valve leaflets during
early diastole and late diastole, and near the base of the heart during systole. Vortices are marked in
orange circles. The energy loss heat map is displayed under the velocity vectors, with red being low
energy loss and yellow being high.
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