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Abstract

Healthcare-associated infections (HAIs) remain a serious public health problem. In previous

work, two models of an intensive care unit (ICU) showed that differing population structures

had markedly different rates of Staphylococcus aureus (MRSA) transmission. One explana-

tion for this difference is the models having differing long-term equilbrium dynamics, result-

ing from different basic reproductive numbers, R0. We find in this system however that this

is not the case, and that both models had the same value for R0. Instead, short-term, tran-

sient dynamics, characterizing a series of small, self-limiting outbreaks caused by pathogen

reintroduction were responsible for the differences. These results show the importance of

these short-term factors for disease systems where reintroduction events are frequent,

even if they are below the epidemic threshold. Further, we examine how subtle changes in

how a hospital is organized—or how a model assumes a hospital is organized—in terms of

the admission of new patients may impact transmission rates. This has implications for both

novel pathogens introduced into ICUs, such as Ebola, MERS or COVID-19, as well as exist-

ing healthcare-associated infections such as carbapenem-resistant Enterobacteriaceae.

Introduction

Healthcare-associated infections are a serious source of morbidity and mortality, and are likely

to continue to be so as rates of antibiotic resistance increase. In addition to their health-related

complications, these infections are also a significant burden on the resources of the healthcare

system. In 2015, the Department of Health and Human Services’ Hospital-Acquired Condition

Reduction Program (HACRP) levied approximately $330 million in penalties against hospitals

with high infection rates [1]. For both reasons, reducing HAIs is a top priority for healthcare

safety and quality teams.

One such HAI, for which there has been some success in reducing rates, is methicillin-resistant

Staphylococcus aureus (MRSA). MRSA is especially difficult to treat and can be very dangerous to

immune-compromised individuals and other vulnerable patients such as those in the intensive

care unit (ICU) or a burn ward [2]. MRSA is most often treated with vancomycin, a drug with
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a myriad of potential side effects, and a treatment failure rate of nearly 50% [3]. Because of the

difficulty in treating patients with MRSA once they have developed a clinical infection, a great

deal of time and attention is placed on the prevention of the initial colonization of a patient

with the bacteria, involving interventions such as hand hygiene or contact precautions.

One tool to study HAI transmission and develop new interventions is the use of mathemati-

cal models, the most frequent of which in hospital epidemiology are based off of the Ross-Mac-

donald model. Ross and Macdonald developed the theory of transmission dynamics and

control for mosquito transmitted pathogens. Since 1899, this has been expanded on by a num-

ber of others, including Waite [4], Lotka [5], Sharpe [5], Dietz [5], Bailey [5], Koella [6], and

others. These extensions are now widely regarded as a set of models defined by a simplified set

of assumptions regarding transmission—primarily that transmission of a pathogen takes place

between two or more classes (i.e. humans and mosquitos) rather than within a single class.

Given the importance of hand hygiene and environmental contamination in healthcare-associ-

ated transmissions, and the relatively low mobility of patients in intensive care, these models

are readily adapted to the healthcare environment.

In a previous work Mietchen et al., 2019 [7] explored three models build on this framework,

considering different methods of representing the population structure of an ICU. These were:

1) treating all patients as a single well-mixed group with nurses and doctors combined into a

single staff type,(SST)—most analogous to a classic formulation of a Ross-Macdonald model, 2)

breaking nurses and doctors into two staff types with type-specific contact parameters while

maintaining the well-mixed structure,(Nurse-MD), and 3) representing the ICU as a meta-pop-

ulation, where patients are divided into groups of three with a single attending nurse per group,

while the doctor sees all patients,(meta-population). These models were chosen to represent a

continuum of compartmental model complexity, from the simple and relatively analytically

tractable SST model to the meta-population model, which is considerably more complex in rep-

resentational form, and represents something of an intermediate step between compartmental

models and network models with granular representations of patient and provider contact.

It was shown that the meta-population model had markedly lower infection rates using the

same parameterization, and generally was less sensitive to changes in parameter values. An

exploration of one parameter in particular, γ, the proportion of time spent by a nurse exclu-

sively treating their assigned patients, which may be varied and which allows the meta-popula-

tion model to reduce to the Nurse-MD model, showed a non-linear relationship between its

value and MRSA acquisitions. This study focuses only on this pair of models, because of their

relatedness.

This previous work, however, focused primarily on the long-term dynamics of these mod-

els, obtained purely by stochastic simulation. Left unexplored was the mathematical explana-

tion for these results. One plausible explanation is that, despite having very similar

formulations, each model had a different basic reproductive number, R0, which determines

whether an epidemic will die out (R0 < 1), stay in a constant state of equilibrium (R0 = 1) or

continue to grow (R0 > 1). An alternative hypothesis is that these differences in simulated

infection rates are driven not by the model’s long-term equilibrium states, but with shorter-

term phenomena known as transient dynamics.

We define transient dynamics as non-permanent, short-term behaviors of the model,

driven by stochasticity, small perturbations (such as the admission of a colonized patient), etc.

Effectively, the behavior of the model when it is expressly not at equilibrium. In this paper we

explore the transient dynamics of infection transmission in these systems, to demonstrate that

the two models, Nurse-MD and meta-population, have the same R0 and that the transient

dynamics of the these models are what drive a series of small outbreaks rather than the long-
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term dynamics. To illustrate this, we examine the model’s sensitivity to relatively subtle, but

realistic, differences in starting conditions.

Methods

Intensive care unit model

We consider a 18-bed, single occupancy ICU, where patients are assumed, due to their critical

status, to be immobile. As MRSA is not airborne, this then restricts the available MRSA trans-

mission pathways to strictly healthcare worker (HCW) mediated patient-to-patient transmis-

sion. The role of environmental contamination is represented by modeling the contact rate in

terms of “direct care tasks”, which involve a healthcare worker touching either a patient or

their surrounding environment, rather than in terms of patient body-contacts alone.

As previously described, two variations for our model ICU are analyzed. In first model (Fig

1), the 18 patients are still viewed as a group, while the six nurses and single doctor are treated

as separate types of individuals, with role-specific parameters for their contact rate. This for-

mulation assumes random mixing where all healthcare workers care for all patients in equal

amounts, and is a simple representation of an ICU of a form commonly used either for

computational efficiency in a larger model, or for analytical tractability. In the second model,

we represent the ICU as a meta-population (Fig 2), wherein the patients are no longer lumped

together but instead placed in groups of three with a single nurse attending each group while

the doctor sees all patients. An important feature of this model is the inclusion of a parameter,

γ, which represents the proportion of time a nurse spends with their assigned patient group.

These assignments can be thought of as representing a number of different policies or proce-

dures, such as continuity of care policies, where healthcare workers are repeatedly assigned the

same patients to ensure consistent care, or a hospital build environment that naturally sepa-

rates patients into groups due to architectural structure. Departures from these assignments

can be thought of as difficult procedures requiring multiple healthcare workers, cross-coverage

during breaks, etc. When γ = 1 this can be considered a strict assignment, whereas the system

is equivalent to a mass action model when g ¼ 1

C, where C is the number of patient groups. The

value of this parameter has been shown in previous simulation work [7] to non-linearly

decrease the number of incident acquisitions of MRSA within the ICU with increasing values

of γ. This formulation also reflects many of the realities of staffing, the desire for continuity of

care between healthcare providers, and even the hospital built environment, where the place-

ment of patient beds, nursing stations, etc. creates logical groupings. A table containing the

parameter values is below in Table 1.

For each of these models, we consider the ICU to always be at capacity as a discharge will

immediately lead to an admission, maintaining a steady-state population [8]. Further detail on

the construction, implementation and parameterization of the models may be found in [7].

The equations governing each of the two models is below.

Nurse-doctor model

dPU
dt
¼ � rNcPU

NC

NC þ NU
� rDcPU

DC

DC þ DU
þ ynUPC þ mPC � ynCPU ð1Þ

dPC
dt
¼ rNcPU

NC

NC þ NU
þ rDcPU

DC

DC þ DU
� ynUPC � mPC þ ynCPU ð2Þ
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Fig 1. Schematic representation of the compartmental flow of a mathematical model of methicillin-resistant Staphylococcus aureus (MRSA)

acquisition with nurses and intensivists separated into different staff types. Solid arrows indicate possible transition states, while dashed arrows

indicate potential routes of MRSA contamination or colonization. Nurses and doctors are classified as uncontaminated (NU orDU) and contaminated

(NC andDC), while patients are classified as uncolonized (PU) or colonized (PC). Figure by Eric Lofgren is licensed under CC BY 4.0.

https://doi.org/10.1371/journal.pone.0260580.g001
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dNC

dt
¼ � iNNC � tNNC

PC
PC þ PU

þ rNsNU
PC

PC þ PU
ð3Þ

dNU

dt
¼ iNNC þ tNNC

PC
PC þ PU

� rNsNU
PC

PC þ PU
ð4Þ

Fig 2. Schematic representation of a meta-population model of methicillin-resistant Staphylococcus aureus (MRSA) acquisition. Patients (blue)

are treated by a single assigned nurse (orange). A single intensivist (red) randomly treats all patients. Figure by Eric Lofgren is licensed under CC BY

4.0.

https://doi.org/10.1371/journal.pone.0260580.g002
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dDU

dt
¼ iDDC þ tDDC

PC
PC þ PU

� rDsDU
DC

PC þ PU
ð5Þ

dDC

dt
¼ � iDDC � tDDC

PC
PC þ PU

þ rDsDU
DC

PC þ PU
ð6Þ

Meta-population model

dPUi
dt
¼ � rNcgPUi

NCi

NC þ NU
� rNcð1 � gÞPUi

NC � NCi

NC þ NU

� �

� rDcPUi
DC

DC þ DU

þynUPCi þ mPCi � ynCPUi

ð7Þ

dPCi
dt
¼ rNcgPUi

NCi

NCi
þ NUi

þ rNcð1 � gÞPUi
NC � NCi

NC þ NU

� �

þ rDcPUi
DC

DC þ DU

� ynUPCi � mPCi þ ynCPUi

ð8Þ

dNUi

dt
¼ iNNCi

þ tNgNCi

PCi
PUi þ PCi

þ tNð1 � gÞNCi

PC � PCi
PC þ PU

� �

� rNsgNUi

PCi
PUi þ PCi

� rNsð1 � gÞNUi

PC � PCi
PC þ PU

� � ð9Þ

Table 1. Parameter values for models of MRSA transmission in an ICU.

Name Value Interpretation Source(s)

ρN 3.973 Nurse direct care tasks per hour [9, 10]

ρD 0.181 Doctor direct care tasks per hour [9, 10]

σ 0.054 Hand contamination probability [11]

ψ 0.029 Probability of patient colonization given contaminated contact Fitted to [12,

13]

θ 0.00949 Probability of discharge [13]

νC 0.0779 Proportion of admissions colonized with MRSA [13]

νU (1-νC) Proportion of uncolonized admissions [13]

ιN 6.404 Nurse hand washing rate—11.02 nurse tasks per hour with 56.55% compliance

and 95% efficacy

[9, 10, 13, 14]

ιD 1.748 Doctor hand washing rate—3.25 doctor tasks per hour with 56.55% compliance

and 95% efficacy

[9, 10, 13, 14]

τN 2.728 3.30 nurse gown/glove changes per hour with 82.66% compliance [11, 13, 15]

τD 0.744 0.90 doctor gown/glove changes per hour with 82.66% compliance [11, 13, 15]

μ 0.002083 Natural decolonization rate median 20 days [16]

DT 1 Total Number of Doctors

NT 6 Total Number of Nurses

PT 18 Total Number of Patients

HWT 7 Total Number of Health Care Workers

NPT 1 Total Number of Nurses per ‘cohort’

PPT 3 Total Number of Patients per ‘cohort’

https://doi.org/10.1371/journal.pone.0260580.t001
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dNCi

dt
¼ � iNNCi

� tNgNCi

PCi
PUi þ PCi

� tNð1 � gÞNCi

PC � PCi
PC þ PU

� �

þrNsgNUi

PCi
PUi þ PCi

þ rNsð1 � gÞNUi

PC � PCi
PC þ PU

� � ð10Þ

dDU

dt
¼ iDDC þ tDDC

PC
PU þ PC

� rDsDU
PC

PU þ PC
ð11Þ

dDC

dt
¼ � iDDC � tDDC

PC
PU þ PC

þ rDsDU
PC

PU þ PC
ð12Þ

In the above equations, γ represents a percentage of time a nurse would spend tending

patients not assigned to him/her. If g ¼ 1

6
the system reduces to the Nurse-MD model, and γ =

1 is the full meta-population model where no nurse tends to unassigned patients. Note that the

above equations imply a simplifying assumption that the effect of the patients/nurses not

assigned to group i can be represented by the sum of all patients/nurses not belonging to

group i, i.e. gPUi
P

i6¼j
NCi

NCiþNUi
¼ gPUi

NC � NCi
NCþNU

� �
. Here, NCi

represents the number of contaminated

nurses in group i whereas NC represents the total number of contaminated nurses in the

hospital.

Derivation of R0

In order to ascertain whether the differing model types under consideration are the result of

differing values of R0, and thus examine whether (or to what extent) the differences in the sim-

ulations found in [7] can be explained by differing long-term equilibrium dynamics, we

derived both the numerical and symbolic forms for R0 in each system using the Next Genera-

tion Matrix Method.

The Next Generation Matrix, denoted by K = F�V−1, was used to calculate the basic repro-

ductive number, R0; it was introduced by Diekmann et al. 1990, where they defined R0 to be

the dominate eigenvalue of K [17–19]. The Next Generation Matrix is an alternative to the

Jacobian method, and is a general method for deriving R0 in complex compartmental models

[20, 21]. Further details, mathematical proofs, and examples can be found in van den Driessche

et al. 2008 [22], Yang 2014 [19], van den Driessche et al. 2017 [21], and O. Diekmann et al.
2010 [18].

An important caveat is that this method relies on the notion of a Disease Free Equilibrium,

which is rare in hospital epidemiology, where most commonly hospitals are subjected to a con-

tinuous influx of new, potentially infective patients. Here, we make the simplifying assumption

that the colonization rate of incoming patients, save for the initial colonized patient, is zero.

Realistically, this most closely models a nosocomial outbreak of an emerging infectious disease

that does not have established transmission in the community, or where the admission of colo-

nized individuals is vanishingly rare.

Stochastic simulation of meta-population initial conditions

The meta-population model, as it divides the patient population into strictly non-interacting

groups, potentially has a starting condition not present in the other models. In any model

where
Pn

i¼1
PC;i � 2, the placement of those patients is potentially relevant. Two foreseeable
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scenarios were stochastically simulated —one where two patients were attended by the same

nurse, and one where each patient was attended by a different nurse. These two conditions

were simulated for one year assuming (as with the calculations of R0) that there were no colo-

nized admissions, and also in a more realistic circumstance where 7.79% of admitted patients

were colonized with MRSA, either from the community or elsewhere in the hospital. These

simulations were performed using the StochPy package [23] and Python 3.7.

Using a panel of 1,000 runs of each model, we generated Kaplan-Meier survival curves [24]

for the time until the first MRSA acquisition and time until the third MRSA acquisition, to

assess if there were any differences in the amount or timing of these early initial acquisition

events. Statistical significance was assessed using a log-rank test, using the survival package

[25] in R 3.5.2. The code and data used in these simulations may be found at http://www.

github.com/epimodels/transientdynamics.

Results and discussion

Basic reproduction number

The analytical form for R0 for each of the three models, as well as the specific numerical values

for R0 using the parameters found in Table 1 are shown in Table 2.

In contrast to the numerical results in Mietchen et al., 2019, despite having markedly differ-

ent simulated rates of infection, the numeric value of R0 between the Nurse-MD model and

the meta-population model is the same, at 0.2781. This value provides two pieces of evidence

that the difference in the dynamics of these systems is driven by transient dynamics. The first

is that, given this model formulation where contact is based not on individuals, but on clinical

care tasks, which are constrained to be equal between the Nurse-MD model and the Meta-Pop-

ulation model, the identical values of R0 should result in the same long-term equilibrium

dynamics. More specifically, with identical values of R0 less than 1 (given the parameters in

Table 1), the long-term equilibrium values of these models should converge to a disease-free

equilibrium. Following from this, because both values of R0 are not only below one, but dra-

matically below one, absent new introductions of colonized individuals, in both systems

MRSA is sub-epidemic and likely to die out. Once colonized individuals are reintroduced into

the model, the “long-term” dynamics of MRSA in both systems are, instead, revealed to be a

sequential series of short term, stochastically driven and ultimately self-limiting sub-epidemic

outbreaks. In such a scenario, short-term transient dynamics inherently predominate.

Numerical simulation of meta-population initial conditions

The results of the numerical simulations can be seen in Figs 3–6, showing the results for the

time until the first and third acquisitions of the system with and without colonized admissions

respectively. Broadly, there were statistically significant differences in the timing of the first

new acquisition in both admission scenarios, with the starting condition where the two “seed”

patients were cared for by the same nurse resulting in a faster new acquisition (p = 0.004 and

p> 0.0001 in the colonized and uncolonized admission scenarios respectively). This pattern

Table 2. Values of R0 for two ICU models.

Model Numerical R0 Analytic R0

Nurse-MD 0.2781 sc
idr

2
nþinr

2
DÞ

ðmþynuÞin id

Meta-Population 0.2781 cs
6NPTPPTinr2

dþPTidr
2
n

NPTðnuyþmÞinPTid

https://doi.org/10.1371/journal.pone.0260580.t002
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remained significant for the third acquisition in the no colonized admissions scenario

(p = 0.02), but not in the colonized admissions scenario. By the fourth acquisition, both start-

ing conditions were statistically indistinguishable within each scenario. Also notably, as the

value of R0 for these models were well below one, the majority of the simulations in the sce-

nario with no further colonized admissions experienced rapid stochastic extinction of the

pathogen. Scenarios with the two seed patients treated by different nurses were slightly less

likely to go stochastically extinct, with 41.0% of iterations (vs. 31.9%) having a new acquisition

within the hospital, and 0.66% iterations (vs. 0.43%) having transmission continue to a third

acquisition. These results illustrate the sensitivity of this model to starting conditions, and the

dramatic impact of an inherently transient and short-term phenomenon —the admission of a

single patient —on the model’s dynamics.

Conclusion

Our results suggest that, somewhat contrary to most infectious disease systems, the previously

simulated differences in MRSA rates depending on how one represents the ICU —or believes

Fig 3. Time to first MRSA acquisition in an ICU meta-population model with potentially colonized admissions. The dark and light grey lines

indicate starting conditions where two initially colonized patients are cared for by the same and different nurses respectively, with the shaded regions

representing the corresponding 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0260580.g003
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that it is organized in reality —is not the result of differing values of R0 or differences in their

long-term dynamics. Indeed, mathematically the Nurse-MD model and the meta-population

model are asymptotically the same model, despite the meta-population model having a lower

simulated infection rate. Absent the admission of new colonized patients, both models should

reach their disease-free equilibrium relatively swiftly.

Instead, we show that the ability of nurses to have a smaller cohort of dedicated patients

with which they spend some or all of their time, as well as the differences in starting conditions

that arise from how patients are admitted into these cohorts, drives the observed differences,

rather than R0. What is being observed is not two systems reaching different long-term equilib-

rium states, but rather a series of short-term, stochastic and self-limiting outbreaks that, when

viewed over time, begin to appear as persistent, endemic transmission of the pathogen at dif-

fering rates. It is the constant re-introduction of disease (via colonized admissions), that keep

the models from reaching the disease-free equilibrium implied by their R0.

This poses a somewhat unusual question for the control of healthcare-associated infections.

Unlike most diseases (i.e. COVID-19), R0 has already been driven below one. The transient,

Fig 4. Time to third MRSA acquisition in an ICU meta-population model with potentially colonized admissions. The dark and light grey lines

indicate starting conditions where two initially colonized patients are cared for by the same and different nurses respectively, with the shaded regions

representing the corresponding 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0260580.g004
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ephemeral nature of the dynamics of this system shifts the focus from controlling spread

within an ICU as a persistent phenomena to hardening the ICU against introductions of dis-

ease, and the subsequent stochastic transmission events that arise from it. Importantly, this

mindset is applicable not only to common pathogens such as MRSA or C. difficile but also

emerging healthcare-associated pathogens such as carbapenem-resistant Enterobacteriaceae,

Candida auris, or pathogens such as Ebola, MERS or of more recent concern, COVID-19.

Also evident in the results is further support for the practice of placing colonized patients

under the care of the same nurse (known as “cohorting”). We can also see through Figs 5 and

6 that barring the onslaught of incoming patients already colonized with MRSA, the idea of

grouping colonized patients under the care of the same nurse is effective at reducing the spread

of the pathogen. The practical challenge to this practice becomes the effective detection of col-

onized patients, with or without evident clinical symptoms. Exploring the effectiveness of

cohorting under less ideal circumstances, with imperfect diagnostics, delays in diagnostic lab

results, etc. remains an area for future work. Additionally, the contrast between Figs 5 and 6

versus Figs 3 and 4 suggest that this may only be true in circumstances where the admission

Fig 5. Time to first MRSA acquisition in an ICU meta-population model with no colonized admissions. The dark and light grey lines indicate

starting conditions where two initially colonized patients are cared for by the same and different nurses respectively, with the shaded regions

representing the corresponding 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0260580.g005
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rate of colonized patients is at or near zero. Even with a relatively low 7.79% admission preva-

lence, the benefit of cohorting is quickly swamped by the colonization pressure from these

new colonized patients. It is possible that a more dynamic patient admission scheme (at pres-

ent incoming patients are allocated randomly) might preserve the benefits of cohorting under

some circumstances. The difficulties in implementing such a scheme on a routine basis for

multiple pathogens in a clinical setting are considerable, and moreso in the case of emerging

pathogens. Never the less, these results point to the considerable importance of an ICU’s popu-

lation structure in shaping the dynamics of within-hospital infection transmission, highlight-

ing the need for research into how these structures can be shaped by the hospital built

environment, staff scheduling, hospital policy and other factors.
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